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Abstract— In many database and data mining applications
concerning people, name matching plays a key role. Many
algorithms to match names have been proposed. These al-
gorithms must take into account spelling and transcription
errors, name abbreviations, nicknames, out of order names, and
missing or extra names. The existing algorithms typically fall
along the lines of sound based, edit distance based, or token
based algorithms which can use other methods in matching
each part of the name separately. In this article, we propose
a dynamic programming approach that includes a substring
matching algorithm. The algorithm’s performance is compared
against two often used algorithms by testing on a random sample
of names from a database. The data used for the testing comes
from the DHS US-VISIT Arrival and Departure Information
System database, which includes names from all over the world.
The performance on this data set was compared with the that
of the Damerau-Levenshtein Algorithm and the Jaro-Winkler
algorithm. The dynamic programming algorithm with substring
matching performed better than both of these algorithms on the
data tested.

I. INTRODUCTION

There are many problems, particularly in database search-
ing and matching, where it is necessary for a computer to
compare the names or information of two people and make a
decision on whether or not the two names represent the same
person. The performance of these algorithms is measured by
their capability to distinguish between names originating from
one person and names originating from distinct people. Many
algorithms for accomplishing this task have been proposed
over the last several decades. The methodology behind these
algorithms typically falls into three categories, though many
hybrids have emerged.

The first category is based on sounds. Typically, the name
or word is compressed to a sound code using a list of rules.
These algorithms often employ the phonetic structure of a
language in addition to standard sounds to match names
that sound the same. Because of this methodology they
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are sometimes difficult to use when comparing names from
different cultures. The most common method in this category
is the soundex algorithm and its variants.

Another class of algorithms is based on an edit distance
between two strings. The edits used to match two names can
include inclusions, deletions, substitutions, and transpositions
or character reversals. Each of these edits is assigned a cost
and the final score is based on the minimum number of the
edits required to convert one string into another. Determining
the minimum number of edits is often done using a dynamic
programming approach to compute a matching matrix. Two
common algorithms of this type are the Damerau algorithm[1]
and the Monge-Elkan distance function [2]. The Monge-Elkan
distance function is based on the Gotoh-Smith-Waterman al-
gorithm originally developed for finding matching substrings
in DNA sequences [3]. This algorithm uses positive scores for
matched characters and penalties for mismatches and gaps.
The contribution of Gotoh was to include affine gap costs
which differentiate penalties for starting and continuing a
gap [4]. The scores are then scaled to between 0 and 1. The
Damerau algorithm counts the number of subtractions, dele-
tions, and substitutions required to match strings. Levenshtein
extended the Damerau algorithm to include transpositions [5].

A commonly used algorithm that is not based on a dynamic
programming matrix is the Jaro algorithm [6]. The Jaro
algorithm counts the number of common characters in two
strings if they are within half the length of the shortest string
of its position in the other string. The algorithm records the
number of these common characters which occur in order and
those that occur out of order. Winkler extended this algorithm
to give extra weight to common prefixes [7]. The Jaro-Winkler
works better the shorter the strings it is matching. It therefore
works well on names, which are typically short strings.

A third class of algorithms split strings into tokens or
words, in the case of personal names the split is made wher-
ever a space or dash occurs. Once each token is separated, it
is compared to the tokens in the other string to find the best
set of matches for all the tokens. The final score is then based
on some function of the individual matches and possibly the
order in which these matches occur. Algorithms of this type
include the Jaccard similarity and the TFIDF [8]. Often a
distance metric of some kind is used for individual token
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matches along with one of the token based algorithms in
a hybrid scheme. A comparison of some of the algorithms
discussed thus far is available in [9].

II. ALGORITHM DESCRIPTION

The algorithm proposed in this article incorporates some of
the ideas proposed in previous algorithms. The new algorithm
is based on dynamic programming approach using the Smith-
Waterman algorithm with a modification to account for trans-
positions. The scoring is done on the backtracking portion of
the dynamic programming algorithm. Each token in a string
is then matched with its best matching substring in the other
string. A score is computed for each token in a string, shown
as Wi. The score for each string is computed as a normalized
sum of the scores for the individual tokens,

Sn =
1

WC

Nn∑
i=1

Wi, (1)

where WC is the normalization constant. An overall matching
score is computed as the maximum value in the matching
matrix divided by the average string length,

Sw =
2 · max(DV )

length(n1) + length(n2)
. (2)

The strings are denoted by n1 and n2. The final match score is
a weighted sum of the individual string scores and an overall
match scores;

S = w1 · S1 + w2 · S2 + ww · Sw, (3)

with
w1 + w2 + ww = 1. (4)

Included in the algorithm are penalties for some of the
possible errors. The errors accounted for are mismatches,
gaps, and transpositions. The penalty for these errors are
denoted by M , G, and T respectively. The matching score for
each possible character comparison is specified in a character
match matrix, CM . The simplest example of this is

CM(i,j) =

{
1, if i = j,

−M, if i �= j.
(5)

This example results in a score of 1 for matching characters
and a penalty of M for mismatches. Depending on the specific
situation other more complicated character matching may be
appropriate.

If L1 and L2 are defined as the lengths of strings n1 and
n2 respectively, The dynamic programming matrix DV has
size L1 + 1 by L2 + 1. The character strings are indexed
by subscripts; n13 refers to the third character of string
n1. The following pseudo-code assumes indexing starts at
0 to alleviate the need to deal with the edges seperately on
the backtracking portion of the algorithm. The algorithm for
computing the dynamic programming DV is as follows:

for i = 1 to L1

for j = 1 to L2

DV(i,j) = max(DV(i−1,j−1) + CM(n1j−1,n2j−1)

, 0, DV(i−1,j) − G, DV(i,j−1) − G)
if DV(i−1,j) > DV(i−1,j−1)

and DV(i,j−1) > DV(i−1,j−1)

DV(i−1,j−1) = max(DV(i−1,j), DV(i,j−1))
DV(i,j) = max(DV(i−1,j−1) − T, DV(i,j))

end if
end for

end for.

The scores for the individual tokens, denoted as Wi, are
computed by backtracking through the matrix. An increase or
decrease in the score is determined by adding or subtracting
scores dependent on the match of the characters in the path
as specified by CM . The score is divided by the number of
steps taken to get from the end of the token to the beginning.
If extra characters are present in the corresponding portion
of the other string, the number of steps can be higher than
the actual number of characters in the token. At minimum,
the number of steps will be equal to the length of the token.
As a means of decreasing the impact of errors near the ends
of the tokens, the score is never allowed to go negative. The
result for each token is a score between 0 and 1.

The starting point for each of the token is determined
by searching for local maxima in the appropriate row or
column of matrix DV . If multiple local maxima are present,
the maxima with the greatest difference in score over the
adjacent elements is chosen. The matching then proceeds
along the highest scoring path until it reaches the end of the
token. The highest scoring path is chosen first by sequentially
matching the characters. If the next characters in sequence
do not match, then the match that has the maximum score
according the the DV matrix is selected. This selection could
involve inserting a space in either of the strings or matching
mismatched character.

As each token in the string is matched, the region searched
for the local maxima is reduced as the match is not allowed to
occur in previously matched regions. This technique ensures
the best overall match and penalizes repeated tokens if they
are not present in both strings being compared. The local
maxima are determined using adjacent elements of the column
or row being scanned, if two adjacent elements are not
available, for instance on the ends of rows or columns, all
available adjacent elements along the row or column are used.
If a maximum is discovered at the endpoint of a row or
column, it is automatically chosen. This automatic selection
was put in place because a great majority of names match in
order, and this selection speeds up the matching process. A
local maxima is defined as an element that is strictly greater
then the adjacent elements, so an element which is equal to
any of the adjacent elements being tested is not considered
a local maximum. If no local maxima are located, scoring
proceeds from the previous point to the end of the next token.
A limit was put in for a minimum score at the local maxima.
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R O B A L T O N

0 0 0 0 0 0 0 0 0 0

R 0 1 0.6 0.2 0 0 0 0 0 0

O 0 0.6 2 1.6 1.2 0.8 0.4 1 1 0.6

B 0 0.2 1.6 3 2.6 2.2 1.8 1.4 1 0.6

E 0 0.8 1.2 2.6 2.6 2.2 1.8 1.4 1 0.6

R 0 1 0.8 2.2 2.2 2.2 1.8 1.4 1 0.6

T 0 0.6 0.6 1.8 1.8 1.8 2.4 2.8 2.4 2

0 0.2 0.2 1.4 2.8 2.4 3 2.4 2.4 2

A 0 0 0 1 2.4 3.8 3.4 3 2.6 2.2

L 0 0 0 0.6 2.0 3.4 4.8 4.4 4 3.6

T 0 0 0.6 1.2 1.6 3.0 4.4 5.8 5.4 5

O 0 0 1 0.6 1.2 2.6 4.0 5.4 6.8 6.4

N 0 0 0.6 0.6 0.8 2.2 3.6 5.0 6.4 7.8

TABLE I

DYNAMIC PROGRAMMING MATRIX FOR EXAMPLE 1

The limit prevents very short character sequence matches in
low matching regions from triggering the maxima detector.

The normalization constant, WC, is initially set as the
actual number of tokens in a string, however, to give less
emphasis to shorter strings the constant was modified by the
following algorithm:

if tokenlength = 3
Wi = 1

2 · Wi

WC = WC − 1
2

elseif tokenlength = 2
Wi = 1

3 · Wi

WC = WC − 2
3

elseif tokenlength = 1
Wi = 1

4 · Wi

WC = WC − 3
4

end if.

Both Wi and WC are modified to preserve a maximum score
of 1.0 for an exact match. Less emphasis is given to shorter
strings due to the higher liklihood they will match with a
random section of a non-matching string. Therefore, shorter
strings have less discrimination power and are, hence, given
less weight in the final matching score.

III. EXAMPLE

An example will further illustrate the algorithm in action.
The names used in the example are purely fictional, created
for the purposes of the example. To illustrate how the al-
gorithm matches shortened names, we will compare ”Rob
Alton” as Name 1 and ”Robert Alton” as Name 2. The
penalties M , T , and G were all set to be 0.4. The weights
used were w1 = w2 = 0.35 and ww = 0.3. The matrix DV
is computed for this example in Tab. I

Starting with the final character of Name 1, we search along
the last column for local maxima. A local maximum is located
in the lower right corner. So, backtracking starts in the corner
and progresses along the highlighted path until it reaches the

beginning of the next token, which corresponds to the ”B”
column and ”T” row. The algorithm then searches for and
locates a local maxima in the remaining segment of Name
2. The local maximum is located at the ”B” in ”ROBERT”,
hence backtracking starts from that point and proceeds to
match every character in ”ROB” generating a score of 3.0
in 3 steps. As ”ROB” is 3 characters or less its weight is
reduced to 50% of its original value, and the token count,
WC, is also reduced by 0.5 to a value of 1.5. For Name 1,
the score is

S1 =
1

1.5
·
(

1
2
· 3
3

+
6
6

)
= 1.0. (6)

In the same way backtracking through Name 2 starts in the
lower right corner and tracks until it gets to the B in ”ROB” of
Name 1. For scoring of second token in Name 2, a score of 6.0
was obtained in 6 steps. For the first token, no local maxima
is discovered along the ”T” row in the remaining characters
of Name 1, so backtracking continues where it left off. The
backtracking continues along the ”B” column until it gets the
”B” in ”ROBERT” from Name 2, then the algorithm matches
all the remaining characters. The backtracking in this case
produces a score of 3.0 in 6 steps. The missing characters in
the first token would ordinarily produce a penalty and reduce
the score, however, since they occur at the end of a token,
and the score is never allowed to go negative, the penalty is
reduced. Thus, in total for Name 2 we have

S2 =
1
2
·
(

3
6

+
6
6

)
= 0.75. (7)

The maximum from the matching matrix is 7.8, so the
string whole matching score is then

Sw =
2.0

9 + 12
· 7.8 = 0.742. (8)

Finally, we can compute the total score

S = 0.35 · 1.0 + 0.35 · 0.75 + 0.3 · 0.742 = 0.835. (9)

We can compare this score with a score of 0.73, which would
be obtained if a simple edit distance algorithm was used. The
matching would require 3 edits in 11 characters. While the
score is not directly comparable, a higher score provides a
better possibility of discrimination. The value of a matching
algorithm lies in its ability to distinguish matching names
from non-matching names.

IV. TEST SETUP

The proposed algorithm was compared with two other
commonly used algorithms. The two algorithms tested in ad-
dition to the new algorithm were the Jaro-Winkler algorithm
and a token based algorithm using the Damerau-Levenshtein
algorithm. The records used in the algorithm come as first
and last names, though each may contain multiple tokens.
In the Jaro-Winkler algorithm these names are compared
separately and each comparison is given a weighting of
0.5. The Damerau algorithm splits the names into tokens,
furthermore, it also attempts to find and split run-on names
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where spaces have been left out in one of the names but
not the other. An additional component of the final score in
the Damerau algorithm is computed using the order of the
matching tokens. The dynamic programming algorithm uses
penalties set at 0.4 and weights set at 0.35 for each name
and 0.3 for the overall score. These parameters are the same
parameters as were used in the example.

The data set used in the testing was a random sample from
the Department of Homeland Security’s US-VISIT Arival and
Departure Information System (ADIS) database. The sample
contained all entries for a specific period of time, and included
names from all over the world. From the data sample available
we computed probability distributions of the tested algorithms
for matching and non-matching names. The matching names
set was extracted from the availabe sample of the database.
All the samples were matched through other means and
were all instances of persons in which the names in the
record did not match exactly, either by errors or differences
in recording the name. A majority of the matches in the
database had names which matched exactly. However, since
detecting matches when the names match exactly is trivial
these matches were excluded. In total, roughly 64000 record
pairs were scored using all three algorithms. The scores from
0 to 1 were placed into bins with a resolution of 0.01. Once
all the data was recorded, the results were normalized to
approximate a probability distribution.

To test mismatched names, 10000 names were selected
at random from the database, all possible comparisons were
made from these 10000 names resulting in nearly 50 million
individual comparisons. A probability distribution was pro-
duced in the same manner as the matching names for all the
algorithms tested.

The algorithms were all written and tested in Perl to
simplify the database access. Additional versions of the
algorithms were also written in C for testing and comparison
purposes. To simplify the process, all the name comparisons
were made using only uppercase letters. The strings were
converted to numerical arrays based on ascii codes. The
characters A-Z were converted to the numbers 0-25 and the
space and other characters were converted to the code 26. This
conversion allowed rapid indexing into the character matching
matrix and easy comparison.

V. RESULTS

The results of the tests indicate that the dynamic program-
ming algorithm performs better than both other algorithms
tested at higher probability of match levels, and performs
equivalently to the Jaro-Winkler algorithm at low probability
of false positive levels. The distributions of matching and
non-matching comparisons for the dynamic programming
algorithm are shown in Fig. 1. The distributions are plotted
on a log scale on the y-axis for visibility purposes. From the
distributions, receiver operating characteristic (ROC) curves
can be plotted and compared for the three name matching
algorithms. The ROC curve is a plot of the probability of
false positive matches versus the probability of detecting

Fig. 1. Dynamic Programming algorithm probability distributions

Fig. 2. ROC curves for name matching algorithms
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correct matches. The ROC curves for the three algorithms
tested are shown in Fig. 2. From the plot, it is clear that
the dynamic programming algorithm performs better than
both the other two algorithms and also shows the different
circumstances when the other two algorithms perform better
than the other. The triangle on the ROC curve for the dynamic
programming algorithm marks the performance of a threshold
of 0.5. The ROC curve is generated under the assumption that
the probability of matching and non-matching names is equal.
This assumption is likely not valid in many situations, which
means that the specific probabilities on the ROC curve are
not valid, but the comparison of the different algorithms is
still valid.

VI. DISCUSSION

The algorithm contains several parameters that would allow
it to be customized to a particular data set. The use of the
comparison matrix, CM , allows different character compar-
isons to be given different weights. In the data set used for
testing, the probability of mistaking one character for another
was small enough that it was of no advantage to change the
penalty for any of the errors, so this was not done. Another
possibility, is changing the positive score for the matching
characters, giving more weight to less common characters.
This modification would make normalization more difficult,
but may improve matching performance. Further adjustments
to the weighting or penalties may also improve matching
performance in other applications. A series of tests were
run to determine the best weights and penalties for this data
set, though the tests showed the actual performance was not
sensitive to changes in the parameters.

The speed of the dynamic programming algorithm is slower
than the other algorithms tested, the Jaro-Winkler algorithm
is significantly faster than either of the other two. Both the
Damerau-Levenshtein and the dynamic programming algo-
rithm have the same complexity in computing the matrix; both
are O(mn) where m and n are the lengths of the strings being
compared. However, the dynamic programming algorithm has
a much more complicated backtracking procedure. This extra
computation makes it noticeably slower than the Damerau-
Levenstein algorithm, as much as a factor of 3 for short
strings. In practice, the actual increase in time of the algorithm
will depend on the language the algorithm is implemented
in and the size of strings being compared. When tested on
a 2 GHz computer, the Jaro-Winkler algorithm ran 100000
comparisons with an average length of 12 characters in
1.7 seconds. The same test took 27.1 seconds, and 1 minute
25 seconds for the Damerau-Levenshtein and the dynamic
programming algorithms, repectively. With longer strings,
these times increase significantly due the computation of
dynamic programming matrix. Various means could be used
to speed up the algorithm such as implementing a short circuit
that would break off computation for very low scoring strings,
or some fast algorithm for filling the dynamic programming
matrix.

Ideally, the algorithm would be used in situations where
some other analysis can be used to screen out all but a few
candidates. In the case of pure name matching problem, an
ideal presreen would be a fast comparison algorithm with a
low false negative rate. This fast algorithm would remove a
majority of the possibilities and leave the final matching to
the dynamic programming algorithm. In database matching
situations, there is typically additional information that can
be used to narrow down the number of names that could
be considered to a mere handful, in which case the algorithm
proposed here can be used to pick from the remaining matches
or reject all of them.

The dyanmic programming algorithm is slower than other
algorithms, but in cases where some speed can be traded
for improved matching performance this algorithm would
be good fit. The algorithm is designed for names but it
could be used for matching any string, though computation
time becomes a key issue for longer strings. The algorithm
should work on things such as addresses, place names,
and company names. It is particulary effective in situations
where abbreviations, inconsistent token seperations, and non-
uniform ordering are common.

VII. CONCLUSION

In this article we have described a new algorithm for
matching strings. The algorithm uses dynamic program-
ming methods to create a matching algorithm that combines
features of several other algorithms into a single method.
Tests indicate that the algorithm shows improved matching
performance over two commonly used algorithms. The im-
provement comes at the expense of increased computational
time in a backtracking routine. Adjustable parameters in the
algorithm will allow it to be used in many circumstances for
improved matching performance.
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