
UNI3 – efficient algorithm for mining unordered
induced subtrees using TMG candidate generation

Fedja Hadzic1, Henry Tan1 and Tharam S. Dillon1
1Faculty of Information Technology, University of Technology Sydney, Australia

E-mail: (fhadzic, henryws, tharam)@it.uts.edu.au

Abstract - Semi-structured data sources are increasingly
in use today because of their capability of representing
information through more complex structures where
semantics and relationships of data objects are more
easily expressed. Extraction of frequent sub-structures
from such data has found important applications in
areas such as Bioinformatics, XML mining, Web
mining, scientific data management etc. This paper is
concerned with the task of mining frequent unordered
induced subtrees from a database of rooted ordered
labeled subtrees. Our previous work in the area of
frequent subtree mining is characterized by the efficient
Tree Model Guided (TMG) candidate enumeration,
where candidate subtrees conform to the data’s
underlying tree structure. We apply the same approach
to the unordered case, motivated by the fact that in
many applications of frequent subtree mining the order
among siblings is not considered important. The
proposed UNI3 algorithm considers both transaction
based and occurrence match support. Synthetic and
real world data are used to evaluate the time
performance of our approach in comparison to the well
known algorithms developed for the same problem.

Index Terms: frequent subtree mining, induced
unordered subtrees, tree isomorphism, canonical form

I. INTRODUCTION
Frequent subtree mining has attracted lots of interest among
the data mining community, due to the increasing use of
semi-structured data sources for more meaningful
knowledge representations. Generally the problem of
frequent subtree mining can be stated as: given a tree
database Tdb and minimum support threshold (σ), find all
subtrees that occur at least σ times in Tdb. Applications in
Bioinformatics, XML Mining, scientific data management,
increasingly make use of tree mining algorithms for
analysis of domain knowledge represented in a tree-
structured form. The scope of their application usually
depends on the assumptions made about the data structure
that the algorithm can be applied to. These assumptions

depend upon the domain of interest, and many algorithms
have been developed that mine different types of subtrees.
Even though the tree structures underlying semi-structured
data sources are ordered, interesting associations or queries
are commonly based on unordered trees since the ordering
among sibling data objects is not of great importance to the
user and is often not available. The focus of this paper is on
the problem of extracting all frequent unordered induced
subtrees from a database of rooted ordered labeled subtrees
(eg. XML), and a few algorithms have been developed and
applied to the problem. The Unot algorithm [1] uses a
reverse search technique for incremental computation of
unordered subtree occurrences. Nijssen and Kok [2] present
a bottom-up strategy for determining the frequency of
unordered induced subtrees, and argue that the complexity
of enumerating unordered trees as opposed to ordered is not
much higher. Breadth-first canonical form (BFCF) and
depth-first canonical form (DFCF) for labeled rooted
unordered trees has been presented in [3]. In the same work
the authors proposed two algorithms: RootedTreeMiner, a
vertical mining algorithm based upon BFCF and
FreeTreeMiner, based on extension of DFCF for
discovering labeled free trees. As an extension to the work,
HybridTreeMiner [4] is an efficient algorithm that
systematically enumerates all subtrees by traversing an
enumeration tree which is defined based upon the BFCF for
unordered subtrees. SLEUTH [5] is an efficient algorithm
for mining frequent embedded unordered subtrees, where
frequent patterns are enumerated by unordered scope-list
joins via the descendant and cousin tests. Another
algorithm for mining frequent embedded unordered
subtrees is TreeFinder [6] that uses an Inductive Logic
Programming approach, but which in the process can miss
many frequent subtrees. Unordered tree mining has been
successfully applied in [7] for the analysis of phylogenetic
databases.
Our work in the area of frequent subtree mining is
characterized by the Tree Model Guided (TMG) candidate
generation [8, 9] which utilizes the underlying model of the
data structure for efficient candidate generation. This non-
redundant systematic enumeration technique ensures that

568

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

1-4244-0705-2/07/$20.00 ©2007 IEEE

all the candidate subtrees generated are valid, in the sense
that they conform to the actual tree structure of the data.
For an efficient implementation of the TMG approach we
utilized our novel Embedding List (EL) representation of
the tree structure, an this resulted in efficient algorithms for
mining embedded (MB3) [8] and induced (IMB3) [10]
subtrees, from a databases of labeled rooted ordered
subtrees. We have also provided some theoretical analysis
of the worse case complexity of enumerating all possible
embedded [8, 9] and induced [11] subtrees. In [12] we have
developed an algorithm for mining distance-constrained
embedded subtrees, which is useful for applications where
the distance between the nodes in the sub-structure is
considered important and used as an additional candidate
grouping criterion. From the application perspective, in
[13] we have indicated the potential of the tree mining
algorithms for providing interesting biological information
when applied to tree structured biological data. Our
research focus has shifted to the unordered tree mining and
in this paper we present an algorithm for mining unordered
induced subtrees from a database of rooted ordered labeled
subtrees. Rather than developing an algorithm specifically
tailored for mining induced unordered subtrees we extend
our general tree mining framework in order to indicate the
flexibility of our general approach to the tree mining
problem. Furthermore, our algorithm has the capability of
using the occurrence match support which is absent in the
previously developed algorithms for mining unordered
induced subtrees. In [9] the need and the application of the
occurrence match support was discussed.
The rest of the paper is organized as follows. In Section II
we give the problem definition. Section III discusses some
of the necessary aspects of unordered tree mining. Our
algorithm is described in Section IV and it is
experimentally evaluated and compared to existing
techniques in Section V. Section VI concludes the paper.

II. PRELIMINARIES
A tree T is an acyclic connected graph with the node at

the top defined as the root[T]. A tree can be denoted as
T(v0,V,L,E), where (1) v0 ∈V is the root vertex; (2) V is the
set of vertices or nodes; (3) L is the set of labels of vertices,
for any vertex v∈V, L(v) is the label of v; and (4) E is the
set of edges in the tree. In a labeled tree, there is a labeling
function mapping vertices to a set of labels and a label can
be shared among many vertices. The Parent of node v
(parent[v]) is defined as its predecessor. Each node in the
tree can only have one parent, but it can have one or more
children, which are defined as its successors. The fan-out or
degree of a node corresponds to the number of children of
that node. A leaf node is a node without a child; otherwise,
it is an internal node. A path from vertex vi to vj, is defined
as the finite sequence of edges that connects vi to vj. The
length of a path p is the number of edges in p. If p is an
ancestor of q and q is a descendant of p, then there exists a
path from p to q. The rightmost path (RMP) of T is defined

as the (shortest) path connecting the rightmost leaf with the
root node. The Depth/level of a node is the length of the
path from root to that node. The size of a tree equals to the
total number of nodes in the tree.

Mining frequent subtrees. Let Tdb be a tree database
consisting of N transactions of trees, KN. The task of
frequent subtree mining from Tdb with given minimum
support (σ), is to find all candidate subtrees that occur at
least σ times in Tdb.

Definition 1: A tree T’(r’, V’, L’, E’) is an ordered
induced subtree of a tree T (r, V, L, E) iff (1) V’⊆ V, (2)
E’⊆ E, (3) L’⊆ L and L’(v)=L(v), (4) ∀v’∈V’, ∀v∈V, v’ is
not the root node, and v’ has a parent in T’, then
parent(v’)=parent(v), (5) the left-to-right ordering among
the siblings in T’ is preserved. An induced subtree T’ of T
can be obtained by repeatedly removing leaf nodes or the
root node if its removal doesn’t create a forest in T.

Definition 2: A tree T’(r’, V’, L’, E’) is an unordered
induced subtree of a tree T (r, V, L, E) iff conditions 1, 2, 3
and 4 from Definition 1 are met, and the condition 5 is
relaxed so that the left-to-right ordering among the siblings
in T’ does not need to be preserved. In other words the left-
to-right ordering among the siblings (taking the subtrees
rooted at sibling nodes into account) can be exchanged and
the resulting subtree would be considered the same.
The difference between counting the occurrences of
ordered and unordered induced subtrees can be seen from
fig. 1, by comparing columns 3 and 4 respectively.

Definition 3: A tree T’(r’, V’, L’, E’) is an ordered
embedded subtree of a tree T(r, V, L, E) iff it satisfies
property 1, 2, 3, 5 of an induced subtree (Definition 1) and
it generalizes property (4) such that v’∈V’, v∈V and v’ is
not the root node, the sets ancestor(v’) and ancestor(v)
form a non-empty intersection. An example of an ordered
embedded subtree would be the occurrence of ‘st1’ in T3
from Fig. 1, where it occurs at node positions of ‘023’.

Definition 4: If T’(r’, V’, L’, E’) is an embedded
subtree of T, and there is a path between two nodes p and q,
the level of embedding between p and q, denoted by ∆(p,q),
is defined as the length of the shortest path between p and
q, where p∈V’ and q∈V’, and p and q form an ancestor-
descendant relationship. In other words, given a tree
database Tdb and the maximum level of embedding
constraint δ then any two ancestor-descendant nodes
present in an embedded subtree of Tdb, will be connected
in Tdb by a path that has the maximum length of δ. In this regard,
we could define induced subtree T as an embedded subtree where
the maximum level of embedding that can occur in T is equal to 1,
since the level of embedding of two nodes that form a
parent-child relationship equals to 1. Throughout the paper,
we will use notation ∆(p,q) to refer to the level of
embedding between two nodes p and q. We will
occasionally use notation ∆ for the level of embedding
concept when no reference to two nodes. When referring to

569

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

the maximum level of embedding constraint on the other
hand we will use notation δ as to avoid confusion.

Subtree String

encodin
g (φ)

Induced(i)
occurrence
coordinates

Unordered
induced (u)
occurrence
coordinates

TS OM

st1 d e / c T1:015, 025
T3: 015, 045

T1: 015, 025,
075

T2: 074
T3: 015, 045

i:2
u:3

i:4
u:6

st2 c e / c T2: 456 T2: 456
T3: 576

i:1
u:2

i:1
u:2

st3 d a /c e / c T2: 01456,
03456

T2: 01456,
03456

T3: 08576,
09567

i:1
u:2

i:2
u:4

Fig. 1: Example of ordered induced (i) and unordered induced (u) subtrees
and implications when transaction based (TS) and occurrence match (OM)

support are used

Definition 5: The notation t ≺ k , is used to denote a
subtree t which is supported by transaction k in database of
tree Tdb. A transaction k supports subtree t if it contains at
least one occurrence of subtree t. If there are L occurrences
of t in k, a function g(t,k) denotes the number of
occurrences of t in transaction k. For transaction-based
support, t≺ k=1 when there exists at least one occurrence
of t in transaction k. In other words, for transaction-based
support, the support of a subtree t is equal to the numbers
of transactions that support subtree t.

Definition 6: For occurrence-match support, t≺ k
corresponds to the number of all occurrences of t in
transaction k, t≺ k=g(t,k). Suppose that there are N
transactions k1 to kN of tree in Tdb, the support of an subtree
t in Tdb is defined as:

∑
=

N

i
ikt

1
≺

(1)

An example that illustrates the effect of applying
different support definitions described above follows. In

fig. 1 there are three transactions, T1, T2 and T3. Suppose
that transaction-based support is used and that unordered
induced subtrees are considered. The support of subtree st3
is equal to 2 since st3 is supported by T2 andT3 but not T1,
i.e. st3≺ T2 and st3≺ T3. On the other hand, if occurrence-
match support is considered, the support of subtree st3 is
equal to the sum of its occurrences in T2,and T3 i.e.
g(st3,T2)+g(st3,T3). It can be seen from fig. 1 that there
are two occurrences of st3 in T2 and two occurrences of st3
in T3, but none in T1. Hence the occurrence-match support
of subtree st3 equals to 4.

Choosing an appropriate tree encoding is another
important requirement in tree mining. Our work utilizes the
pre-ordering string encoding (φ) as described in [14, 8, 9].
We denote encoding of a subtree T as φ(T). For each node
in Tdb (Fig. 1), its label is shown as a single-quoted symbol
inside the circle whereas its pre-order position is shown as
an index at the left side of the circle. From fig. 1, φ(T1):‘d e
/ e c / e / / c / a / e / ’; φ(T2):‘d a b / / a / c e / c / / e / ’, etc.
The backtrack symbol (‘/’) is used whenever we have to
move up a node in the tree during the pre-order traversal of
the tree being represented by the encoding. We could omit
the backtrack symbols after the last node like it was done in
the second column of Fig.1. We refer to a group of subtrees
with the same encoding L as candidate subtrees CL. A k-
subtree. is a subtree with k number of nodes. Throughout
the paper, the ‘+’ operator is used to denote the operation of
appending two or more tree encodings. However, this
operator should be contrasted with the conventional string
append operator, since the backtrack symbols need to be
computed accordingly.

To ensure that the downward-closure lemma holds [15],
each k-1-subtree of a frequent k-subtree has to be frequent.
Hence, during the candidate enumeration and counting
phase the k-subtrees that contain any infrequent k-1
subtrees have to be pruned from the frequent set (‘Fk’).
This problem is known as k-1 pruning [14, 8, 9], and for
the transactional support definition, opportunistic
approaches [14] have been employed to achieve the desired
result in less time. However, when using occurrence-match
support, full (k-1) pruning should be performed at each
iteration of generating a k-subtree from a (k-1)-subtree so
that no ‘pseudo-frequent’ subtrees [8] would be generated.
The rationale of this has been explained in [8, 9].

III. MINING UNORDERED SUBTREES
The main difference in mining unordered subtrees to other
subtree mining approaches lies in the candidate
enumeration phase. The candidates should be enumerated
in a complete and non-redundant manner, and each
candidate subtree should be uniquely distinguished by its
encoding. It is the problem of determining whether two
trees are equal to one another and it is a known problem of
tree isomorphism. Two trees are isomorphic if there is a
bijective correspondence between their node sets which
preserves and reflects the structure of the trees [16].

570

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

Fig. 2: Possible subtree permutations of subtree st3 (Fig.1)

The isomorphism problem is more complex when mining
unordered subtrees. When permutations of subtrees rooted
at any node in a particular tree T are performed, the
resulting trees are non-isomorphic ordered trees and
isomorphic unordered trees to T and among themselves.
This aspect is demonstrated in Fig. 2 where all possible
ordered trees of the subtree st3 (Fig. 1) are shown. They are
all isomorphic unordered trees since each one can be
mapped into another by permuting the children of vertices.
In Fig. 1 it can be seen that the subtree st3 is counted twice
for the ordered case (I) and four times for the unordered
case (UI) since additional subtree permutations are allowed.
Each tree encoding should uniquely map to only one
subtree, which enables the use of traditional hashing
methods for efficient tree counting. Therefore, from the set
of ordered trees obtained through all possible permutations
of subtrees rooted at any node, one has to be selected to
represent the unordered subtree. This selected tree is known
as the canonical form (CF) of an unordered subtree. In the
context of tree mining the selected CF is usually dependant
on the particular candidate enumeration technique used.
The aim should be that the enumerated candidate subtrees
will require less sorting on average, since sorting the tree
encodings may become one of the performance bottlenecks.
Within our implementation framework, we have used the
depth-first CF (DFCF) proposed in [3], with the difference
that ‘smaller’ subtrees are placed to the left. Using the
DFCF, the sorting of candidate subtrees is done solely
based upon the alphabetical order of the labels.
Additionally the backtrack (‘/) symbol is considered
smaller than any other label. This ordering of nodes starts
from the leaf nodes and continues up the tree structure.
When the labels of non-leaf nodes are equal the subtrees
rooted at those nodes are traversed in a depth-first manner
during which encountered nodes are compared. As soon as
a label is encountered that is larger than its corresponding
sibling node label (or if there is no such node in the sibling
subtree), the right order of those sibling nodes is known. If
necessary the sibling nodes and the subtrees rooted at those
nodes are swapped around to satisfy the CF order. This CF
ordering scheme (CFOS) maps each candidate subtree
uniquely. As an example consider the tree T (φ(T):‘d b / a d
/ / a b / / a d / b / /a b c), and the result of applying the
CFOS, Tcf (φ(Tcf):‘d a b / / a b / d / / a b c / / / a d / / b)
shown in Fig.3.

Fig. 3: Result of applying the employed CFOS to tree T

Ordering a subtree into its CF can be quite expensive due to
the expensive traversal of the string encodings in order to
determine and compare the sibling nodes. Due to the fact
that in our approach the whole tree database is first sorted
into its CF and each previously enumerated k-1 subtree is
ordered, many subtrees may already be in their CF when
new extensions are performed. We have determined a few
preconditions that allow us to assume that a subtree is
already in its CF and that no ordering is required. These
preconditions occur when we are appending a new node ‘n’
to the right-most node ‘r’ of the currently expanding
subtree.
Precondition 1: parent(n) = r;
Precondition 2: Let the left sibling of n be 'ln', then
children(ln) = null and L(ln) = L(n), OR L(ln) < L(n).
If any of the above conditions are met the ordering can be
skipped which results in a run time reduction as will be
demonstrated in our experimental section.

IV. UNI3 ALGORITHM
We start this section by first giving a brief overview of the
algorithm and then we explain each step in more detail. For
faster processing, the XML database is first transformed
into a database of rooted integer-labeled ordered trees. The
tree structure is then ordered into its CF, using the CFOS
described above. The tree database is traversed once to
create a global sequence which stores each node in the pre-
order traversal together with the necessary node
information (position, label, scope, and level). At the same
time the set of frequent 1-subtrees (‘F1’) is obtained by
hashing the encountered node labels. Embedding List (EL)
is constructed for a suitable representation of the tree
structure and the set of frequent 2-subtrees (‘F2’) is
obtained at the same time. TMG candidate generation using
the EL structure takes place and for each k ≥1 the right
most path (RMP) coordinates of each frequent (k-1)-
subtree are stored in ‘Fk-1’ hashtable. Prior to hashing the
string encoding of each subtree, it is first ordered into its
CF if necessary (i.e precondition 1 and 2 from section III
are not met). Each frequent (k-1)-subtree is extended one
node at a time, starting from the last node of its RMP (right
most node), up to its root. The whole process is repeated
until all k-subtrees are enumerated and counted

571

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

XML Data Pre-processing. To expedite the frequency
counting, the database of XML documents is first
transformed into a database of rooted integer-labeled
ordered trees. One format to represent the database of
rooted integer-labeled ordered trees is proposed in (Zaki
[2005]). For each XML tag, we consider tagname,
attribute(s) and value(s). To mine the structure of XML
documents one can modify this easily by omitting the
presence of attribute(s) and value(s) for each tag. Each tag
in an XML document is mapped to a unique integer. Since
the string labels can be long, performing the mapping will
optimize the frequency counting process by avoiding
additional hash key computations.
Another pre-processing step consists of ordering the whole
tree structure into its CF. We have found that this step is
necessary for optimization purposes, since the number of
the generated candidate subtrees that need to be sorted into
their CF greatly reduces.
Database Scanning. The process of frequent subtree
mining is initiated by scanning a tree database, Tdb, and
generating a global pre-order sequence D in memory
(dictionary). The purpose of the dictionary is to provide a
shared global nodes’ related information that allows for
direct access and thereby avoids the space cost which
would be caused if this information is copied (stored)
locally for every occurrence of a node. The dictionary
stores each node in Tdb following the pre-order traversal
indexing. For each node its position, label, scope, and level
are stored. The level of a node refers here to the level of the
Tdb tree, at which this node occurs. An item in the
dictionary D at position i is referred to as D[i]. The notion
of the position of an item refers to its index position in the
dictionary. When generating the dictionary, we compute all
the frequent 1-subtrees, F1. After this step no further
database scanning is required.
Embedding List (EL) Construction. For each frequent
internal node in F1, a list is generated which stores its
descendant nodes’ positions (from dictionary) in pre-order
traversal ordering such that the embedding relationships
between nodes are preserved. For a given internal node at
position i, such ordering reflects the enumeration sequence
of generating 2-subtree candidates rooted at i (Fig. 4).
Hereafter, we call this list as embedded list (EL). We use
notation i-EL to refer to an embedded list of node at
position i. The position of an item in EL is referred to as
slot. Thus, i-EL[n] refers to the item in the list at slot n.
Whereas |i-EL| refers to the size of the embedded list of
node at position i. Fig. 4 illustrates an example of the EL
representation of tree T3 (Fig. 1). In Fig. 4, 0-EL for
example refers to the list: 0:[1,2,3,4,5,6,7,8,9], 0-EL[0]=1
and 0-EL[6]=7.

.

0: 1 2 3 4 5 6 7 8 9
1: 2 3
5: 6 7

Fig. 4: The EL representation of T3 in fig 1

RMP Occurrence Coordinate (RMP-OC). By its
definition, RMP is the shortest path from the right most
node to the root node. Thus storing RMP coordinates is
always guaranteed to be maximal. The worst case of storing
the RMP coordinates would be equal to storing every
coordinate of a node in a subtree, i.e. when the subtree
becomes a sequence (each node has degree 1). The best
case of storing RMP coordinates for k-subtrees where k>1
is that it stores only 2 coordinates, i.e. whenever the length
of the RMP is equal to 1. Given a k-subtree T with OC
[e0,e1,…ek-1], the RMP-OC of T, denoted by Ψ(T), is
defined by [e0,e1,…,ej] such that Ψ(T) ⊆ OC(T); ej = ek-1;
and j ≤ k-1 and the path from ej to e0 is the RMP of tree T.

Fig. 5: TMG enumeration: extending (k-1)-subtree tk-1 where φ(tk-1):‘a b /

b c’ occurs at position (0,1,4,5) with node at position 6, 7, 8, 9, and 10

TMG enumeration formulation. TMG is a specialization
of the right most path extension method which has been
reported to be complete and where all valid candidates are
enumerated at most once (non-redundant) [8, 14]. To
enumerate all embedded k-subtrees from a (k-1)-subtree,
the TMG enumeration approach extends one node at a time
to each node in the RMP of (k-1)-subtree as illustrated in
the Fig. 5. This is our general tree mining framework that
allows for mining of induced and embedded subtrees.
However, in this work we are concerned with mining
induced subtrees and hence the maximum level of
embedding δ will always be constrained to 1. Suppose that
nodes in the RMP of a subtree are defined as extension
points and the level of embedding between two nodes at
position n and t is denoted by ∆(n,t). The TMG can be
formulated as follows. Given an RMP-OC of a frequent (k-
1)-subtree Tk-1, Ψ(Tk-1):[e0,e1,…ej], the scope of the root
node e0 is Φ, and the maximum level of embedding
constraint is 1, k-subtrees are generated by extending each
extension point n∈Ψ(Tk-1) with t for which it satisfies the
following conditions: (1) n < t ≤ Φ, (2) ∆(n,t) = δ. Suppose
that the encoding of Tk-1 is denoted by Lk-1 and l(n,t) is a
labeling function of extending extension point n with a
node at position t, Lk is defined as Lk-1+l(n,t). l(n,t)
computes the length between the extension point n and the
right most node fk-1 such that when the length τ is > 0, τ

572

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

numbers of backtrack symbols ‘/’ are appended before the
label of node at position t,ϕ(t). To generate RMP at each
step of candidate generation, we utilize the computed
numbers of backtracking τ between the extension point n
and the extending node t. Given that the Ψ(Tk-1) is
[e0,e1,…,ej], the RMP of the k-subtree can be generated by
appending t at position (j+1)-τ of the Ψ(Tk) and t will be
the right most node. Thus, the bigger the value of τ is, the
shorter the length of the generated RMP. The best case is
given when the extension point is the root node. This will
make sure that at each extension of (k-1)-subtree we store
the RMP coordinates of k-subtree.
Pruning. As mentioned previously k-1 pruning [8, 9, 14]
needs to be performed in order to check that all subtrees of
a currently expanding subtree are frequent. Each of those
subtrees has to be ordered into its CF if necessary, in order
to correctly check for its frequency. The expanding subtree
is pruned if at least one of its subtrees is infrequent. Doing
full k-1 pruning is quite time consuming and expensive. To
accelerate full k-1 pruning, a caching technique is used by
checking whether a candidate is already in the frequent k-
subtree hashtable (Fk). If a k-subtree candidate is already in
Fk, it is known that all its (k-1)-subtrees are frequent, and
hence only one comparison is made.
Vertical Occurrence List (VOL). Each occurrence of a
subtree is stored as an RMP-OCs as previously described.
The vertical occurrence list of a subtree groups the RMP-
OCs of the subtree by its encoding. Hence, the frequency of
a subtree can be easily determined from the size of the
VOL. We use the notation VOL(L) to refer to the vertical
occurrence list of a subtree with encoding L. Consequently,
the frequency of a subtree with encoding L is denoted as
|VOL(L)|. However, when the transaction-based support is
used there is a transaction identifier (tid) associated with
each occurrence and the support is determined by the
number of unique transaction identifiers.
The cost of the frequency counting process comes from at
least two main areas. First, it comes from the VOL
construction itself. With numerous numbers of occurrences
of subtrees the list can grow very large. Secondly, for each
candidate generated its encoding needs to be computed.
Constructing an encoding from a long tree pattern can be
very expensive. An efficient and fast encoding construction
can be employed by a step-wise encoding construction so
that at each step the computed value is remembered and
used in the next step. This way a constant processing cost
that is independent of the length of the encoding is
achieved. Thus, fast candidate counting can be achieved.
Overall, our algorithm can be described by the pseudo-code
provided in Fig. 6.

Fig. 6: UNI3 pseudo code

V. EXPERIMENTAL EVALUATION

In this section we provide some performance evaluation of
the UNI3 algorithm by comparing it with the
HybridTreeMiner (HBT) [4] and RootedTreeMiner [3]
which is Chi’s implementation of the Unot algorithm [1].
We will refer to each algorithm in this section using its
abbreviation as indicated in the brackets. For transaction
based support our algorithm is preceded with ‘T-’ (e.g. T-
UNI3), when the exceptions to CF ordering are used a ‘-
Lx’ symbol is appended at the end, where x corresponds to
the precondition explained in section III (e.g. UNI3-L1),
and if no full k-1 subtree pruning is performed (NP) is
added at the end (e.g. UNI3(NP)). Real world and artificial
databases of trees are used. ‘CSLogs’ is a real world data
set previously used by Zaki for testing his TreeMiner
algorithms [14]. The minimum support σ is denoted as
(sxx), where xx is the minimum frequency. The first three
experiments use the transaction based support whereas the
last one is based on occurrence match support. Experiments

573

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

were run on 3Ghz (Intel-CPU), 2Gb RAM, Mandrake 10.2
Linux machine and compilations were performed using
GNU g++ (3.4.3) with -g and -O3 parameters.
Time Performance Test. For this test we use the CSLogs
datasets and a synthetic dataset characterized by deep tree
structures consisting of 20000 transactions. We have used
the T-UNI3-L2 implementation where both preconditions
explained in section III are used to prevent unnecessary CF
checking of candidate subtrees. As can be seen in Fig. 7,
for both datasets the T-UNI3-L2 algorithm enjoys the best
time performance. Additionally by not performing full k-1
pruning there was an additional performance gain because
CF checking does not need to be performed for all the k-1
subtrees of a potentially frequent k-subtree.

(a) CSLogs dataset

(b) Deep tree dataset

Fig. 7: Time performance test
Scalability Test. For this experiment we have generated a
synthetic datasets that consists of 10000 items, and has an
average depth and fan-out of 40. The number of
transactions used was 2.5M, 5M, 10M, and the respective
support threshold was 162, 325 and 650. From Fig. 8, one
can see that all the tested algorithms are well scalable for
the different dataset sizes used, and the time performance is
comparable among the algorithms with T-UNI3-L2
performing slightly better than others.

Fig. 8: Scalability test

Variations of UNI3 Test. In this experiment we compare
the performance of the UNI3 variations. The aim is to
demonstrate some of the important implementation issues
that need to be taken into account when developing
unordered tree mining algorithms. The ‘L0’ version does
not implement any of the preconditions for detecting
exceptions to CF subtree ordering, L1 implements the first
precondition from section III and L2 enforces both
preconditions. Looking at the graph from Fig. 9,
implementing both preconditions for CF ordering
exceptions results in best time performance. This is because
the CF ordering and checking is quite expensive and
avoiding any of these operations will result in a time gain.
Additionally performing no full k-1 pruning (NP) results in
further time performance gain since again less CF ordering
is needed among the k-1 subtrees of a potentially frequent
k-subtree.

Fig. 9: Testing UNI3 variations

Occurrence Match Support (OMS). The purpose of this
experiment is to show the performance of the UNI3
algorithm when OMS threshold is used. Since to our
knowledge there are no current algorithms for mining
induced unordered subtree using the OMS, we have
included the performance of our algorithm for mining

574

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

ordered induced subtrees for extra comparison. The dataset
was artificially created and it consists of 1M transactions,
10000 items, and has average depth and fan-out of 40. Fig.
10 shows that our algorithm is well scalable even when the
more complex occurrence match support is used.
Furthermore, our T-UNI3-L2 algorithm enjoys the best
time performance for this dataset when compared to HBT
and RTM.

Fig. 7: Occurrence Match support test

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have extended our general tree mining
framework for the capability of mining induced unordered
subtrees. The flexibility of our general approach to tree
mining is again demonstrated through better time
performance when compared to some of the existing state-
of-the-art algorithms. Within our implementation
framework, two exceptions were indicated where the
expensive CF ordering can be avoided and an improvement
in time was experimentally demonstrated. Furthermore, our
algorithm has the capability of using the more complex
occurrence match support which is absent in the previously
developed algorithms for mining unordered induced
subtrees. Our future work consists in exploring further
space and time efficiency issues of the unordered tree
mining problem, and presenting an efficient algorithm for
mining embedded unordered subtrees.

ACKNOWLEDGMENT
We would like to thank Yun Chi for providing us with the
source code of the HybridTreeMiner and RootedTreeMiner
algorithms, and for discussing some of the results with us.

REFERENCES
[1] T. Asai, H. Arimura, T. Uno, and S. Nakano, “Discovering Frequent
Substructures in Large Unordered Trees”, The 6th International
Conference on Discovery Science, 2003.
[2] S. Nijssen, and J.N. Kok, “Efficient discovery of frequent unordered
trees”, In Proc. of the 1st International Workshop Mining Graphs, Trees,
and Sequences (MGTS-2003), Dubrovnik, Croatia, 2003.

[3] Y. Chi, Y. Yirong, and R. R. Muntz, “Canonical Forms for Labeled
Trees and Their Applications in Frequent Subtree Mining”, Knowledge
and Information Systems, 2004.
[4] Y. Chi, Y. Yang, and R.R. Muntz, “HybridTreeMiner: An efficient
algorihtm for mining frequent rooted trees and free trees using canonical
forms”, In Proc. of the 16th International Conference on Scientific and
Statistical Database Management, Santorini Island, Greece, 2004.
[5] M.J. Zaki, “Efficiently Mining Frequent Embedded Unordered Trees”,
Fundamenta Informaticae 65, IOS Press, 2005, pp. 1-20.
[6] A. Termier, M-C. Rousset, and M. Sebag, “Treefinder: A First Step
Towards XML Data Mining” In Proc. of IEEE ICDM’02, 2002.
[7] D. Shasha, J.T.L. Wang, S. Zhang, “Unordered Tree Mining with
Applications to Phylogeny”, 20th International Conference on Data
Engineering, 2004.
[8] H. Tan, T.S. Dillon, F. Hadzic, E. Chang, and L. Feng, “MB3 Miner:
mining eMBedded sub-TREEs using Tree Model Guided candidate
generation”, In Proc. of the 1st International Workshop on Mining
Complex Data, held in conjunction with ICDM’05, Houston, Texas, USA,
2005.
[9] H. Tan, T.S. Dillon, F. Hadzic, L. Feng, and E. Chang, “Tree Model
Guided Candidate Generation for Mining Frequent Subtrees from XML”,
Submitted to Transactions on Knowledge Discovery from Data (TKDD),
January, 2006, unpublished.
[10] H. Tan, T.S. Dillon, F. Hadzic, L. Feng, and E. Chang, “IMB3 Miner:
Mining Induced/Embedded Subtrees by Constraining the Level of
Embedding”, In Proc. of PAKDD'06, Singapore, 2006.
[11] H. Tan, T.S. Dillon, F. Hadzic, E. Chang, and L. Feng, “Mining
induced/embedded subtrees using the level of embedding constraint”,
Submitted to Knowledge and Information Systems An International
Journal, Springer, 2006, unpublished.
[12] Tan, H., Dillon, T.S., Hadzic, F , and Chang, E., 2006. “Distance
constrained mining of embedded subtrees”, Workshop on Ontology
Mining and Knowledge Discovery from Semistructured documents (MSD
2006), in conjunction with the 2006 International Conference on Data
Mining, 18-22 December, Hong Kong, in press.
[13] F. Hadzic, T.S. Dillon, A. Sidhu, E. Chang, and H. Tan, “Mining
Substructures in Protein Data”, IEEE ICDM 2006 Workshop on Data
Mining in Bioinformatics (DMB 2006), in conjunction with the 2006
International Conference on Data Mining, 18-22 December, Hong Kong,
in press.
[14] M.J. Zaki, “Efficiently Mining Frequent Trees in a Forest:
Algorithms and Applications”, In IEEE Transactions on Knowledge and
Data Engineering, 17, 8, 2005, 1021-1035.
[15] R. Agrawal, and R. Srikant, “Fast algorithm for mining association
rules”, In Proceedings of the 20th Very Large Data Bases (VLDB 1994),
Santiago de Chile, Chile, 1994, pp. 487-499.
[16] G., Valentine, Algorithms on Trees and Graphs, Springer-Verlag,
Berlin, 2002.

575

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

