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Abstract - Semi-structured data sources are increasingly 
in use today because of their capability of representing 
information through more complex structures where 
semantics and relationships of data objects are more 
easily expressed. Extraction of frequent sub-structures 
from such data has found important applications in 
areas such as Bioinformatics, XML mining, Web 
mining, scientific data management etc. This paper is 
concerned with the task of mining frequent unordered 
induced subtrees from a database of rooted ordered 
labeled subtrees. Our previous work in the area of 
frequent subtree mining is characterized by the efficient 
Tree Model Guided (TMG) candidate enumeration, 
where candidate subtrees conform to the data’s 
underlying tree structure. We apply the same approach 
to the unordered case, motivated by the fact that in 
many applications of frequent subtree mining the order 
among siblings is not considered important. The 
proposed UNI3 algorithm considers both transaction 
based and occurrence match support. Synthetic and 
real world data are used to evaluate the time 
performance of our approach in comparison to the well 
known algorithms developed for the same problem.  
 
Index Terms: frequent subtree mining, induced 
unordered subtrees, tree isomorphism, canonical form 
 

I. INTRODUCTION 
Frequent subtree mining has attracted lots of interest among 
the data mining community, due to the increasing use of 
semi-structured data sources for more meaningful 
knowledge representations. Generally the problem of 
frequent subtree mining can be stated as: given a tree 
database Tdb and minimum support threshold (σ), find all 
subtrees that occur at least σ times in Tdb. Applications in 
Bioinformatics, XML Mining, scientific data management, 
increasingly make use of tree mining algorithms for 
analysis of domain knowledge represented in a tree-
structured form. The scope of their application usually 
depends on the assumptions made about the data structure 
that the algorithm can be applied to. These assumptions 

depend upon the domain of interest, and many algorithms 
have been developed that mine different types of subtrees.     
Even though the tree structures underlying semi-structured 
data sources are ordered, interesting associations or queries 
are commonly based on unordered trees since the ordering 
among sibling data objects is not of great importance to the 
user and is often not available. The focus of this paper is on 
the problem of extracting all frequent unordered induced 
subtrees from a database of rooted ordered labeled subtrees 
(eg. XML), and a few algorithms have been developed and 
applied to the problem. The Unot algorithm [1] uses a 
reverse search technique for incremental computation of 
unordered subtree occurrences. Nijssen and Kok [2] present 
a bottom-up strategy for determining the frequency of 
unordered induced subtrees, and argue that the complexity 
of enumerating unordered trees as opposed to ordered is not 
much higher. Breadth-first canonical form (BFCF) and 
depth-first canonical form (DFCF) for labeled rooted 
unordered trees has been presented in [3]. In the same work 
the authors proposed two algorithms: RootedTreeMiner, a 
vertical mining algorithm based upon BFCF and 
FreeTreeMiner, based on extension of DFCF for 
discovering labeled free trees. As an extension to the work, 
HybridTreeMiner [4] is an efficient algorithm that 
systematically enumerates all subtrees by traversing an 
enumeration tree which is defined based upon the BFCF for 
unordered subtrees. SLEUTH [5] is an efficient algorithm 
for mining frequent embedded unordered subtrees, where 
frequent patterns are enumerated by unordered scope-list 
joins via the descendant and cousin tests. Another 
algorithm for mining frequent embedded unordered 
subtrees is TreeFinder [6] that uses an Inductive Logic 
Programming approach, but which in the process can miss 
many frequent subtrees. Unordered tree mining has been 
successfully applied in [7] for the analysis of phylogenetic 
databases. 
Our work in the area of frequent subtree mining is 
characterized by the Tree Model Guided (TMG) candidate 
generation [8, 9] which utilizes the underlying model of the 
data structure for efficient candidate generation. This non-
redundant systematic enumeration technique ensures that 
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all the candidate subtrees generated are valid, in the sense 
that they conform to the actual tree structure of the data. 
For an efficient  implementation of the TMG approach we 
utilized our novel Embedding List (EL) representation of 
the tree structure, an this resulted in efficient algorithms for 
mining embedded (MB3) [8] and induced (IMB3) [10]  
subtrees, from a databases of labeled rooted ordered 
subtrees. We have also provided some theoretical analysis 
of the worse case complexity of enumerating all possible 
embedded [8, 9] and induced [11] subtrees. In [12] we have 
developed an algorithm for mining distance-constrained 
embedded subtrees, which is useful for applications where 
the distance between the nodes in the sub-structure is 
considered important and used as an additional candidate 
grouping criterion. From the application perspective, in 
[13] we have indicated the potential of the tree mining 
algorithms for providing interesting biological information 
when applied to tree structured biological data. Our 
research focus has shifted to the unordered tree mining and 
in this paper we present an algorithm for mining unordered 
induced subtrees from a database of rooted ordered labeled 
subtrees. Rather than developing an algorithm specifically 
tailored for mining induced unordered subtrees we extend 
our general tree mining framework in order to indicate the 
flexibility of our general approach to the tree mining 
problem. Furthermore, our algorithm has the capability of 
using the occurrence match support which is absent in the 
previously developed algorithms for mining unordered 
induced subtrees. In [9] the need and the application of the 
occurrence match support was discussed. 
The rest of the paper is organized as follows. In Section II 
we give the problem definition. Section III discusses some 
of the necessary aspects of unordered tree mining. Our 
algorithm is described in Section IV and it is 
experimentally evaluated and compared to existing 
techniques in Section V. Section VI concludes the paper. 
 

II. PRELIMINARIES 
A tree T is an acyclic connected graph with the node at 

the top defined as the root[T]. A tree can be denoted as 
T(v0,V,L,E), where (1) v0 ∈V is the root vertex; (2) V is the 
set of vertices or nodes; (3) L is the set of labels of vertices, 
for any vertex v∈V, L(v) is the label of v; and (4) E is the 
set of edges in the tree. In a labeled tree, there is a labeling 
function mapping vertices to a set of labels and a label can 
be shared among many vertices. The Parent of node v  
(parent[v]) is defined as its predecessor. Each node in the 
tree can only have one parent, but it can have one or more 
children, which are defined as its successors. The fan-out or 
degree of a node corresponds to the number of children of 
that node. A leaf node is a node without a child; otherwise, 
it is an internal node. A path from vertex vi to vj, is defined 
as the finite sequence of edges that connects vi to vj. The 
length of a path p is the number of edges in p. If p is an 
ancestor of q and q is a descendant of p, then there exists a 
path from p to q. The rightmost path (RMP) of T is defined 

as the (shortest) path connecting the rightmost leaf with the 
root node. The Depth/level of a node is the length of the 
path from root to that node. The size of a tree equals to the 
total number of nodes in the tree.  

Mining frequent subtrees. Let Tdb be a tree database 
consisting of N transactions of trees, KN. The task of 
frequent subtree mining from Tdb with given minimum 
support (σ), is to find all candidate subtrees that occur at 
least σ times in Tdb.  

Definition 1: A tree T’(r’, V’, L’, E’) is an ordered 
induced subtree of a tree T (r, V, L, E) iff (1) V’⊆ V, (2) 
E’⊆ E, (3) L’⊆ L and L’(v)=L(v), (4) ∀v’∈V’, ∀v∈V, v’ is 
not the root node, and v’ has a parent in T’, then 
parent(v’)=parent(v), (5) the left-to-right ordering among 
the siblings in T’ is preserved. An induced subtree T’ of T 
can be obtained by repeatedly removing leaf nodes or the 
root node if its removal doesn’t create a forest in T. 

Definition 2: A tree T’(r’, V’, L’, E’) is an unordered 
induced subtree of a tree T (r, V, L, E) iff conditions 1, 2, 3 
and 4  from Definition 1 are met, and the condition 5 is 
relaxed so that the left-to-right ordering among the siblings 
in T’ does not need to be preserved. In other words the left-
to-right ordering among the siblings (taking the subtrees 
rooted at sibling nodes into account) can be exchanged and 
the resulting subtree would be considered the same. 
The difference between counting the occurrences of 
ordered and unordered induced subtrees can be seen from 
fig. 1, by comparing columns 3 and 4 respectively. 

Definition 3: A tree T’(r’, V’, L’, E’) is an ordered 
embedded subtree of a tree T(r, V, L, E) iff it satisfies 
property 1, 2, 3, 5 of an induced subtree (Definition 1) and 
it generalizes property (4) such that v’∈V’, v∈V and v’ is 
not the root node, the sets ancestor(v’) and ancestor(v) 
form a non-empty intersection. An example of an ordered 
embedded subtree would be the occurrence of ‘st1’ in T3 
from Fig. 1, where it occurs at node positions of ‘023’. 

Definition 4: If T’(r’, V’, L’, E’) is an embedded 
subtree of T, and there is a path between two nodes p and q, 
the level of embedding between p and q, denoted by ∆(p,q), 
is defined as the length of the shortest path between p and 
q, where p∈V’ and q∈V’, and p and q form an ancestor-
descendant relationship. In other words, given a tree 
database Tdb and the maximum level of embedding 
constraint δ then any two ancestor-descendant nodes 
present in an embedded subtree of Tdb, will be connected 
in Tdb by a path that has the maximum length of δ. In this regard, 
we could define induced subtree T as an embedded subtree where 
the maximum level of embedding that can occur in T is equal to 1, 
since the level of embedding of two nodes that form a 
parent-child relationship equals to 1. Throughout the paper, 
we will use notation ∆(p,q) to refer to the level of 
embedding between two nodes p and q. We will 
occasionally use notation ∆ for the level of embedding 
concept when no reference to two nodes. When referring to 

569

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



the maximum level of embedding constraint on the other 
hand we will use notation δ  as to avoid confusion. 

 

 
 
Subtree String  

encodin
g (φ) 

Induced(i) 
occurrence 
coordinates 

Unordered 
induced (u) 
occurrence  
coordinates 

TS OM 

st1 d e / c T1:015, 025 
T3: 015, 045 

T1: 015, 025, 
075 

T2: 074 
T3: 015, 045 

i:2  
u:3    

i:4 
u:6 

st2 c e / c T2: 456 T2: 456  
T3: 576  

i:1 
u:2 

i:1 
u:2 

st3 d a /c e / c T2: 01456,    
03456 

T2: 01456, 
03456 

T3: 08576, 
09567 

i:1 
u:2 

i:2 
u:4 

Fig. 1: Example of ordered induced (i) and unordered induced (u) subtrees 
and implications when transaction based (TS) and occurrence match (OM) 

support are used 
 

Definition 5: The notation t ≺ k , is used to denote a 
subtree t which is supported by transaction k in database of 
tree Tdb. A transaction k supports subtree t if it contains at 
least one occurrence of subtree t. If there are L occurrences 
of t in k, a function g(t,k) denotes the number of 
occurrences of t in transaction k. For transaction-based 
support, t≺ k=1 when there exists at least one occurrence 
of t in transaction k. In other words, for transaction-based 
support, the support of a subtree t is equal to the numbers 
of transactions that support subtree t.  

Definition 6: For occurrence-match support, t≺ k 
corresponds to the number of all occurrences of t in 
transaction k, t≺ k=g(t,k). Suppose that there are N 
transactions k1 to kN of tree in Tdb, the support of an subtree 
t in Tdb is defined as: 

∑
=

N

i
ikt

1
≺

 
(1) 

An example that illustrates the effect of applying 
different support definitions described above follows. In 

fig. 1 there are three transactions, T1, T2 and T3. Suppose 
that transaction-based support is used and that unordered 
induced subtrees are considered. The support of subtree st3 
is equal to 2 since st3 is supported by T2 andT3 but not T1, 
i.e. st3≺ T2 and st3≺ T3. On the other hand, if occurrence-
match support is considered, the support of subtree st3 is 
equal to the sum of its occurrences in T2,and T3 i.e. 
g(st3,T2)+g(st3,T3).  It can be seen from fig. 1 that there 
are two occurrences of st3 in T2 and two occurrences of st3 
in T3, but none in T1. Hence the occurrence-match support 
of subtree st3 equals to 4.  

Choosing an appropriate tree encoding is another 
important requirement in tree mining. Our work utilizes the 
pre-ordering string encoding (φ) as described in [14, 8, 9]. 
We denote encoding of a subtree T as φ(T). For each node 
in Tdb (Fig. 1), its label is shown as a single-quoted symbol 
inside the circle whereas its pre-order position is shown as 
an index at the left side of the circle. From fig. 1, φ(T1):‘d e 
/ e c / e / / c / a / e / ’; φ(T2):‘d a b / / a / c e / c / / e /  ’, etc. 
The backtrack symbol (‘/’) is used whenever we have to 
move up a node in the tree during the pre-order traversal of 
the tree being represented by the encoding. We could omit 
the backtrack symbols after the last node like it was done in 
the second column of Fig.1. We refer to a group of subtrees 
with the same encoding L as candidate subtrees CL. A k-
subtree. is a subtree with k number of nodes. Throughout 
the paper, the ‘+’ operator is used to denote the operation of 
appending two or more tree encodings. However, this 
operator should be contrasted with the conventional string 
append operator, since the backtrack symbols need to be 
computed accordingly. 

To ensure that the downward-closure lemma holds [15], 
each k-1-subtree of a frequent k-subtree has to be frequent. 
Hence, during the candidate enumeration and counting 
phase the k-subtrees that contain any infrequent k-1 
subtrees have to be pruned from the frequent set (‘Fk’). 
This problem is known as k-1 pruning [14, 8, 9], and for 
the transactional support definition, opportunistic 
approaches [14] have been employed to achieve the desired 
result in less time. However, when using occurrence-match 
support, full (k-1) pruning should be performed at each 
iteration of generating a k-subtree from a (k-1)-subtree so 
that no ‘pseudo-frequent’ subtrees [8] would be generated. 
The rationale of this has been explained in [8, 9]. 
 

III. MINING UNORDERED SUBTREES 
The main difference in mining unordered subtrees to other 
subtree mining approaches lies in the candidate 
enumeration phase. The candidates should be enumerated 
in a complete and non-redundant manner, and each 
candidate subtree should be uniquely distinguished by its 
encoding. It is the problem of determining whether two 
trees are equal to one another and it is a known problem of 
tree isomorphism. Two trees are isomorphic if there is a 
bijective correspondence between their node sets which 
preserves and reflects the structure of the trees [16].  
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Fig. 2: Possible subtree permutations of subtree st3 (Fig.1) 

 
The isomorphism problem is more complex when mining 
unordered subtrees. When permutations of subtrees rooted 
at any node in a particular tree T are performed, the 
resulting trees are non-isomorphic ordered trees and 
isomorphic unordered trees to T and among themselves.  
This aspect is demonstrated in Fig. 2 where all possible 
ordered trees of the subtree st3 (Fig. 1) are shown. They are 
all isomorphic unordered trees since each one can be 
mapped into another by permuting the children of vertices. 
In Fig. 1 it can be seen that the subtree st3 is counted twice 
for the ordered case (I) and four times for the unordered 
case (UI) since additional subtree permutations are allowed.  
Each tree encoding should uniquely map to only one 
subtree, which enables the use of traditional hashing 
methods for efficient tree counting. Therefore, from the set 
of ordered trees obtained through all possible permutations 
of subtrees rooted at any node, one has to be selected to 
represent the unordered subtree. This selected tree is known 
as the canonical form (CF) of an unordered subtree. In the 
context of tree mining the selected CF is usually dependant 
on the particular candidate enumeration technique used. 
The aim should be that the enumerated candidate subtrees 
will require less sorting on average, since sorting the tree 
encodings may become one of the performance bottlenecks.  
Within our implementation framework, we have used the 
depth-first CF (DFCF) proposed in [3], with the difference 
that ‘smaller’ subtrees are placed to the left. Using the 
DFCF,  the sorting of candidate subtrees is done solely 
based upon the alphabetical order of the labels. 
Additionally the backtrack (‘/) symbol is considered 
smaller than any other label. This ordering of nodes starts 
from the leaf nodes and continues up the tree structure. 
When the labels of non-leaf nodes are equal the subtrees 
rooted at those nodes are traversed in a depth-first manner 
during which encountered nodes are compared. As soon as 
a label is encountered that is larger than its corresponding 
sibling node label (or if there is no such node in the sibling 
subtree), the right order of those sibling nodes is known. If 
necessary the sibling nodes and the subtrees rooted at those 
nodes are swapped around to satisfy the CF order. This CF 
ordering scheme (CFOS) maps each candidate subtree 
uniquely. As an example consider the tree T (φ(T):‘d b / a d 
/ / a b / / a d / b / /a b c ), and the result of applying the 
CFOS, Tcf ( φ(Tcf):‘d a b / / a b / d / / a b c / / / a d / / b) 
shown in Fig.3.   
   

 
Fig. 3: Result of applying the employed CFOS to tree T 

 
Ordering a subtree into its CF can be quite expensive due to 
the expensive traversal of the string encodings in order to 
determine and compare the sibling nodes. Due to the fact 
that in our approach the whole tree database is first sorted 
into its CF and each previously enumerated k-1 subtree is 
ordered, many subtrees may already be in their CF when 
new extensions are performed. We have determined a few 
preconditions that allow us to assume that a subtree is 
already in its CF and that no ordering is required. These 
preconditions occur when we are appending a new node ‘n’ 
to the right-most node ‘r’ of the currently expanding 
subtree. 
Precondition 1: parent(n) = r; 
Precondition 2: Let the left sibling of n be 'ln', then 
children(ln) = null and L(ln) = L(n), OR L(ln) < L(n).   
If any of the above conditions are met the ordering can be 
skipped which results in a run time reduction as will be 
demonstrated in our experimental section.  
 

IV. UNI3 ALGORITHM 
We start this section by first giving a brief overview of the 
algorithm and then we explain each step in more detail. For 
faster processing, the XML database is first transformed 
into a database of rooted integer-labeled ordered trees. The 
tree structure is then ordered into its CF, using the CFOS 
described above. The tree database is traversed once to 
create a global sequence which stores each node in the pre-
order traversal together with the necessary node 
information (position, label, scope, and level).  At the same 
time the set of frequent 1-subtrees (‘F1’) is obtained by 
hashing the encountered node labels. Embedding List (EL) 
is constructed for a suitable representation of the tree 
structure and the set of frequent 2-subtrees (‘F2’) is 
obtained at the same time. TMG candidate generation using 
the EL structure takes place and for each k ≥1 the right 
most path (RMP) coordinates of each frequent (k-1)-
subtree are stored in ‘Fk-1’ hashtable. Prior to hashing the 
string encoding of each subtree, it is first ordered into its 
CF if necessary (i.e precondition 1 and 2 from section III 
are not met). Each frequent (k-1)-subtree is extended one 
node at a time, starting from the last node of its RMP (right 
most node), up to its root. The whole process is repeated 
until all k-subtrees are enumerated and counted 
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XML Data Pre-processing. To expedite the frequency 
counting, the database of XML documents is first 
transformed into a database of rooted integer-labeled 
ordered trees. One format to represent the database of 
rooted integer-labeled ordered trees is proposed in (Zaki 
[2005]). For each XML tag, we consider tagname, 
attribute(s) and value(s). To mine the structure of XML 
documents one can modify this easily by omitting the 
presence of attribute(s) and value(s) for each tag.  Each tag 
in an XML document is mapped to a unique integer. Since 
the string labels can be long, performing the mapping will 
optimize the frequency counting process by avoiding 
additional hash key computations. 
Another pre-processing step consists of ordering the whole 
tree structure into its CF. We have found that this step is 
necessary for optimization purposes, since the number of 
the generated candidate subtrees that need to be sorted into 
their CF greatly reduces. 
Database Scanning. The process of frequent subtree 
mining is initiated by scanning a tree database, Tdb, and 
generating a global pre-order sequence D in memory 
(dictionary). The purpose of the dictionary is to provide a 
shared global nodes’ related information that allows for 
direct access and thereby avoids the space cost which 
would be caused if this information  is copied (stored) 
locally for every occurrence of a node. The dictionary 
stores each node in Tdb following the pre-order traversal 
indexing. For each node its position, label, scope, and level 
are stored. The level of a node refers here to the level of the 
Tdb tree, at which this node occurs. An item in the 
dictionary D at position i is referred to as D[i]. The notion 
of the position of an item refers to its index position in the 
dictionary. When generating the dictionary, we compute all 
the frequent 1-subtrees, F1. After this step no further 
database scanning is required.   
Embedding List (EL) Construction. For each frequent 
internal node in F1, a list is generated which stores its 
descendant nodes’ positions (from dictionary) in pre-order 
traversal ordering such that the embedding relationships 
between nodes are preserved. For a given internal node at 
position i, such ordering reflects the enumeration sequence 
of generating 2-subtree candidates rooted at i (Fig. 4). 
Hereafter, we call this list as embedded list (EL). We use 
notation i-EL to refer to an embedded list of node at 
position i. The position of an item in EL is referred to as 
slot. Thus, i-EL[n] refers to the item in the list at slot n. 
Whereas |i-EL| refers to the size of the embedded list of 
node at position i. Fig. 4 illustrates an example of the EL 
representation of tree T3 (Fig. 1). In Fig. 4, 0-EL for 
example refers to the list: 0:[1,2,3,4,5,6,7,8,9], 0-EL[0]=1 
and 0-EL[6]=7.  

 
. 

0: 1 2 3 4 5 6 7 8 9 
1: 2 3        
5: 6 7        

Fig. 4: The EL representation of T3 in fig 1 
 
RMP Occurrence Coordinate (RMP-OC). By its 
definition, RMP is the shortest path from the right most 
node to the root node. Thus storing RMP coordinates is 
always guaranteed to be maximal. The worst case of storing 
the RMP coordinates would be equal to storing every 
coordinate of a node in a subtree, i.e. when the subtree 
becomes a sequence (each node has degree 1). The best 
case of storing RMP coordinates for k-subtrees where k>1 
is that it stores only 2 coordinates, i.e. whenever the length 
of the RMP is equal to 1. Given a k-subtree T with OC 
[e0,e1,…ek-1], the RMP-OC of T, denoted by Ψ(T), is 
defined by [e0,e1,…,ej] such that Ψ(T) ⊆ OC(T); ej = ek-1; 
and j ≤ k-1 and the path from ej to e0 is the RMP of tree T.  

 
Fig. 5: TMG enumeration: extending (k-1)-subtree tk-1 where φ(tk-1):‘a b / 

b c’ occurs at position (0,1,4,5) with node at position 6, 7, 8, 9, and 10 
 
TMG enumeration formulation. TMG is a specialization 
of the right most path extension method which has been 
reported to be complete and where all valid candidates are 
enumerated at most once (non-redundant) [8, 14]. To 
enumerate all embedded k-subtrees from a (k-1)-subtree, 
the TMG enumeration approach extends one node at a time 
to each node in the RMP of (k-1)-subtree as illustrated in 
the Fig. 5. This is our general tree mining framework that 
allows for mining of induced and embedded subtrees. 
However, in this work we are concerned with mining 
induced subtrees and hence the maximum level of 
embedding δ will always be constrained to 1. Suppose that 
nodes in the RMP of a subtree are defined as extension 
points and the level of embedding between two nodes at 
position n and t is denoted by ∆(n,t). The TMG can be 
formulated as follows. Given an RMP-OC of a frequent (k-
1)-subtree Tk-1, Ψ(Tk-1):[e0,e1,…ej], the scope of the root 
node e0 is Φ, and the maximum level of embedding 
constraint is 1, k-subtrees are generated by extending each 
extension point n∈Ψ(Tk-1) with t for which it satisfies the 
following conditions: (1) n < t ≤ Φ, (2) ∆(n,t) = δ. Suppose 
that the encoding of Tk-1  is denoted by Lk-1  and l(n,t) is a 
labeling function of extending extension point n with a 
node at position t, Lk is defined as Lk-1+l(n,t). l(n,t) 
computes the length between the extension point n and the 
right most node fk-1 such that when the length τ is > 0,  τ 
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numbers of backtrack symbols ‘/’ are appended before the 
label of node at position t,ϕ(t). To generate RMP at each 
step of candidate generation, we utilize the computed 
numbers of backtracking τ between the extension point n 
and the extending node t. Given that the Ψ(Tk-1) is 
[e0,e1,…,ej], the RMP of the k-subtree can be generated by 
appending t at position (j+1)-τ of the Ψ(Tk) and t will be 
the right most node. Thus, the bigger the value of τ is, the 
shorter the length of the generated RMP. The best case is 
given when the extension point is the root node. This will 
make sure that at each extension of (k-1)-subtree we store 
the RMP coordinates of k-subtree.  
Pruning. As mentioned previously k-1 pruning [8, 9, 14] 
needs to be performed in order to check that all subtrees of 
a currently expanding subtree are frequent. Each of those 
subtrees has to be ordered into its CF if necessary, in order 
to correctly check for its frequency. The expanding subtree 
is pruned if at least one of its subtrees is infrequent. Doing 
full k-1 pruning is quite time consuming and expensive. To 
accelerate full k-1 pruning, a caching technique is used by 
checking whether a candidate is already in the frequent k-
subtree hashtable (Fk). If a k-subtree candidate is already in 
Fk, it is known that all its (k-1)-subtrees are frequent, and 
hence only one comparison is made. 
Vertical Occurrence List (VOL). Each occurrence of a 
subtree is stored as an RMP-OCs as previously described. 
The vertical occurrence list of a subtree groups the RMP-
OCs of the subtree by its encoding. Hence, the frequency of 
a subtree can be easily determined from the size of the 
VOL. We use the notation VOL(L) to refer to the vertical 
occurrence list of a subtree with encoding L. Consequently, 
the frequency of a subtree with encoding L is denoted as 
|VOL(L)|. However, when the transaction-based support is 
used there is a transaction identifier (tid) associated with 
each occurrence and the support is determined by the 
number of unique transaction identifiers. 
The cost of the frequency counting process comes from at 
least two main areas. First, it comes from the VOL 
construction itself. With numerous numbers of occurrences 
of subtrees the list can grow very large. Secondly, for each 
candidate generated its encoding needs to be computed. 
Constructing an encoding from a long tree pattern can be 
very expensive. An efficient and fast encoding construction 
can be employed by a step-wise encoding construction so 
that at each step the computed value is remembered and 
used in the next step. This way a constant processing cost 
that is independent of the length of the encoding is 
achieved. Thus, fast candidate counting can be achieved. 
Overall, our algorithm can be described by the pseudo-code 
provided in Fig. 6. 

 
Fig. 6: UNI3 pseudo code 

  
V. EXPERIMENTAL EVALUATION 

In this section we provide some performance evaluation of 
the UNI3 algorithm by comparing it with the 
HybridTreeMiner (HBT) [4] and RootedTreeMiner [3] 
which is Chi’s implementation of the Unot algorithm [1]. 
We will refer to each algorithm in this section using its 
abbreviation as indicated in the brackets. For transaction 
based support our algorithm is preceded with ‘T-’ (e.g. T-
UNI3), when the exceptions to CF ordering are used a ‘-
Lx’ symbol is appended at the end, where x corresponds to 
the precondition explained in section III (e.g. UNI3-L1), 
and if no full k-1 subtree pruning is performed (NP) is 
added at the end (e.g. UNI3(NP)). Real world and artificial 
databases of trees are used. ‘CSLogs’ is a real world data 
set previously used by Zaki for testing his TreeMiner 
algorithms [14]. The minimum support σ is denoted as 
(sxx), where xx is the minimum frequency. The first three 
experiments use the transaction based support whereas the 
last one is based on occurrence match support. Experiments 
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were run on 3Ghz (Intel-CPU), 2Gb RAM, Mandrake 10.2 
Linux machine and compilations were performed using 
GNU g++ (3.4.3) with -g and -O3 parameters. 
Time Performance Test. For this test we use the CSLogs 
datasets and a synthetic dataset characterized by deep tree 
structures consisting of 20000 transactions. We have used 
the T-UNI3-L2 implementation where both preconditions 
explained in section III are used to prevent unnecessary CF 
checking of candidate subtrees. As can be seen in Fig. 7, 
for both datasets the T-UNI3-L2 algorithm enjoys the best 
time performance. Additionally by not performing full k-1 
pruning there was an additional performance gain because 
CF checking does not need to be performed for all the k-1 
subtrees of a potentially frequent k-subtree.   

 
(a) CSLogs dataset 

 
(b) Deep tree dataset 

Fig. 7: Time performance test 
Scalability Test. For this experiment we have generated a 
synthetic datasets that consists of 10000 items, and has an 
average depth and fan-out of 40. The number of 
transactions used was 2.5M, 5M, 10M, and the respective 
support threshold was 162, 325 and 650. From Fig. 8, one 
can see that all the tested algorithms are well scalable for 
the different dataset sizes used, and the time performance is 
comparable among the algorithms with T-UNI3-L2 
performing slightly better than others.  

 
Fig. 8: Scalability test 

Variations of UNI3 Test. In this experiment we compare 
the performance of the UNI3 variations. The aim is to 
demonstrate some of the important implementation issues 
that need to be taken into account when developing 
unordered tree mining algorithms. The ‘L0’ version does 
not implement any of the preconditions for detecting 
exceptions to CF subtree ordering, L1 implements the first 
precondition from section III and L2 enforces both 
preconditions. Looking at the graph from Fig. 9, 
implementing both preconditions for CF ordering 
exceptions results in best time performance. This is because 
the CF ordering and checking is quite expensive and 
avoiding any of these operations will result in a time gain. 
Additionally performing no full k-1 pruning (NP) results in 
further time performance gain since again less CF ordering 
is needed among the k-1 subtrees of a potentially frequent 
k-subtree.  

 
Fig. 9: Testing UNI3 variations 

 
Occurrence Match Support (OMS). The purpose of this 
experiment is to show the performance of the UNI3 
algorithm when OMS threshold is used. Since to our 
knowledge there are no current algorithms for mining 
induced unordered subtree using the OMS, we have 
included the performance of our algorithm for mining 
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ordered induced subtrees for extra comparison. The dataset 
was artificially created and it consists of 1M transactions, 
10000 items, and has average depth and fan-out of 40. Fig. 
10 shows that our algorithm is well scalable even when the 
more complex occurrence match support is used. 
Furthermore, our T-UNI3-L2 algorithm enjoys the best 
time performance for this dataset when compared to HBT 
and RTM.  

 
Fig. 7: Occurrence Match support test 

 
VI. CONCLUSIONS AND FUTURE WORK 

In this paper we have extended our general tree mining 
framework for the capability of mining induced unordered 
subtrees. The flexibility of our general approach to tree 
mining is again demonstrated through better time 
performance when compared to some of the existing state-
of-the-art algorithms. Within our implementation 
framework, two exceptions were indicated where the 
expensive CF ordering can be avoided and an improvement 
in time was experimentally demonstrated. Furthermore, our 
algorithm has the capability of using the more complex 
occurrence match support which is absent in the previously 
developed algorithms for mining unordered induced 
subtrees. Our future work consists in exploring further 
space and time efficiency issues of the unordered tree 
mining problem, and presenting an efficient algorithm for 
mining embedded unordered subtrees. 
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