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Abstract-Anomaly detection has been actively investigated to 
enhance the security of wireless ad hoc networks. However, it also 
presents a difficulty on model determination, such as feature 
selection and algorithm parameter optimization. In this paper, we 
address the issue of parameter selection for one-class Support 
Vector Machine (1-SVM) based anomaly detection. We have 
investigated the performance of existing approaches, and also 
proposed a skewness-based outlier generation approach for 
parameter selection in the 1-SVM based anomaly detection 
model.  

I. INTRODUCTION 

Significant difference between a wireless ad hoc network 
and its wired and wireless counterparts makes it vulnerable to 
various types of attacks [1]-[4]. Correspondingly, intrusion 
detection, as an efficient monitoring and detecting method, has 
been actively investigated. Anomaly detection (also known as 
unsupervised intrusion detection) [4][5] has shown several 
preferred properties compared with traditional intrusion 
detection approaches. Without requiring a clearly labeled 
dataset in the training stage, it avoids the time-consuming 
labeling process. It usually has less complexity, and is capable 
of handling large amounts of audit information with the 
growing network size.  

However, the anomaly detection approach also presents a 
difficulty on model determination, such as feature selection 
and algorithm parameter optimization. Unlike the conventional 
supervised intrusion approaches, feature index can be 
computed from the labeled dataset, and decision boundary is 
supported from both sides (target class and outlier class). In 
the case of anomaly detection, only one class of data is 
available. It is therefore difficult to decide, on the basis of just 
one class, how strictly the boundary should fit around the data 
in each of the feature directions.   

The purpose of this research is to investigate the issue of 
parameter selection for anomaly detection. In particular, we 
mainly consider the one-class Support Vector Machine (1-
SVM) based detection model, which has shown its 
effectiveness through several researches [5][11][12]. By 
optimizing the algorithm parameters, we are able to build a 
more efficient anomaly detection model to detect various types 
of attacks with high accuracy. We have investigated the 
performance of existing approaches, and also proposed a 
skewness-based outlier generation approach for parameter 
selection in the anomaly detection model.  

The organization of the paper is as follows. In Section II, 
we present some background information. The proposed 
skewness-based parameter selection approach is described in 
Second III. Performance evaluation is given in Section IV, and 
concluding remarks are added in Section V.  

II. BACKGROUND 

A. Anomaly detection 
Taking a data-centric point of view, the anomaly detection 

can be considered as an unsupervised classification or outlier 
detection problem, in which the decision boundary is learned 
only from normal network records. Using only one type of 
data, a decision boundary is formed around the target class to 
capture the behaviors of normal network operation excluding 
all the attacks. By considering the anomaly detection process 
as an unsupervised classification problem, several 
unsupervised learning algorithms can be used, including 
artificial neural networks, data clustering, k-nearest neighbor, 
etc. Recently, one-class Support Vector Machines (1-SVMs) 
[7] has been proposed for anomaly detection, and proved its 
effectiveness [5][12]. 1-SVM is a direct derivative of SVM 
algorithm and inherits all the advanced properties of SVM 
algorithms.  As a result, it usually achieves a better 
performance than most of the current approaches.  

In literature, there are two similar 1-SVM algorithms 
available. One is called ν-SVC developed by Schölkopf [7], 
and the other is termed as Support Vector Data Description 
(SVDD) [9]. In [10], Tax showed that the SVDD gives 
identical solutions with the ν-SVC when the data is 
preprocessed to have unit norm. In the case of a Gaussian 
kernel, the data is implicitly rescaled to norm 1. Therefore, the 
solutions of the SVDD and the ν-SVC are identical when the 
Gaussian kernel width is equal and C=1/νN is used. In the 
SVDD, the parameter C is set at a pre-specified value 
indicating the fraction of objects which should be rejected. In 
the ν-SVC, the ν directly gives the fraction of objects which is 
rejected. Both of them are exchangeable.  

In this research, we only consider parameter selection for ν-
SVC based anomaly detection model. Thus, two parameters 
are to be optimized, namely, the Gaussian kernel width 
parameter γ and the fraction of rejected objects ν. The 
parameter v decides the fraction of data points in the region, 
and the kernel width parameter γ decides the "shape" of the 
region. Both of them influence the generalization performance 
of the anomaly detection algorithm, and a good choice of the 
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two parameters is necessary. However, as we noted the 
problem is not trivial due to the basic characteristics of 
unsupervised learning.  

B. Related work on model selection for 1-SVM 
There are several approaches have been proposed to deal 

with this problem. One simple approach is to fix ν priori to the 
highest allowable fraction of misclassification of the target 
class. For example, only a 5% classification error is allowed 
on the training set, i.e. ν=0.05. Then it addressed the problem 
by only tuning the kernel parameter γ. In [15], N. Cristianini et 
al. suggested several possible ways for tuning γ. One way is to 
minimize the number of support vectors. Another way is to 
maximize the margin (ρ/||ω||) of separation from the origin in 
v-SVC, which is equivalent to minimizing the radius of the 
smallest sphere enclosing the data [9]. R. Unnthorsson et al. 
[14] also discovered that the best classification accuracy 
occurred at the point where the classification curve on the 
training data first reached 1-ν, based on a fixed setting v. Thus, 
they proposed a simple heuristic criterion for selecting γ to be: 
start with smaller value of σ )2( γσ = and increase it until 

the error on the training set first reaches v. In section IV we 
will show that this criterion may help for picking a value of γ, 
but fixing the value of ν is not efficient as it may choose a 
large number of values.  

Q.-A. Tran et al. [13] proposed another method to evaluate  
the generalization performance of 1-SVM by combining the 
size of region and the generalization fraction of data points in 
the region, respectively. Smaller size and greater fraction all 
indicate better performance. The size of region is then 
estimated using the fraction of support vectors, as the region 
with more support vectors usually has smaller size. Tran et al. 
also proposed a ξαρ-estimate method to estimate the 
generalization fraction of data points in the region. When the 
two evaluation measure estimates are available, the 
generalization performance of 1-SVM can be rewritten as 
follows: 

T=λRξαρ+(1-λ)FnSV

where λ controls the tradeoff between these two evaluation 
measures.  The Rξαρ is the ξαρ-estimate and FnSV is defined as 
the ratio of number of support vectors to the number of 
training objects. For the definition of Rξαρ please refer to [13] 
for detail. To obtain a good generalization performance, the T 
is to be maximized.  

Another direction of investigation is to estimate the fraction 
of opposite outlier class that is accepted (fO+) by generating 
artificial outliers in and around the target set. By generating 
artificial outliers, the error on the outlier class can be 
estimated. Also the fraction of the outliers which is then 
accepted by the 1-SVM is now an estimate of the volume in 
the feature space covered by the 1-SVM. In [10], a method to 
generate uniformly distributed outliers using the box-
procedure is present. The basic idea is to construct a hyperbox 
around the target objects, from which the artificial outliers are 
uniformly drawn. Tax and Duin [17] also extended the idea to 
generate uniformly distributed outliers within a hypersphere. 

The ideas behind these two approaches are the same. But 
instead of generating uniformly distributed outliers in a 
hyperbox, it uses a hypersphere and all the outlier objects are 
drawn from this hyperspere. They believe that it is more likely 
that the hypersphere solution can fit more tightly around the 
target class.    

In this research, we propose another artificial outlier 
generation method, which can fit better around the target set. 
As it fits better, the error estimation using the artificial outliers 
can be more accurate and it can be used in high dimensional 
spaces.    

III. MODEL SELECTION  

In the following, we first discuss the impact of parameters 
of γ and ν on the performance of 1-SVM, and then describe 
the proposed data-skewness based outlier generation approach 
for parameter optimization.   

A. The impact of parameters γ and ν
Using a toy data generated from four clusters of Gaussian 

distributed points with unit variance, we can easily observe the 
impact of parameters γ and ν on 1-SVM performance. The 
mean values of the four Gaussian data clusters are (0, 0), (3.5, 
1), (5.5, 2), and (6, 5.5) respectively. Each cluster has 500 data 
points and totally there are 2000 sample points in the toy data. 
Fig. 1 shows the decision boundary obtained by choosing 
different parameter combination of γ and ν.  

Fig. 1 The impacts of parameters γ and ν

The parameter ν controls the fraction of data points in the 
region.  For a smaller ν, only few target objects are allowed to 
be outside the description. When we increase the ν from 0.01, 
0.05 to 0.1, the fraction of data points rejected by the decision 
boundary is also increased, and the boundary is closer to the 
dataset. The parameter γ decides the non-linear characteristics 
of the decision function, in other words, it decides the "shape" 
of the region. For smaller γ, an approximate spherical solution 

ν γ = 0.01 γ = 0.05 γ = 0.10 

0.
01

 
0.

05
 

0.
10

 

541

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



is found (for γ →0, the rigid hypersphere solution is obtained). 
As we increase γ from 0.01, 0.05 to 0.10, the decision 
boundary becomes more sensitive to the data distribution. 
Schölkopf et al. [8] showed that ν is an upper bound for the 
fraction of target class objects outside the description. Having 
a larger value of ν, the approach is more tolerant to the outliers 
in the training data, but the generalization performance may 
decrease since more and more target objects in the training 
dataset are classified as outliers. On the other hand, having a 
large value of γ always make the model specific to the data 
description, unfortunately the over-fitting problem becomes 
more and more serious as we keep increasing the value of γ.  

From the experiences of conventional supervised 
classification problem, to find good values of γ and ν, an error 
criterion must take the errors from both classes into account. 
That is, the fraction of the target class that is rejected (fT-), and 
the fraction of opposite outlier class that is accepted (fO+). The 
two errors are equivalent to the first and second kind errors, εI

and εII respectively. There always exists a tradeoff between 
them. Shifting the decision boundary towards the opposite 
outlier class (or increasing the volume of data description) 
always decreases the first kind error εI, but increases the 
second kind error εII. The optimal choice of parameters is to 
balance the two errors and attempt to minimize both of them. 
Because only one class of target objects is available in the 
unsupervised classification problem, the error on the opposite 
outlier set (fO+) has to be estimated in other ways.  

B. Skewness-based Outlier Generation 
We propose a new artificial outlier generation method 

using “skewing” technique. In the approach, the outlier objects 
are generated by setting slight offsets from the target objects, 
named “skewness”. As all the outliers are skewed points of the 
target objects, we expect that the outlier objects are tightly 
distributed around the target set.  

Similar to the hyperbox-based outlier generation approach, 
we define the error function as  

G=λ fT-+(1-λ) fO+= λ
N

SV# +(1-λ) fO+

We also define λ to control the tradeoff between these two 
evaluation measures.  In 1-SVM, the target objects that do not 
fit into the decision boundary becomes support vectors. Thus, 
the fraction of the target class that is rejected (fT-) can be easily 
estimated by the number of support vectors. The fO+ is 
estimated using artificial outliers. By minimizing the error 
function G, the optimal values of parameters γ and ν can be 
obtained. The remaining issue is how to generate the 
“skewness” points from the target objects.  

The procedure to generate a skewness point from a target 
object is demonstrated as follows. For any data point x∈Rm, 
assume x ≡ {x1, x2, . . . , xm}. We define a skew function y = 
sk(x), where y={y1, y2, . . . , ym} and yi = xi + αviri for all 
i∈[1,m]. Here, 

• α is a positive number that describes the skew degree;  
• v  is the normalized standard deviation vector. If σi is 

the standard deviation on the ith dimension, and 
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• r  is a normalized random vector. We choose to 
generate a random vector {Ri} with length m with Ri is 
generated with a Gaussian distribution N(0, 1), then 
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 is a random unit vector.  

Fig. 2 illustrates an example how skewed image of data 
point x is created. v1 and v2 shows the normalized standard 
deviation of the training data. The smaller ellipse around point 
x demonstrates the possible locations for sk(x). The generated 
skewed image of the data point x falls in this ellipse. Using the 
above skewness point generation procedure, we generate an 
outlier object for each target object. Thus, we have equal 
number of outlier objects and the target objects. 

Fig. 2 Skewed Data Generation Example 

As Fig. 2 indicates the skewed image of a data point x falls 
in the smaller ellipse around point x, there is a small chance 
that only a few skewness outliers falls outside the target data 
description. In this case, the fraction of fO+ is close to 1, which 
can not give us a good guide on selecting parameters. The 
problem can be mitigated by adjusting the value of skew 
degree α. In practice, we may generate multiple outlier objects 
for each target object, and the number is related to the target 
dimension. Generating enough outliers can help us decide the 
volume of the data description, and further guide the 
parameter selection process. 

The skewed outlier generation approach is similar to both 
the hyperbox and hypersphere based outlier generation 
approaches in the sense that they all attempt to generate 
artificial outliers to estimate the second type of error (εII or
fO+). However, it is different from them in that non-uniformly 
distributed outlier objects are generated. In addition, the 
hyperbox (or hyperspher) based approach usually occupies a 
larger space. The proposed skewness-based outlier generation 
approach is expected to generate a set of “tighter” outlier 
objects around the target set.  

IV. EVALUATION 

For comparison, we have also implemented three existing 
parameter selection approaches discussed in Section II, 
including the tuning γ only method, ξαρ-estimate method, 
hyperbox-based uniform outlier generation method, and 
hypersphere-based outlier generation approach. Their 
performances are first investigated using the toy data set 
shown in Fig. 1, then, the real intrusion detection data 
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simulated using NS-2 platform [19] are applied to evaluate 
their performances.   

A. Toy data evaluation 
(1) Fixing ν and tuning γ

The first approach we investigated is that the parameter ν is 
fixed priori to the highest allowable fraction of 
misclassification of the target class, and only the kernel 
parameter γ is tuned such that the fT+ first reaches 1-v [14]. We 
set the parameter ν to 0.01, 0.05, and 0.10 respectively. That 
is, the highest allowable fraction of misclassification of the 
target class is 1%, 5% and 10% correspondingly. We vary the 
parameter γ from [0.20 0.15 0.10 0.05 0.01 0.005 0.001] and 
select the one when fT+ first reaches 1-v.  

Fig. 3 shows the fraction of accepted target objects vs γ
values. For the case of ν=1%, the fraction of accepted target 
objects first reaches 99% at γ=0.05. For ν=5%, the 
corresponding γ value found is 0.10. The same value (γ=0.10) 
is also found for the ν=10%. In Fig. 1 we plotted these three 
selected models. The third one with ν=10% and γ=0.10 has the 
best performance on the training set, and the first model is 
poor. The reason is that the estimated error fraction (or outlier 
rate) on the training set is not appropriate in model 1. We have 
noticed that this method may help us picking a value of γ, but 
fixing the value of ν is not efficient as it can choose a large 
number of values. For different value of ν, we may obtain 
different γ values. If an inappropriate value of ν is used, then 
the model selected may not have a good performance.  
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Fig. 3 The fraction of target objects that are accepted vs γ values 
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Fig. 4 Generalization of 1-SVM obtained by recall estimate method 

(a) hyperbox (b) hypersphere (c) skewness 
Fig. 5 Artificial outliers generated around the toy dataset 

(blue dots are target objects and red dots represent outlier objects) 

(2) The ξαρ-estimate method 
The second approach we investigated is the ξαρ-estimate 

method, in which the generalization performance of 1-SVM is 
evaluated by the fraction of support vectors and the ξαρ-
estimate of recall. We vary the parameter ν from [0.01, 0.05, 
0.10] and γ from [0.001 0.005 0.01 0.05 0.10 0.15 0.20] 
respectively. We set equal weight to the two measures, that is 
λ=0.5. The generalization performance T is shown in Fig. 4.  

This method results in several larger value of T, but no 
single solution can be obtained. One possible solution is 
ν=10%, γ=0.10, and the other is ν=5%, γ=0.05. Referring to 
the decision boundary shown in Fig. 1, both of them are 
reasonable solutions. But the method is not efficient on dealing 

with the over-fitting problem. When the model is very specific 
to the target distribution, in which the fraction of support 
vectors and the recall rate on the training set are high, the 
method always gives a high value. It can be easily observed in 
Fig. 4. When we increase the γ value further to 0.20, the T
values also keep increasing. In Fig. 1 we can see that the 
model at these values is over-fitted to the target data 
distribution. 

 (3) Artificial outliers 
In the previous Section we have discussed three artificial 

outlier generation methods, hyperbox-based, hypersphere-
based, and our proposed skewness outlier generation. Fig. 5 
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shows the artificial outliers generated using these approaches 
around the toy dataset. The blue dots are the target data 
distribution, and the red dots represent the artificial outliers. 

 We select the parameters γ and ν by minimizing G. 
Initially the λ is set to 0.5. The performances of 1-SVM 
evaluated by different outlier generation approaches are shown 
in Fig. 6. In Fig. 6(a), we can see that when we set the 
allowable target object rejection rate to 10%, we always obtain 
a good performance (smaller G) than the cases of ν=0.01 and 
0.05. In addition, the performance of the two cases (ν=0.05 
and 0.10) are similar, and the performance of v=0.05 is a little 
lower than ν=0.10. When we vary the γ value from 0.001 to 
0.20, the performance measure G first decreases and then rise 
up.  The parameter γ can be selected as the point when the G 
value stop decreasing and rising up. 

For the performance of 1-SVM measured using the 
hyperbox-based artificial outliers, the best choice of 
parameters γ and ν is ν=0.10 and γ=0.10. Another possible 
choices of parameters γ and ν is ν=0.10 and γ=0.05, ν=0.05 
and γ=0.10. By looking back to the decision boundaries we 
plotted in Fig. 1, all these choices of γ and ν combination are 
good selections. For the cases of ν=0.10 and γ=0.10, it is the 

best one from the visual observation. It is very interesting to 
notice that we can obtain the same observation from the other 
two approaches. The case of ν=0.10 achieves the best 
performance using all the different outlier generation methods, 
and the same best parameter combination is found by all these 
three approaches, even their performance are different slightly. 
We can conclude that all the three outlier generation 
approaches are efficient for this toy data distribution. To 
further evaluate the impact of λ, we vary the λ value in a range 
[0.1 0.3 0.5 0.7 0.9], and evaluate the performance of these 
three approaches again. Smaller the λ value, less effect of first 
type of error fT-. Thus the main contribution of the error 
measure G is from the fO+, the second type of error. On the 
other hand, larger value of λ makes the fT- contribute more to 
the performance measure. The cases of λ=0.1 and λ=0.9 have 
inverse performance. If we use λ=0.3, the best parameter 
combination is ν=0.10 and γ=0.10 again. But if we use λ=0.7, 
the parameters selected will be ν=0.05 and γ=0.10. In real test, 
λ can be set to 0.5 to equalize the weight from both the two 
type of errors. We can also choose a litter larger value of λ
(0.6 or 0.7) to consider more on the first type of error fT-. 
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(b) hypersphere-based 
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Fig. 6 Generalization using different outlier generation approaches 
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Fig. 7 Generalization on Cancer data with 9 dimensions 

B. Breast Cancer data evaluation 
In the above experiments, we evaluated the performance of 

different approaches using the 2-dimensional toy data, and 
observed that the three approaches all performs very well. We 
are also interested to see their performance on higher 
dimensional spaces. Thus we select one common dataset from 
UCI Repository. The dataset we used is Wisconsin Breast 
Cancer (1992). The popular Wisconsin breast cancer data set 
contains 9 attributes, 684 instances and two classes (C=2, 

m=9, N=684). We select the normal patterns (non-cancer) as 
the training dataset. Totally there are 444 normal data records.  
We generate 10,000 outliers for hyperbox and hypersphere 
based approaches.  

The generalization performances obtained are shown in 
Fig. 7. We have seen that all the three approaches work well 
for this dataset. During the experiments, we have noticed that 
the number of outliers generated is important for both the 
hyperbox and hypersphere based outlier generation 
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approaches. Large number of outliers is to make sure there is 
enough outlier points falling in the target distribution and help 
us estimate the volume of the target data description. For the 
skewness based outlier generation approach, we can adjust the 
skewness degree α to a larger value in order to generate 
enough outlier points outside of the target description.   

C. Parameter Selection for Anomaly Detection  
We have applied three different outlier generation 

approaches into the anomaly detection data obtained in our 
previous anomaly detection project studies [5][11], aiming to 
find a good parameter combination to enhance the intrusion 
detection performance. The dataset used here is the same as 
we used for evaluating anomaly detection algorithms, 
discussed in [5][11]. The data set contains 1000 normal data 
points in a 30 dimension space. It contains features from four 

aspects, routing packet propagation, route table changes, data 
packet transmission, and node mobility.   

We organized the experiments as follows. First, we 
evaluate the three different approaches for parameter selection 
in anomaly detection model. Then we show the performance of 
the selected parameters. The classification performance on 
another independent test set is used as the evaluation criteria. 
Since all the training dataset are from normal network 
operations, the estimated outlier rate will be very low. We vary 
the parameter ν from [0.01, 0.05, 0.10] and γ from [0.0001 
0.0003 0.0005 0.0008 0.001 0.003 0.005 0.008 0.01] 
respectively. For both the hyperbox-based and hypersphere-
based approach, we generate 200000 outlier objects to test the 
performance. For skewed outlier generation, we set the 
skewness degree to 2.  
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Fig. 8 Generalization for parameter selection on anomaly detection dataset 
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Fig. 9 Performance of the anomaly detection  

Fig. 7 shows the performance of the three different outlier 
generation approaches. We can see that the hyperbox-based 
and skewness based approaches performs well. When we set 
the allowable target object rejection rate to 1% or 5%, we 
obtain better performance (smaller G) than the cases of 
ν=0.10. In addition, the performance of the two cases (ν=0.01 
and ν=0.05) are similar. When we vary the γ value from 
0.0001 to 0.01, the performance measure G first decreases and 
then rise up.  For the performance of 1-SVM measured using 
the hyperbox-based artificial outliers, the best choice of 
parameters γ and ν is ν=0.01 and γ=0.0003. Another possible 
choice of parameters γ and ν is ν=0.05 and γ=0.0003. For the 
skewness based outlier generation approach, we get the similar 
results. The best choice is ν=0.01 and γ=0.0003 or ν=0.05 and 

γ=0.0005.During our experiments, we have also noticed that 
the hypersphere-based outlier generation approach is not 
efficient for the anomaly detection data. By generating 200000 
outlier objects, we still can not estimate the volume occupied 
by the target description as only few outliers fall in the target 
distribution. It may due to the reason that the anomaly 
detection data has a large variance difference for different 
dimensions. In this case the hypersphere-based approach needs 
to cover a very large space. However, we do not have enough 
memory to generate so many objects. 

Comparing all the approaches for anomaly detection 
parameter selection, the skewness based approach performs 
better than the hyperbox-based and hypersphere-based 
approaches. They require fewer outlier objects and the outlier 
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objects are more tightly around the target distribution. We also 
want to see how reasonableness of the selected parameters for 
anomaly detection. We plotted the classification accuracy in 
ROC curves for different parameter combinations in Fig. 9. It 
can be easily see that the selected parameters (ν=0.01, 
γ=0.0003 and ν=0.05, γ=0.0005) all perform very well on the 
testing dataset. It further verifies the effectiveness of the 
proposed parameter selection approach.  

V. CONCLUSIONS 

In this paper, we have investigated the parameter selection 
issue for anomaly detection in wireless ad hoc networks. The 
purpose of this research is to enhance the efficiency and 
effectiveness of anomaly detection by selecting good 
parameters. In particular, we mainly addressed the 1-SVM 
based anomaly detection model, as it has shown its 
effectiveness through several researches.  

We have investigated the performance of several existing 
parameter selection mechanisms, and also proposed a 
skewness-based outlier generation approach. From 
experimental results, we have observed that the skewness 
based approach performed better than the hyperbox-based and 
hypersphere-based approaches. It requires fewer outlier 
objects and the generated outlier objects are more tightly 
around the target distribution. Generating a “tighter” outlier set 
can help us accurately estimate the volume of target 
distribution, thus improves the effectiveness of parameter 
selection.   

Our current work on parameter selection is based on 
scanning technique. That is, we scan the possible choice of 
parameters, and selected the one with best performance. We 
will further extend the work by optimizing the parameters 
using Genetic Algorithms. Finally we note that this research 
considers the parameter selection for 1-SVM based anomaly 
detection model. It can also be used in any unsupervised 
classification or outlier detection problem for parameter 
optimization.  
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