
Abstract — The problem of matching random tree models of 
multi-component patterns to tables or graphs containing 
components extracted from diverse data sources is considered.
We focus on bi-level trees whose branches emanate from one 
root node and terminate on different leaf nodes. Node and 
branch attributes are treated as random variables. Tree nodes 
represent pattern components of specified types that occur in 
tables or graphs to be searched. For each item in the table or 
graph with a type match to the tree root, there is a set of 
components from the table or graph that are candidate leaves 
for optimal matches to the tree model. We adopt a view of 
optimal matches to random tree models as minimum cost 
assignments of candidate leaves to tree branches. Model-
based formulas are derived for computing costs associated 
with assignments of specific candidate leaf components from 
tables or graphs to specific tree branches. 

We specify an ontology suitable for dynamic geo-spatial 
query problems in which (1) tree nodes represent physical 
objects or events on the ground (buildings, roads, 
communication transmissions…), and (2) branch attributes 
characterize, with uncertainty, distance or time separations 
between components, and angles between links connecting 
components.  Our approach is used to search very large 
images for specific types of buildings in probabilistically 
constrained spatial arrangements, with the goal of ranking 
model matches for efficient inspection by human analysts. 

Keywords:  statistical graph, random tree model, bipartite 
graph, Hungarian algorithm, content-based image retrieval 

I. INTRODUCTION

 Relational data mining is concerned with finding or 
discovering multi-component patterns of interest in large 
information repositories that contain items previously 
extracted from various sources of structured or unstructured 
raw data (e.g., still overhead images, video, voice or email 
transactions over phone or computer networks, measurements 
from in-situ sensor networks over time, etc.).  The underlying 
data structures for these information repositories were 

1This work was performed under the auspices of the U.S. Department of 
Energy by University of California Lawrence Livermore National Laboratory 
under contract No. W-7405-Eng-48, UCRL-CONF-225685.

originally limited to tables.  Each row in a table contains 
selected attributes for one item extracted from raw data.  
Commercial databases, search engines and Geographical 
Information Systems (GIS’s) maintain tables containing items 
arranged a priori by type and attribute in a manner that allows 
items which satisfy prescribed type and attribute constraints to 
be rapidly retrieved. 
 Underlying data structures for information repositories have 
more recently evolved beyond tables to include graphs, which 
incorporate relationships between items.  Graphs provide a 
topological representation of items extracted from raw data in 
which items are captured as vertices (nodes), and relationships 
between items are depicted as edges (links).  Graph matching 
can be cast as a sub-graph isomorphism problem, in which the 
objective is to find topological matches to a sub-graph within 
a much larger graph.  A survey of graph matching algorithms 
can be found in [17].  The discussion in [17] focuses on 
finding exact (complete) matches to sub-graphs, but some 
algorithms can also find inexact (incomplete) matches [19].  
By way of very brief overview, three classes of commonly 
used methods for graph matching are structural matching, 
semantic matching, and graph feature matching.  Structural 
methods consider only graph link structure, i.e., the vertices 
and edges are treated as un-typed and un-attributed.   The 
basic method presented in [16] seeks all mappings of sub-
graph vertices to graph vertices, but its complexity can grow 
exponentially with the number of nodes in the graph being 
searched.  Greedy search methods based on depth-first search 
(low memory requirements) or breadth-first search (higher 
memory requirements) can also be expensive [5].  They can be 
hierarchical and combine patterns discovered on previous 
iterations [20].  Semantic methods consider not only graph 
link structure, but also types and attributes of vertices and 
edges ([6,18]).  Graph feature matching methods match 
feature vectors constructed from graph invariants (the degree 
of each vertex, the number of sub-graph vertices or loops…) 
[9].  However, graph invariants are more typically used to 
improve search efficiency by reducing the search space 
through pre-screening and filtering.  For example, the 
NAUTY algorithm uses graph invariants pre-computed for 
each vertex in the graph being searched as the basis for 
selecting candidate vertices [11].  All graph invariants can be 
derived from the graph adjacency matrix [8].  All row-wise 
and column-wise permutations of this matrix represent the 
same graph.  The minimum description length (MDL) of a 
graph is the minimum number of bits needed to encode its 
adjacency matrix (taking into account sub-structure 
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redundancies in sub-structure hierarchies) [13].  The similarity 
between two graphs can be measured by encoding the 
difference between those graphs using the MDL principle 
(smaller MDL’s imply greater similarities).  Alternatively, the 
graph edit distance can be used [12].  This measure reflects 
the minimum cost of edit operations (insertions, deletions, or 
substitutions of vertices or edges) needed to transform one 
graph into the other. 
 Most prior work on relational pattern matching is based on 
matching relationally structured patterns (sub-graphs) to 
relationally structured databases (graphs).  In contrast, our 
work focuses on matching patterns that are relationally 
structured in a spatio-temporal sense to relationally 
unstructured databases (tables).  The structures of our 
relational patterns are modeled using trees (a special type of 
sub-graph).  We argue that hybrid databases containing 
graphs, some of whose nodes are spatio-temporally anchored 
to tables, can be used to improve search precision and 
efficiency.  Our emphasis is on tables maintained and indexed 
by a GIS populated with items manually or automatically 
extracted from overhead images. 
 A novel efficient approach to searching tables or graphs for 
a complete set of optimal exact or inexact matches to random
tree (RT) models of multi-component patterns is developed in 
this paper.  Random trees are random (statistical) graphs with 
one root node and at least one leaf node.  Tree nodes are 
connected by directed links (branches).  Branches cannot 
terminate on the root or emanate from leaves.  However, trees 
can have internal nodes that branches both emanate from and 
terminate on.  The attributes of RT nodes and branches are 
random variables.  Although statistical graphs have been 
previously applied to search and data mining problems, we are 
introducing a novel method for quickly finding optimal 
matches to a useful class of statistical graph models in tables 
whose elements share a common spatio-temporal context. 
 RT model nodes represent components C

i
 that share a 

common spatio-temporal context, connected by branches or 
directed links L

k
 that specify probabilistically uncertain 

contextual relationships between components (see Fig.1).  We 
focus on bi-level trees whose branches all emanate from the 
same root (a transmitter T) and terminate on different leaves 
(receivers R

i
).  Bi-level trees have no internal nodes.  The 

ontology defines the types of components, their attributes, and 
the types of relationships supported.  We specify an ontology 
suitable for dynamic geo-spatial query problems in which (1) 
tree nodes represent physical objects or events on the ground 
(buildings, vehicles, roads, communication transmissions / 
receptions, etc.), and (2) branch attributes characterize, with 
probabilistic uncertainty, distance or time separations between 
components, and angles between links connecting 
components. 
Section II describes the structure of a bi-level RT model and 
how to characterize model uncertainty.  We show that when 
long axis angles for root components are known, optimal 
model matches can be computed very efficiently because the 
model branches can be decoupled.  A novel efficient 
algorithm for finding optimal exact and inexact matches to bi-

level RT models in tables or graphs is developed in Section 
III.  The algorithm operates on candidate roots and leaves 
retrieved from the table or graph using commercial search 
engine tools.  These pre-screening tools improve search 
efficiency by reducing the search space.  In Section IV, our 
approach is applied to content-based image retrieval problems 
that involve searching very large images for specific types of 
buildings in probabilistically constrained spatial arrangements, 
with the goal of ranking model matches from best to worst so 
that they can be efficiently inspected by human analysts. 

II. RANDOM TREE MODELS

 A bi-level random tree (RT) model Q of a multi-component 
pattern that occurs in a table or graph to be searched is defined 
by (1) a set of components (one root node plus at least one 
leaf node) and their attributes, and (2) a set of branches 
(directed links from the root to leaves) and their attributes.  
All attributes can be treated as random variables. 

A. Nodes and Links  

 Nodes representing components C associated with RT 
models Q have type, feature and context attributes (Table I).  
Feature attributes, which define component characteristics, 
will not be discussed in detail. 
 Let P be a pattern matched to model Q.  The link L

k

realized in pattern P emanates from component C
i
k
(P) in 

pattern P and terminates on component C
j
k
(P), where the 

indices i
k
 and j

k
 are specified in model Q.  By requiring roots 

to be spatially localized, one can ensure that patterns P
matched to models Q will be “anchored” to well-defined 
spatial locations.  Leaves can either be spatially localized or 
spatially extended, and all components can be either transient 
or persistent. 

TABLE I 
SUGGESTED ATTRIBUTES FOR COMPONENT C

Attribute
Type

Symbol Description 

(C) Type ID for component CType 
s(C) Similarity  [ , ] between C and 

model of type (C)
{[x(C), y(C), z(C)]} Centroid for localized components C,

polyline / polygon vertices for 
extended components C (length m
sequence, m = 1 for localized 
components) 

[t
0

(C), t
1

(C)] Time interval of observation or 
occurrence for C

Context

 (C) Long axis angle for C  [ , )
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 For a pair of components C
i
 and C

j
, at least one of which is 

localized, there is a pair of associated focus points
[x(C

i
,C

j
), y(C

i
,C

j
), z(C

i
,C

j
)] and [x(C

j
,C

i
), y(C

j
,C

i
), z(C

j
,C

i
)] 

for C
i
 and C

j
 respectively.  If C

i
 is localized, the focus point is 

always the centroid.  If C
i
 is extended, the focus point relative 

to some other localized component C
j
 is the point belonging to 

C
i
 closest to the centroid of C

j
.

TABLE II 
SUGGESTED ATTRIBUTES FOR LINK L

K

Symbol Description Remarks 
d

k
 Length of link 

k
Pointing direction of 
link ray 

d  0 and   [ , ) specify the 
length and pointing direction of L

k
(  is in the xy plane)

t
0k

 , t
1k

 Time delta of 
occurrence:
leaf  root 

0 if either component is persistent, 
computed for both start time (t

0k
)

and end time (t
1k

)

k
 , 

k
Angle from root / leaf 
long axis ray to 
directed link ray 

 and  [ , ).  For bi-level RT 
models,  can also provide 
information about angles between 
pairs of directed links 

 The values of all link attributes in Table II depend solely on 
the attributes of the linked root and leaf.  Length d

k
 and 

pointing direction 
k
 are computed from focus points for the 

pair [C
i
k
,C

j
k
] = [C

i
k
(P),C

j
k
(P)].  t

0k
 and t

1k
 are differences 

between start and end times for those components.  Also, 

k
  = ( (C

i
k
),

k
) , k  = ( (C

j
k
),

k
)        (1) 

where (
j
,

k
)  [ , ) is the angle from the ray pointing in 

direction 
j

 [ , ) to the ray pointing in direction               

k
 [ , ):

(
j
,

k
) =

k j
 + 2 n

n  { }: (
j
,

k
)  [ )           (2) 

 An expert can quantify the importance of component C
i
 to 

model Q by assigning a positive weight to C
i
.  The weights 

sum to one over all N components.  To simplify the 
discussion, let us assume that all components C

i
 are equally 

important and thus have weights of w(C
i
) = 1/N.  If Q is a bi-

level RT model, each of the L = N 1 links Lk will also be 

equally important and thus have weights w(L
k
) = 1/L.

 From equations (1)-(2), it can be shown that for a bi-level 
RT model, 

(
j
,

k
)  = (

j
,

k
)                              (3) 

Thus, if the goal is to construct a bi-level RT model for which 
the angle from link L

j
 to link L

k
 is 

j,k
, then 

j
 and 

k
 should 

be specified in the model such that (
j
,

k
) = 

j,k
.

 In bi-level RT models, when the admissible component 
types for the nodes have well-defined long axes, the values of 
all link attributes in Table II depend solely on the attributes of 
the linked root and leaf.  This allows the links to be decoupled 
in the model matching process, and, as discussed in Section 
3.2, bi-level RT model matching is much simpler when all 
branches can be decoupled. 

B. Model Uncertainty 

 A graph model Q becomes random when the component 
and link attributes are treated as random variables.  For 
example, an expert can impose probabilistic uncertainty on Q
by treating link attributes x = v

k,i
k = 0…L 1, i = 0…n

a
1 as 

values of random variables X, and defining relational 
constraint density functions (RCDF’s) g

X
(x) for those 

variables.  RCDF’s are scaled versions of PDF’s that are non-
negative and have a maximum value of unity.  Examples of 
PDF’s that are trivial to evaluate are rect(y) and tri(y), which 
for y = (x )/ , represent rectangular and triangular pulses of 
width  > 0 centered on    x = .  If  = 0, these functions 
become Kronecker delta functions  (y).
 The link attributes d, t

0
, and t

1
, and thus their RCDF’s, are 

aperiodic.  The domain of d is x  0 and the domain of t is the 
set of all real numbers.  The link attributes , , and , and 
thus their RCDF’s, are periodic 2 .   The fundamental period 
is      x  [ , ).  For link L

k
, the density functions and 

density function parameters imposed on each of its n
a

attributes v
k,i

 are captured in a relationships array r
k
 with n

a

rows r
k,i

 , i = 0…n
a

1:

r
k,i

 = [w(v
k,i

), density_type (v
k,i

), (v
k,i

), (v
k,i

), (v
k,i

)]  (4)  

where w(v
k,i

) and (v
k,i

) are the weight and period assigned to 
v

k,i
.  The weights are non-negative and sum to one.  Link 

attributes not used by the model have weights of zero.  The 
non-zero weights are typically equal. 
 All link attributes except  have unimodal RCDF’s.  As 
shown in Fig. 2,  is bimodal because the long axis computed 
for any elongated component can point in either of two 
opposite directions.  The second complementary mode (

k
)

 [ , ) can be derived from the first mode (
k
)  [ , ) as 

(
k
)  = (

k
) + (2n 1)

n  {0,1} : (
k
)  [ , )                         (5) 

 Several domain experts have indicated that if an intuitive 
graphical interface for RT model specification were provided, 
they would be motivated to use it.  We plan to develop a 
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simple interface for specifying node types and spatio-temporal 
relations between nodes, between branches or between 
branches and nodes.  Policies tied to different levels of 
statistical uncertainty that assign default values of  and  to 
various RT model attributes will be provided.  The expert will 
be able to override the defaults if desired. 

III. MATCHING RANDOM TREE MODELS

 A bi-level RT model can be specified as follows: 

Q : N                   (number of nodes, > 0)       (6) 
= [{ }

0
 . . . { }

N 1
]   (admissible node types)  

r = [r
0
 . . . r

L 1
]    (probabilistic uncertainty)     

Bi-level RT models are simpler than general random graph 
models.  The number of links is L = N 1, and the indices for 
the nodes that link L

k
 emanates from and terminates on are 

[i
k
, j

k
]  =  [0, k+1] ,     k = 0…L 1                (7) 

where component 0 is the root node, and component k+1 is 
the leaf node attached to link k.  Also, we have assumed for 
simplicity that all component weights are equal.  Examples of 
bi-level RT models are given in Section IV. 
 Let Q be a bi-level RT model for a multi-component spatio-
temporal pattern. An efficient approach to retrieving all 
optimal exact or inexact pattern matches P to model Q from a 
table is developed in this Section and can be summarized as 
follows: 

1. Retrieve all candidate components from the table 
whose types and attributes satisfy constraints 
imposed by Q on the root node. 

2. For each candidate root node, retrieve all candidate 
leaf nodes that satisfy constraints imposed by Q on 
leaf node type, feature, and context attributes. 

3. For each candidate root, find the optimal match to Q
from among all of its candidate leaves, and compute 
the degree of match. 

The first two steps leverage commercial search engine tools.  
The last step uses a customized code layer based on 
algorithms developed in the remainder of this Section. 
 Our RT models explicitly capture spatio-temporal relations 
between nodes.  One could likewise choose to explicitly 
capture spatio-temporal relations between spatio-temporally 
proximate items extracted from raw data sources in graphs 
rather than tables.  Step 2 is actually simpler for graphs than 

for tables because candidate leaves are limited to graph nodes 
connected to candidate root nodes through some level of 
indirection.  However, spatio-temporal relations are handled 
far more efficiently by tables because they store spatio-
temporal attributes for each item rather than spatio-temporal 
relations between each pair of items.  Graphs, on the other 
hand, are better for representing logical relations between 
nodes.  A table-graph hybrid can be created by flagging 
certain graph nodes as spatio-temporally anchored.  Although 
each anchored node points to a specific item in the table, not 
all table items need to have corresponding graph nodes.  The 
advantage of hybrid databases is that in steps 1-2, candidate 
roots and leaves from the table can be restricted not just by 
type and spatio-temporal context, but also by logical relations 
to graph nodes. 

A. Model Evaluation 

  Consider a pattern P  =  {C
0
(P) . . . C

N 1
(P)} characterized 

by a set of N > 1 retrieved components.  Our immediate goal 
is to compute the degree of match similarity S(P;Q)  [0,1] 
between pattern P and bi-level RT model Q (1 for perfect 
similarity).  Like Q, P has N components, where component 
C

i
 in P corresponds to component C

i
 in Q.  If component C

i
 is 

missing from P, then s(C
i
(P)) = 0.  Assume (C

i
(P))  {  }

i
.

S(P;Q) can be viewed as a function of P.  A model 
evaluation for model Q is a calculation of S(P;Q) for some 
specific pattern P.  A model evaluation can be expressed as 
the sum of link evaluations Sk(P;Q)  0 for each of L > 0 links 

Lk, k = 0…L 1:

S(P;Q)  =
k=0

L 1

S
k
(P;Q)  [0,1]                         (8) 

If all components have equal weights, S(P;Q) can be 
intuitively expressed as the mean of the root component s
value and penalized leaf component s values, where the 
penalty factors account for relational inconsistencies between 
links in P and corresponding links in Q:

S(P;Q)  =
1
N s(C

0
(P)) + 

k=0

L 1

g
k
(P;Q) · s(C

k+1
(P))      (9)                    

If Q contains a root but no leaves, then N = 1, and from 
equation (9), S(P;Q) is just the s value of the root component.  
Combining equations (8)-(9) yields a simple expression for 
link evaluation: 

S
k
(P;Q)  =

1
N

s(C
0
(P))

L  + g
k
(P;Q) · s(C

k+1
(P))    [0,1] (10)                    

In equations (9)-(10), the relational consistency factor g
k
(P;Q)

 [0,1] quantifies the relational consistency between links Lk
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in P and Q. g
k
(P;Q) is computed as a weighted sum of 

relational consistencies associated with the link attributes 
when all attributes used in the model meet the basic 
constraints on their values: 

g
k
(P;Q)  = 

i = 0

n
a

1

g~
k,i

( v
k,i

(P) ; Q)  · 
i = 0

n
a

1

w(v
k,i

) · g
k,i

( v
k,i

(P) ; Q)   (11) 

g
k,i

(x;Q) is the RCDF for v
k,i

. g~
k,i

(x;Q) = 0 if w(vk,i) > 0 and 

g
k,i

(x;Q) = 0. g~
k,i

(x;Q) = 1 otherwise. 

B. Bipartite Graph Matching 

 For a given candidate root, any bi-level RT model Q with      
m > 0 candidate leaves can be transformed into a bipartite 
graph in which bipartite graph nodes of one “color” 
correspond to m distinct candidate leaves R

i
, i = 0 . . . m 1 for 

RT model links, and bipartite graph nodes of the other “color” 
correspond to the L > 0 distinct RT model links L

j
,

j = 0 . . . L 1 (Fig.3).  All bipartite graph nodes representing 
candidate leaves are placed into one column.  All bipartite 
graph nodes representing RT model links are placed into a 
second column.  Bipartite graph nodes in the same column 
cannot be connected.  R

i
 is a candidate leaf for L

j
 if and only if 

there is an edge connecting node Ri to node L
j
 in the bipartite 

graph.  The edge connecting Ri to L
j
 is assigned a cost ci,j = 

1 S
i,j

 [0,1], where 

S
i,j

 =
S

j
(P;Q), P : C

j
(P) = R

i
edge connects R

i
 to L

j

0 otherwise
(12)

The 2D matrix of cost values can be transformed into a binary 
solution matrix in which the elements of value 1 assign 
candidate leaves to links so as to minimize cost (maximize 
similarity to Q).  For bipartite graphs with n nodes (the 
number of candidate leaves plus RT model links), basic 
implementations of the Hungarian algorithm find a minimal 
cost assignment in worst case O(n3) time [1,10]. 
 To allow for the possibility that optimal pattern matches can 
be inexact (i.e., that certain leaves can be missing), the cost 
matrices can be augmented with L 1 additional rows 
corresponding to L 1 phantom leaves R  (i.e., missing as 
opposed to real leaves).  Phantoms can be attached to no more 
than one RT model link at a time, but they are “floating”, i.e., 
each is a candidate for all RT model links and can thus be 
attached to any RT model link.  There should be exactly L 1
phantoms in the augmented bipartite graph because  (a) there 
can be no more than L phantoms when there are only L links,  
(b) the solution characterized by assigning a phantom to each 
of the L links is sub-optimal when m > 0, and  (c) the optimal 
solution drawn from a solution space that contains L 1

phantoms will be at least as good as the optimal solution 
drawn from a solution space containing fewer than L 1
phantoms.  If a phantom leaf is attached to RT model link L

k
,

then s(C
k+1

) = 0 in equation (10), and the link L
k
 evaluation 

simplifies to 

S
k
(P;Q)  = s(C

0
(P)) / (NL)                        (13) 

 When the RT model components have well-defined long 
axes, the values of variables for one link do not depend on 
values of variables for other links.  In this case, for a given 
candidate root, only 2 minimal cost assignment problems will 
need to be solved in order to find the optimal pattern match to 
a bi-level RT model Q because its links are decoupled.  Model 
Q and the complementary model Q  will both need to be 
matched.  Q  differs from Q only in that the root long axis is 
reversed.  This means that for each link L

k
, (

k
) in Q is 

replaced by (
k
) in Q  (see equation (5) with  replaced by 

).  If the model component long axes are not well-defined, 
then for a given candidate root, 2K minimal cost assignment 
problems will need to be solved in order to find the optimal 
pattern match to a bi-level RT model Q, where K is the 
number of candidate leaves for link L

0
 (the reference link).

IV. LARGE IMAGE SEARCH AND CONTENT-BASED IMAGE
RETRIEVAL EXAMPLES

 When one considers that large overhead images are 
typically searched block-by-block, it becomes clear that the 
large image search problem is closely related to content-based 
image retrieval (CBIR) problems involving large numbers of 
small images.  Most algorithms and systems for CBIR attempt 
to derive compact sets of features that provide incomplete 
characterizations of small images, and then match those 
features to features characteristic of desired images.  Image 
features for CBIR are normally based on color and brightness 
[15], texture [7], edges [21], shapes of regions [4], etc.  CBIR 
surveys can be found in [2,14].   
 Feature-based CBIR algorithms often produce search 
results that resemble desired images in some general way.  On 
the other hand, graph-based CBIR algorithms are better suited 
for finding areas in large images that contain prescribed types 
of objects in certain spatial configurations.  For example, in 
[3], entities extracted from images are represented on 
attributed relational graphs (ARG’s) and matched to ARG 
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models that capture desired spatial configurations.  Unlike 
feature-based methods, graph-based methods are relatively 
insensitive to scene background clutter.  The inputs to graph-
based methods are not images, but rather tables or graphs 
containing items extracted from images.  These tables and 
graphs can just as easily contain items extracted not just from 
images, but also from multiple diverse data sources.  Graph-
based methods thus easily generalize beyond images to 
retrieval of patterns whose components represent items 
extracted from multiple data sources.  Furthermore, the graph 
ontology can be readily altered to handle patterns in other than 
a spatio-temporal context 

 In this Section, bi-level RT model matching is used to 
search for spatially constrained configurations of specific 
types of buildings in large overhead images.  Relative to 
search strategies for individual buildings, RT model matching 
for specific building configurations has inherent false alarm 
mitigation properties based on spatial context (and more 
generally, spatio-temporal context).   A table was generated 
from a large image of size 16384x15300 pixels (see Fig.4).  
Each row contains four attributes for one building: (1) 
building type, (2) building pixel coordinates, (3) building 
orientation (in image space), and (4) the degree of similarity 
between the building and its physical model (a measure of 
quality).  Since our current objective is to demonstrate the bi-
level RT model matching approach, it is not particularly 
important where the table comes from.  Although the table 
was generated manually, it could have been generated with 
buildings extracted from the image by a computer, except that, 
one would expect the detection rate to be higher and the false 

alarm rate to be lower for buildings extracted manually.  Fig.4 
shows the spatial distribution for three types of buildings of 
interest in the subject image (courtesy of DigitalGlobe). 

Two bi-level RT models were constructed.  The first model 
represents a pattern with relatively constrained spatial 
relationships between buildings.  The second model is less 
constrained. 

A. Experimental Results for Model 1 

In model 1, a specific spatial arrangement of type 0 and type 
2 buildings is considered.  Fig.5 depicts the physical geometry 
for model 1.  Fig.6 depicts the bi-level random tree for model 
1 graphically.  The underlying PDF’s for all link attributes are 
assumed to be rectangular pulse functions. 

 Fig.7 shows thumbnail images corresponding the three best 
unambiguous RT model matches in order, and then three 
lesser matches selected arbitrarily for comparison.  The first 
three thumbnails correspond to the only occurrences of this 
building configuration in the image, and they are exact 
(complete) matches.  The remaining four thumbnails 
correspond to inexact (incomplete) matches.  Fig.8 shows a 
plot of S value versus rank.  The S values are so much higher 
for true matches than for false matches because the building 
configuration represented by model 1 is so highly constrained.   

565

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



B. Experimental Results for Model 2 

 In model 2, a specific roughly linear configuration of type 1 
buildings is considered.  The root corresponds to a building at 
one end of the sequence.  Fig.9 depicts the physical geometry 
for model 2.  Fig. 10 depicts the bi-level random tree for 
model 2 graphically.  The underlying PDF’s for all link 
attributes are assumed to be rectangular pulse functions.  
Model 2 constrains the linearity of building clusters to some 
degree, but allows flexibility in relative angles of buildings.  
The intent is to capture clusters of more-or-less linearly 
arranged type 1 buildings at various orientations.   
 Fig.11 shows thumbnail images corresponding the five best 
unambiguous RT model matches in order, and then three 
lesser matches selected arbitrarily for comparison.  Fig.12 
shows a plot of S value versus rank.  For model 2, the S values 
do not decrease as abruptly from true to false matches as for 
model 1 because the building configuration represented by 
model 2 is less highly constrained. 

The results shown for bi-level RT models 1 and 2 are 
typical of results obtained with a variety of models.  Since 
optimal RT model matches can be exact or inexact, highly 
ranked matches tend to be complete, and lower ranked 
matches tend to be increasingly incomplete. 

V. CONCLUSIONS

 A novel efficient approach for finding a complete set of 
optimal exact or inexact matches to bi-level random tree (RT) 
models of spatio-temporal patterns in tables has been 
developed.  Our approach uses customized code layered on 
commercial search engine code, and jointly accounts for (1) 
the relative importance of each component to the model, (2) 
the similarity between corresponding components in the 
pattern match and model, (3) the relational consistency 
between the pattern match and model, (4) probabilistic 
uncertainty in the model, and (5) links missing from the 
pattern match.  Our approach was successfully demonstrated 
by searching large overhead images for loosely and more 
tightly constrained building configurations.  Topics for future 
study include elimination of redundant matches, comparison 
of matching performance with and without relational 
constraints, and realization of multi-level RT models with 
internal nodes as hierarchically nested bi-level RT models. 
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