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Abstract— A fuzzy c-means classifier (FCMC) based on a
generalized fuzzy c-means clustering with iteratively reweighted
least square technique (IRLS-FCM) has been proposed. In
this paper, we derive a generalized hard c-means (HCM-g)
clustering algorithm by defuzzifying IRLS-FCM. Many hard
clustering results are obtained from local minima of the HCM-
g objective function. Although HCM-g is not a fuzzy clustering
algorithm, it is applied to a fuzzy classifier and the best values
of the parameters such as the fuzzifiers were chosen by using
golden section search method.

Whereas the goal of FCMC is to minimize classification
error rate on unseen new test data, the proposed classifier aims
at minimizing resubstitution error rate by using only a small
number of clusters. The proposed classifier with two clusters
for each class achieves low resubstitution error rate on several
benchmark data sets.

I. INTRODUCTION

In this paper we first generalize the standard fuzzy c-
means clustering objective function [1] a little further, then
propose a defuzzified hard clustering and apply it to a post-
supervised classifier with fuzzy classification functions. The
proposed classifier is based on the hard clustering, though
the classification is done using fuzzy membership function.

There are four types of basic ideas representing clusters,
i.e., crisp, probabilistic, fuzzy, and possibilistic. Examples
of alternating optimization algorithms of clustering that can
generate memberships to clusters as well as a set of clus-
ter centroids from unlabeled object data are hard c-means
(HCM), Gaussian mixture models (GMM) or normal mixture
[2], fuzzy c-means (FCM) [1], and possibilistic c-means [3].

The entropy regularized FCM (FCM-e) [4] has a close
relationship to GMM or deterministic annealing by Rose
[5]. The difference between the standard FCM (FCM-s)
and FCM-e comes from the difference of their membership
functions. The aim of the generalized FCM (FCM-g) [6] is
to alleviate the singularity of the membership function and
to equip both of the properties of FCM-s and FCM-e.

Miyamoto et al. [7] proposed a generalized hard c-means
clustering (HCM-g) by introducing Mahalanobis distances.
The approach is originated from the FCM clustering with
regularization by KL-information (FCM-K). FCM-K is a
special case of FCM-e. Though the FCM-K is similar to
the statistical clustering method known as GMM, its repre-
sentation of the objective function is rather simple and does
not strictly follow the EM algorithm and Bayes’ rule. This
reinterpretation of the statistical clustering method may lead
to general FCM objective function, but it is still limited to a
few models of fuzzy clustering.

Various membership functions different from those in
FCM-s and FCM-e can be used in an FCM clustering
algorithm with the iteratively reweighted least square (IRLS)
technique [8]. Cluster memberships are defined by a function
of Mahalanobis distances or Euclidean distances between
data vectors and cluster centers. The algorithms of GMM,
FCM-e and FCM-K are the special cases of IRLS fuzzy
c-means clustering (IRLS-FCM). The algorithm is applied
to a classifier design [9], [10], [11] and is called FCM
classifier (FCMC). The revised algorithm with deterministic
initialization in [12] is also abbreviated to FCMC. The
classifier improved the classification performance in terms
of the generalization ability (classification accuracy on test
sets) and the receiver operating characteristics [9], [10], [11],
[12] for several benchmark data sets.

In supervised classifier design, a data set is usually crisply
partitioned into a training set and a test set. Testing a
classifier designed with the training set means finding its
misclassification rate. The standard method for doing this
is to submit the test set to the classifier and count errors.
This yields the performance index by which the classifier is
judged because it measures the extent to which the classifier
generalizes to the test data. When the test set is equal to
the training set, the error rate is called the resubstitution
error rate. This error rate is not reliable for assessing the
generalization ability of the classifier, but this is not an
impediment to using as a basis for comparison of different
designs. If training set is large enough and its substructure
is well delineated, and if the number of clusters used in the
classifier is small, we expect classifiers trained with it to
yield good generalization ability or it may not deteriorate.

The clustering phase of IRLS-FCM is replaced with HCM-
g, and the cluster centers and the covariance matrices are
determined by the HCM-g. In this post-supervised design,
the clustering is implemented by using the data from one
class at a time, i.e., the clustering is done on a per class basis.
When working with the data class by class, the prototypes
(cluster centers) that are found for each labeled class already
have the assigned physical labels. HCM-g is implemented
in the unsupervised phase, and then the parameters in the
membership function such as the fuzzifiers are chosen so
that the resubstitution error rate attains minimum in the
supervised phase. Whereas the goal of FCMC is to optimize
generalization ability of the classifier, the proposed HCM-g
classifier (HCMGC) aims at minimizing resubstitution error
rate. Clustering is known as a combinatorial optimization
problem and the HCM-g algorithm produces many local min-
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ima, from which we can choose to minimize resubstitution
errors. The strategy for classification is not just based on the
hard clustering results but also on fuzzy memberships.

The classification algorithms using Mahalanobis distances
should include steps to check that the covariance matrices
are nonsingular and hence invertible. The way of handling
singular covariance matrices in the mixture of probabilistic
principal component analysis (MPCA) [13] or character
recognition [14] is employed to prevent unexpected termi-
nation of HCM-g and improve classification accuracy of the
algorithm.

In this paper we focus our discussion to the resubstitution
classification error rate and the data set compression ratio as
performance criteria. Please refer to [12] for more details of
FCMC and its generalization ability. Other techniques such
as feature selection issues are beyond our consideration here.

The trained classifiers are tested on the benchmark data
sets from the UCI ML repository (http://www.ics.uci.edu/˜
mlearn/) [15]. HCMGC with small number of clusters
shows relatively low classification error rates on several data
sets. Also concerning storage requirements and classification
speed, the HCM-g classifier gives a good performance and
efficiency.

The paper is organized as follows. Section II gives a brief
description of the generalized FCM clustering and proposes
a post-supervised classifier. Section III provides the results of
numerical experiments. By using graphs of the classification
function, knowledge acquisition from the learned classifier
is described in Section IV. Section V concludes the paper.

II. POST-SUPERVISED CLASSIFIER WITH HARD c-MEANS

CLUSTERING AND FUZZY MEMBERSHIPS

FCM clustering partitions data set by introducing mem-
berships to fuzzy clusters. The clustering criterion used to
define good clusters for fuzzy c-means partitions is the FCM
objective function.

A. A Generalization of FCM Clustering

The clustering is used as an unsupervised phase of the clas-
sifier design. Let r dimensional vector vi denote prototype
parameter (i.e., cluster centroid). uik denotes the membership
of k-th object data xk ∈ Rr to i-th cluster.

The objective function of the standard method is:

Jfcm =
c∑

i=1

n∑
k=1

(uik)λd2
ik, (λ > 1), (1)

where c denotes the number of clusters. d2
ik denotes the

squared distance between xk and vi, so the standard FCM
objective function is the weighted sum of squared distances.
Taking the objective function for the entropy-based method
and the quadratic-term-based method [16] into account, we
can generalize the standard objective function a little further
as:

Jgfc =
c∑

i=1

n∑
k=1

(uki)λd2
ik + η

c∑
i=1

n∑
k=1

(uik)λ. (2)

where η > 0, λ > 1. From the necessary condition for
optimality, we have

uik =


 c∑

j=1

(
η + d2

ik

η + d2
jk

) 1
λ−1


−1

. (3)

vi =
∑n

k=1(uki)λxk∑n
k=1(uki)λ

. (4)

For more detail descriptions of the derivation and properties,
see [6].

The objective function of the entropy term based method
[4], [17] is the only case where covariance matrices (Ai)
can be taken into account. Although Gustafson and Kessel’s
modified FCM [18] is derived from an objective function
with fuzzifier λ, we need to specify the values of determinant
|Ai| for all i.

B. IRLS FCM Clustering

In order to deal with covariance structure within the scope
of fuzzy c-means clustering, we need some simplifications
based on the IRLS technique. Runkler and Bezdek’s [19]
fuzzy clustering scheme called alternating cluster estimation
(ACE) is this kind of simplification.

Now we employ a technique from the robust M-estimation
[8], [20]. The M-estimators try to reduce the effect of
outliers by replacing the squared residuals with ρ-function,
which is chosen to be less increasing than square. Instead
of solving directly this problem, we can implement it as
the IRLS. While the IRLS approach does not guarantee the
convergence to a global minimum, experimental results have
shown reasonable convergence points. If one is concerned
about local minima, the algorithm can be run multiple times
with different initial conditions.

Let the objective function of the IRLS-FCM be

Jifc =
c∑

i=1

n∑
k=1

uik

(
d2

ik + log|Ai|
)
. (5)

where

d2
ik = (xk − vi)�A−1

i (xk − vi) (6)

is squared Mahalanobis distance from xk to i-th cluster
centroid. Ai is a covariance matrix of data samples of the
i-th cluster, which is derived from (5) as:

Ai =
∑n

k=1 uik(xk − vi)(xk − vi)�∑n
k=1 uik

. (7)

and vi is as:

vi =
∑n

k=1(uki)λxk∑n
k=1(uki)λ

. (8)

To facilitate competitive movements of cluster centroids,
we need to define the membership function to be normalized
as:

uik =
u∗

ik∑c
l=1 u∗

lk

. (9)
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We confine our discussion to the membership function

u∗
ik =

πi|Ai|−1/γ

(η + d2
ik/0.1)1/λ,

(10)

then, by (9), uik in (3) is modified as:

uik = πi|Ai|−1/γ


 c∑

j=1

(
η + d2

ik/0.1
η + d2

ik/0.1

) 1
λ

πj |Aj|−1/γ



−1

.

(11)

u∗ is a modified and parameterized multivariational ver-
sion of Cauchy’s weight function in M-estimator or of the
probability density function (PDF) of Cauchy distribution.

πi =
∑n

k=1 uik∑c
j=1

∑n
k=1 ujk

=
1
n

n∑
k=1

uik. (12)

C. FCM Classifier

After completing the IRLS-FCM clustering for each class,
the classification is performed by computing class member-
ships of unseen test data. The FCM classifier is abbreviated
to FCMC. Let αq denote the mixing proportion of class q,
i.e., the a priori probability of class q. The class membership
of k-th data xk to class q is computed as:

u∗
qjk = πqj|Aqj |−1/γ/(η + d2

qjk/0.1)1/λ, (13)

ũqk = αq

c∑
j=1

u∗
qjk/

Q∑
s=1

αs

c∑
j=1

u∗
sjk, (14)

where c denotes the number of clusters of each class. The
denominator in (14) can be disregarded when applied solely
for classification.

From objective function of FCM-K, Miyamoto et al. [7]
derived the generalized hard clustering HCM-g by setting
λ = 0. The HCM-g is a defuzzified clustering algorithm of
FCM-K. Similarly, we can derive the same hard clustering
algorithm from (11), and we call it HCM-g.

The modification of covariance matrices in the mixture of
probabilistic principal component analysis (MPCA) [13] is
applied in the IRLS-FCM classifier for preventing singular
matrices. Let A′

i denotes an approximation of covariance
matrix Ai in (10) as:

A′
i = P p

i (∆p
i − σiIp)P p�

i + Pi(σiIr)P�
i , (15)

where Pi is an r × r matrix of eigenvectors of Ai.
∆i =diag(δi1, ..., δir) is an r × r diagonal matrix of eigen-
values. r equals the dimensionality of input samples. P p

i is
an r×p matrix of eigenvectors corresponding to the p largest
eigenvalues, where p < r − 1. P p

i is an r × p matrix and
∆p

i is a p × p diagonal matrix. p is chosen so that all A′
is

are nonsingular and the classifier maximizes its classification
performance. σi = (trace(Ai) − Σp

l=1δil)/(r − p) and
Pi(σiIr)P�

i = σiIr.
When p=0, Ai is reduced to a unit matrix and d2

ik in (6) is
reduced to Euclidean distance. This modification can be used
for both the fuzzy and hard clustering to compute distances
in (6).

FCMC is a fuzzy approach and post-supervised, and the
IRLS clustering phase can be replaced by a hard clustering
algorithm. Although the main thesis of Miyamoto et al. [7] is
the sequential hard clustering algorithm, for simplicity’s sake
we confine our discussion to its simple batch algorithm of
hard clustering. The objective function of the HCM-g is (2)
with λ = 1 or (5) with λ = 0. The simple HCM classifier
uses Ai of unit matrix, and thus, dik in (6) is reduced to
Euclidean distance.

An alternating optimization algorithm of HCM-g [7] is the
repetition of (7) through (12) and

uik =

{
1 ; i = arg min

1≤j≤c
d2

jk + log|Aj|
0 ; otherwise

(16)

The modification of covariance matrices by (15) is not
enough for preventing singular matrices when the number of
instances included in a cluster is very small or zero. When
the number becomes too small and an Ai results in a singular
matrix, for increasing the number we modify (16) as:

uik =

{
0.9 ; i = arg min

1≤j≤c
d2

jk + log|Aj|
0.1
c−1 ; otherwise

(17)

By this fuzzification of membership, even the smallest cluster
may include some instances with small membership values,
and the centroids come somewhat near to the global center
of the class. This fuzzification is used for a benchmark data
set in section III.

Figs.1-2 show clustering results of artificial 2-D data.
HCM-g produces many different results for a nonseparate
data set as shown in Fig.1. Five different clustering results
are obtained by 10 trials of HCM-g, while the result similar
to the one shown in Fig.2 was obtained 9 times out of 10
trials by GMM. Fig.3 show the result obtained 9 times out
of 10 trials by IRLS-FCM with λ = 0.6, γ = 0.5 and η = 1.
As we apply the classifier to data with more than one class,
we usually have many more local minima of the clustering
criterion of HCM-g. Convergence speed by HCM-g is much
faster than GMM and FCM-g. HCM-g needs only around 10
iterations, while GMM and FCM-g usually need around 50.

Our proposed classifier is of post-supervised and, thus,
the optimum clustering result with respect to the objective
function does not guarantee the minimum classification error.
Our strategy is to select the best one in terms of classification
error from many local minima of the clustering criterion of
HCM-g. Parameter values used for HCMGC are chosen by
the golden section search [21], which is applied to λ, η, and
γ one after another with random initializations.

HCMGC algorithm with golden section search method
used in the next section is as follows:

Algorithm: HCMGC
Step 1: Initialize vi’s by choosing data vectors randomly

for each class.
Step 2: Partition the training set by HCM-g and fix Ai

and vi of each cluster for each class.
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Fig. 1. Five different clustering results observed by 10 trials of HCM-g

Step 3: Choose γ and η randomly from interval [0.01 5].
Step 4: Optimize λ by the golden section search in inter-

val [0.01 5].
Step 5: Optimize γ by the golden section search in inter-

val [0.01 5].
Step 6: Optimize η by the golden section search in inter-

val [0.01 5].
Step 7: If iteration t < 500, t := t + 1, go to Step 1 else

terminate.

III. NUMERICAL COMPARISONS

We used 8 data sets of Iris plant, Wisconsin breast
cancer, Ionosphere, Glass, Liver disorder, Pima Indian di-
abetes, Sonar and Wine as shown in Table I. These
data sets are available from the UCI ML repository
(http://www.ics.uci.edu/˜ mlearn/) and were used in [22] to
compare the generalization ability of various prototype-based
classifiers such as k-nearest neighbor (k-NN), hard c-means,

Fig. 2. Result observed 9 times out of 10 trials by GMM

Fig. 3. Result observed 9 times out of 10 trials by IRLS-FCM

and learning vector quantization (LVQ) [23]. Incomplete
samples in the breast cancer data set were eliminated. All
attribute values of each data set were normalized to zero
mean and unit variance.

Generalization ability of the revised FCMC algorithm
is compared with the well established classifiers in [12].
Classification error rates by 10-fold cross validation (10-
CV) with a default partition are shown in Table II. The
standard deviation is displayed with ± for LVQ since the
classifier is tested by 10 complete runs of 10-CV with
random initializations. Initializations for FCMC and k-NN
is deterministic.

For the parameters of k-NN (k) and LVQ (c), we tested
all integer values from 1 to 50. Parameters of FCMC are
optimized by 10-CV with a default partition and the golden
section search. FCMC outperforms k-NN and LVQ on the
benchmark data sets. For more details of FCMC, and com-
parisons with the support vector machine (SVM) [24], [25]
by a MATLAB interface to SVMlight [26] and the decision
tree approach C4.5 reported in [27], [28], [29], see [12].

In Table III, “HCMGC” column shows the best resub-
stitution error rates on training sets from a 500 trials of
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TABLE I

DATA SETS USED IN THE EXPERIMENTS

features instances classes
Iris 4 150 3

Breast 9 683 2
Ionosphere 33 351 2

Glass 9 214 6
Liver 6 345 2
Pima 8 768 2
Sonar 60 208 2
Wine 13 178 3

TABLE II

CLASSIFICATION ERROR RATES BY 10-FOLD CV WITH A DEFAULT

PARTITION.

FCMC k-NN LVQ1
Iris 1.33 2.67 5.40 ± 0.87

Breast 2.79 2.65 3.16 ± 0.16
Ionosphere 3.43 13.43 10.60 ± 0.35

Glass 28.10 27.62 30.10 ± 1.38
Liver 27.94 32.65 35.24 ± 1.44
Pima 22.50 23.42 24.11 ± 0.52
Sonar 10.50 13.50 14.85 ± 2.07
Wine 0.00 1.76 2.35 ± 0.00

clustering by HCM-g and the golden section search. “M”
and “E” indicate that Mahalanobis and Euclid distances are
used respectively. LVQ result is also the best one from 500
trials on each set with random initializations. Initial value of
LVQ learning rate β was set as 0.3 and was changed as in
[22], i.e., β(t+1) = β(t)×0.8 where t (=1, ..., 100) denotes
iteration number. The resubstitution error rates of FCMC is
the best results from 10 runs of clustering with different λ∗

and 50 runs of the golden section search for each clustering
result. Since FCMC uses IRLS-FCM, which is not a hard
clustering, 10 runs of clustering seem enough.

For c > 2, we set p = 0, then HCM-g is a simple hard
clustering with Euclidean distances. Naturally, as the number
c is increased, the resubstitution error rate decreases and for
example when c = 50 the rate is 1.17% for Breast cancer
data. Since Glass data have 6 classes, when c=2 and (16)
is used, all trials unexpectedly terminate due to the lack of
instances resulting in a singular covariance matrix. By using
(17) the algorithm successfully converged.

Despite the continuous increase in computer memory
capacity and CPU speed, especially in data mining, storage
and efficiency issues become even more and more prevalent.
For this reason we also measured the compression ratios
of the trained classifiers in Table VI. The ratio is defined
as Ratio=(p + 1) × c× number of classes ÷ number of
instances. The ratios for HCMGC (c > 2) and LVQ are the
same. For HCMGC with Mahalanobis distances and c=2,
the compression ratios of Ionosphere and Glass are high,
though the error rate is small in Table III. When p=3 and
c=2, the best error rate for Ionosphere is 2.85% and the
compression ratio is 4.56%. The error rate for the glass data
is 10.28% and the compression ratio is 33.6% when p=5
and c=2. HCMGC demonstrates relatively low compression

TABLE III

BEST RESUBSTITUTION ERROR RATES FROM A 500 TRIALS BY FCMC,

HCMGC AND LVQ

FCMC HCMGC LVQ1
M M E E E E
c=2 c=2 c=5 c=10 c=5 c=10

Iris 0.67 0.67 1.33 0.67 2.0 1.33
Breast 1.90 1.76 2.78 2.05 2.34 1.61

Ionosphere 3.13 0.85 5.13 3.70 7.41 5.70
Glass 18.69 9.81 18.69 13.08 20.56 18.22
Liver 23.19 18.84 25.22 23.48 27.54 21.45
Pima 20.18 19.40 20.44 19.14 20.18 18.88
Sonar 5.29 0 6.25 0.48 4.81 1.92
Wine 0.00 0 0 0 0 0

TABLE IV

PARAMETER VALUES USED FOR HCMGC WITH MAHALANOBIS

DISTANCES (c=2)

p λ γ η
Iris 1 0.29 3.31 4.96

Breast 7 0.05 0.78 2.26
Ionosphere 20 0.04 1.29 1.96

Glass 9 0.01 0.25 4.96
Liver 4 0.27 4.06 2.82
Pima 4 0.16 1.90 4.36
Sonar 9 0.03 1.16 4.96
Wine 1 0.04 1.21 4.96

ratios. Parameter values of HCMGC chosen by the golden
section search method are shown in Table IV. HCMGC with
Mahalanobis distance and c=2 attains the lowest error rate
when c ≤ 5 as indicated by boldface letters in Table III. The
compression ratios of HCMGC is not so good for Ionosphere,
Glass and Sonar, though we can conjecture from the results
of FCMC that the generalization ability will not deteriorate
largely since only two clusters for each class are used.

IV. KNOWLEDGE ACQUISITION FROM THE TRAINED

CLASSIFIER

Rule extraction or knowledge acquisition from the ob-
tained fuzzy classifier is a subsidiary goal of our research.
We can graphically display rules for classification in an easily
understandable form. Fig.4 shows the classification functions
for the Iris-Versicolor data in each feature variable around
the cluster centroids. Iris-Versicolor is a binary classification
problem and the task is to discriminate Versicolor form other
two Iris subspecies. All feature values are mean corrected
with unit variance and classification functions on each feature
variable are listed in order from top to bottom. The locations
of the cluster centroids are indicated by the vertical lines in
blue. The centroids of cluster 1 and 2 of the iris versicolor
subspecies (class 1) are located near the mean of each feature
value. Those of the clusters of the other subspecies (i.e.,
setosa and verginica subspecies) are clearly on the negative or
positive sides. Breast cancer data has 9 features and the four
clusters are scattered in a high dimensional space as shown in
Fig.5. Cluster centroids of the diseased patients (class 1) are
all on the negative side and those of the disease free are on
the positive side. We can see from Fig.5 that perturbation
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TABLE V

PARAMETER VALUES USED FOR HCMGC WITH EUCLIDEAN DISTANCES

(c=5, 10)

c=5, p=0 c=10, p=0
λ η λ η

Iris 1.11 0.01 1.08 0.01
Breast 1.16 1.92 1.04 1.92

Ionosphere 1.02 1.92 1.08 1.92
Glass 1.43 0.01 1.15 1.92
Liver 4.85 5.00 1.19 1.92
Pima 1.49 3.82 1.89 1.19
Sonar 1.02 1.92 1.04 1.92
Wine 1.08 1.92 1.23 1.92

TABLE VI

COMPRESSION RATIO (%)

M E E
c=2 c=5 c=10

Iris 8.0 10 20
Breast 4.7 1.5 2.9

Ionosphere 23.9 2.8 5.7
Glass 56.1 14.0 28.0
Liver 5.8 2.9 5.8
Pima 2.6 1.3 2.6
Sonar 19.2 4.8 9.6
Wine 6.7 8.42 16.9

of single feature value does not affect the classification
decisions. Fig.6 demonstrates the classification decisions of
four patients of breast cancer who are misclassified. Though
from the 4-th to 6-th feature variables assume large positive
values, patient 1 is classified as disease free. We can see from
the graphs that if the value of the 6-th variable is smaller then
the decision becomes correct. In the same way, if the 8-th
variable for patient 2 is smaller, the patient is classified as
diseased.
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Fig. 4. Classification functions on the Iris-Vc data around each of the
cluster centroids. All feature variables are listed in order from top to bottom.
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Fig. 5. Classification functions on Breast cancer data around each of the
cluster centroids. The graphs on each feature variable are listed in order
from top to bottom.

V. CONCLUDING REMARKS

We have applied the generalized hard clustering algorithm
with covariance structure to a post-supervised classifier to
improve resubstitution error rate by choosing best clustering
results from local minima of the clustering criterion. The
low resubstitution error rates and data set compression ratios
are achieved on several benchmark data sets by HCMGC
with c=2. The golden section search is not necessarily the
best way for parameter optimization, and our quest for more
efficient algorithms continues.
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