
Abstract—In the past, we proposed a Fast Updated FP-tree
(FUFP-tree) structure to efficiently handle new transactions and
to make the tree update process become easier. In this paper, we
attempt to modify the FUFP-tree construction based on the
concept of pre-large itemsets. Pre-large itemsets are defined by
a lower support threshold and an upper support threshold. The
proposed approach can achieve a good execution time for tree
construction especially when each time a small number of
transactions are inserted. Experimental results also show that
the proposed Pre-FUFP maintenance algorithm has a good
performance for incrementally handling new transactions.

I. INTRODUCTION

Many algorithms for mining association rules from
transactions have been proposed, most of which were based
on the Apriori algorithm [1][2][3], which generated and
tested candidate itemsets level-by–level. This may cause
iterative database scans and high computational costs. Han et
al. thus proposed the Frequent-Pattern-tree (FP-tree)
structure for efficiently mining association rules without
generation of candidate itemsets [7]. The FP-tree [7] was used
to compress a database into a tree structure which stored only
large items. Both the Apriori and the FP-tree mining
approaches belong to batch mining. In real-world
applications, new transactions are usually inserted into
databases incrementally. In this case, the originally desired
large itemsets may become invalid, or new large itemsets may
appear in the resulting updated databases [4][5][11][13][15].
Designing an efficient algorithm that can maintain
association rules as a database grows is thus critically
important.

One noticeable incremental mining algorithm was the
Fast-Updated Algorithm (called FUP), which was proposed
by Cheung et al. [4] for avoiding the shortcomings mentioned
above. Although the FUP algorithm could indeed improve
mining performance for incrementally growing databases,
original databases still needed to be scanned when necessary.
A pre-large-itemset algorithm was thus proposed to further
reduce the need for rescanning original database based on two
support thresholds [8]. The algorithm did not need to rescan
the original database until a number of new transactions have

This research was supported by the National Science Council of the
Republic of China under contract NSC 95-2221-E-390-025.

C. W. Lin is with the Department of Computer Science and Information
Engineering, National Cheng Kung University, Tainan, 701, Taiwan, R.O.C.
(e-mail: p78951228@mail.ncku.edu.tw).

T. P. Hong is with the Department of Electrical Engineering, National
University of Kaohsiung, Kaohsiung, 811, Taiwan, R.O.C. (corresponding
author; phone: +886+7+5919191; fax: +886+7+5919374; e-mail:
tphong@nuk.edu.tw).

W. H. Lu is with the Department of Computer Science and Information
Engineering, National Cheng Kung University, Tainan, 701, Taiwan, R.O.C.
(e-mail: whlu@mail.ncku.edu.tw).

been inserted. Since rescanning the database spent much
computation time, the maintenance cost could thus be
reduced in the pre-large-itemset algorithm.

In the past, Hong et al. [9] modified the FP-tree structure
and designed the fast updated frequent pattern trees
(FUFP-trees) to efficiently handle newly inserted transactions
based on the FUP concept. The FUFP-tree structure was
similar to the FP-tree structure except that the links between
parent nodes and their child nodes were bi-directional.
Besides, the counts of the sorted frequent items were also
kept in the Header_Table of the FP-tree algorithm.

In this paper, we attempt to further modify the FUFP-tree
algorithm for incremental mining based on the pre-large
concept [8]. Based on two support thresholds, the proposed
approach can effectively handle cases in which itemsets are
small in an original database but large in newly inserted
transactions. Experimental results also show that the
proposed maintenance algorithm has a good performance for
incrementally handling new transactions.

II. REVIEW OF RELATED WORKS

A. The FUFP-tree algorithm
The FUFP-tree construction algorithm is the same as the

FP-tree algorithm [7] except that the links between parent
nodes and their child nodes are bi-directional. Bi-directional
linking will help fasten the process of item deletion in the
maintenance process. Besides, the counts of the sorted
frequent items are also kept in the Header_Table.

An FUFP tree must be built in advance from the original
database before new transactions come. When new
transactions are added, the FUFP-tree maintenance algorithm
will process them to maintain the FUFP tree. It first partitions
items into four parts according to whether they are large or
small in the original database and in the new transactions.
Each part is then processed in its own way. The
Header_Table and the FUFP-tree are correspondingly
updated whenever necessary.

Several other algorithms based on the FP-tree structure
have been proposed. For example, Qiu et al. proposed the
QFP-growth mining approach to mine association rules [12].
Mohammad proposed the COFI-tree structure to replace the
conditional FP-tree [14]. Ezeife constructed a generalized
FP-tree, which stored all the large and non-large items, for
incremental mining without rescanning databases [6]. Koh et
al. adjusted FP trees also based on two support thresholds
[10], but with a more complex adjusting procedure and
spending more computation time than the one proposed in
this paper. Some related researches are still in progress.

Using the Pre-FUFP Algorithm for Handling New Transactions in
Incremental Mining

Chun-Wei Lin , Tzung-Pei Hong, and Wen-Hsiang Lu

598

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

1-4244-0705-2/07/$20.00 ©2007 IEEE

B. The pre-large-itemset algorithm
A pre-large itemset is not truly large, but may be large with

a high probability in the future. Two support thresholds, a
lower support threshold and an upper support threshold, are
used to realize this concept. The upper support threshold is
the same as that used in the conventional mining algorithms.
On the other hand, the lower support threshold defines the
lowest support ratio for an itemset to be treated as pre-large.

Considering an original database and transactions which
are newly inserted by the two support thresholds, itemsets
may fall into one of the following nine cases illustrated in
Figure 1.

Cases 1, 5, 6, 8 and 9 will not affect the final association
rules according to the weighted average of the counts. Cases 2
and 3 may remove existing association rules, and cases 4 and
7 may add new association rules. If we retain all large and
pre-large itemsets with their counts after each pass, then cases
2, 3 and case 4 can be handled easily. Also, in the
maintenance phase, the ratio of new transactions to old
transactions is usually very small. This is more apparent when
the database is growing larger. It has been formally shown
that an itemset in case 7 cannot possibly be large for the entire
updated database as long as the number of transactions is
smaller than the number f shown below [8]:

u

lu

S
dSSf

1
)(,

where f is the safety number of the new transactions, Su is the
upper threshold, Sl is the lower threshold, and d is the number
of original transactions.

Fig.1. Nine cases arising from adding new transactions to existing databases

III. THE PROPOSED MAINTENANCE ALGORITHM

An FUFP tree must be built in advance from the initially
original database before new transactions come. Its initial
construction is similar to that of an FP tree. The database is
first scanned to find the items with their supports larger than a
predefined minimum support. These items are called large
items. Next, the large items are sorted in descending
frequency. At last, the database is scanned again to construct
the FUFP tree according to the sorted order of large items.
The construction process is executed tuple by tuple, from the
first transaction to the last one. After all transactions are
processed, the FUFP tree is completely constructed. Besides,
a variable c is used to record the number of new transactions

since the last re-scan of the original database with d
transactions. The details of the proposed algorithm are
described below.

The Pre-FUFP maintenance algorithm:
INPUT: An old database consisting of (d+c) transactions, its

corresponding Header_Table storing the frequent
items initially in descending order, its
corresponding FUFP tree, a lower support threshold
Sl, an upper support threshold Su, its corresponding
pre-large table storing the set of pre-large items
from the original database, and a set of t new
transactions.

OUTPUT: A new FUFP tree for the updated database by
using the Pre-FUFP maintenance algorithm.

STEP 1: Calculate the safety number f of new transactions
according to the following formula [8]:

u

lu

S
dSSf

1
)(.

STEP 2: Scan the new transactions to get all the items and
their counts.

STEP 3: Divide the items in the new transactions into three
parts according to whether they are large, pre-large
or small in the original database.

STEP 4: For each item I from STEP 3, which is large in the
original database (appearing in the Header_Table),
do the following substeps (Cases 1, 2 and 3):
Substep 4-1: Set the new count SU(I) of I in the

entire updated database as:
 SU(I)=SD(I)+ST(I),

where SD(I) is the count of I in the
Header_Table (original database) and
ST(I) is the count of I in the new
transactions.

Substep 4-2: If SU(I)/(d+c+t) Su, update the count
of I in the Header_Table as SU(I), and
put I in the set of Insert_Items, which
will be further processed in STEP 10;
Otherwise, if Su SU(I)/(d+c+t) Sl,
remove I from the Header_Table,
connect each parent node of I directly
to its child node in the corresponding
FUFP tree, set SD(I) = SU(I), and keep
I with SD(I) in the pre-large table;
Otherwise, item I is small after the
database is updated; remove I from the
Header_Table and connect each
parent node of I directly to its child
node in the corresponding FUFP tree.

STEP 5: For each item I from STEP 3 which is pre-large in
the original database, do the following substeps
(Cases 4, 5 and 6):
Substep 5-1: Set the new count SU(I) of I in the

entire updated database as:
 SU(I)=SD(I)+ST(I).

Substep 5-2: If SU(I)/(d+c+t) Su, item I will be
large after the database is updated; put

Large
itemsets

Large
itemsets

Pre-large
itemsets

Original
database

New
transactions

Small
itemsets

Small
itemsets

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Case 7 Case 8 Case 9

Pre-large
itemsets

Large
itemsets

Large
itemsets

Pre-large
itemsets

Original
database

New
transactions

Small
itemsets

Small
itemsets

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Case 7 Case 8 Case 9

Pre-large
itemsets

599

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

I in the set of Insert_Items and
Branch_Items, which will be further
processed in STEP 8;
Otherwise, if Su SU(I)/(d+c+t) Sl,
set SD(I) = SU(I) and keep I with the
new SD(I) in the pre-large table;
Otherwise, remove item I from the
pre-large table.

STEP 6: For each item I from STEP 3 which is neither large
nor pre-large in the original database but large or
pre-large in the new transactions (Cases 7 and 8), put
I in the set of Rescan_Items, which is used when
rescanning the database in STEP 7 is necessary.

STEP 7: If t+c f or the set of Rescan_Items is null, then do
nothing;
Otherwise, do the following substeps for each item I
in the set of Rescan_Items:
Substep 7-1: Rescan the original database to decide

the original count SD(I) of I.
Substep 7-2: Set the new count SU(I) of I in the

entire updated database as:
 SU(I)=SD(I)+ST(I).

Substep 7-3: If SU(I)/(d+c+t) Su, item I will
become large after database is updated,
put I in the set of Insert_Items and
Branch_Items;
Otherwise, if Su SU(I)/(d+c+t) Sl,
set SD(I) = SU(I) and keep I with SD(I)
in the pre-large table;

Substep 7-4: Otherwise, neglect I.
STEP 8: Insert the items in the Branch_Items to the end of the

Header_Table according to the descending order of
their updated counts.

STEP 9: For each original transaction with an item I existing
in the Branch_Items, if I has not been at the
corresponding branch of the FUFP tree for the
transaction, insert I at the end of the branch and set
its count as 1; Otherwise, add 1 to the count of the
node I.

STEP 10: For each new transaction with an item I existing in
the Insert_Items, if I has not been at the
corresponding branch of the FUFP tree for the new
transactions, insert I at the end of the branch and set
its count as 1; Otherwise, add 1 to the count of the
node I.

STEP 11: If t+c > f, then set d = d+t+c and set c = 0; otherwise,
set c = t+c.

In STEP 9, a corresponding branch is the branch generated
from the large items in a transaction and corresponding to the
order of items appearing in the Header_Table. After STEP 11,
the final updated FUFP tree by using the Pre-FUFP
maintenance algorithm is constructed. The new transactions
can then be integrated into the original database. Based on the
FUFP tree, the desired association rules can then be found by
the FP-Growth mining approach as proposed in [7].

IV. AN EXAMPLE

In this section, an example is given to illustrate the
proposed Pre-FUFP algorithm for maintaining an FUFP tree
when new transactions are inserted. Table 1 shows a database
to be used in the example. It contains 10 transactions and 9
items, denoted a to i .

TABLE 1
THE ORIGINAL DATABASE IN THE EXMAPLE

a, b, g, h10
a, b, f9

b, c, d, f, g8
a, b, h, i7

a, c, d, e, g, h6
a, b, f, i5
a, b, f, h4

b, d, e, f, g3
a, b, f, g2

a, b, c, d, e, g, h1
ItemsTransaction No.

Old database

Assume the lower support threshold Sl is set at 30% and the
upper one Su at 50%. For the given database, the large
1-itemsets are a, b, f, g and h, from which the Header_Table
can be constructed. The FUFP tree is then formed from the
database and the Header_Table, with the results shown in
Figure 3. Besides, the sets of pre-large items for the given
database are shown in Table 2.

Header Table

Item Frequency Head

b 9

a 8

f 6

g 6

h 5

{}

b:9 a:1

g:1

h:1

f:2

g:2

a:7

g:2 f:4 h:1

h:1g:1h:2

Null

Null

Null

Null Null

Null

 Fig. 3. The Header_Table and the FUFP tree constructed

TABLE 2
THE PRE_LARGE ITEMSET FOR THE ORIGINAL DATABASE

3e
4d
3c

Count Items
Pre-large itemset in the original database

Assume the three new transactions shown in Table 3
appear.

600

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

TABLE 3
THE THREE NEW TRANSACTIONS

a, c, d, h, i3
a, b, d, i2

a, b, d, f, i1
ItemsTransaction No.

The proposed Pre-FUFP maintenance algorithm proceeds
as follows. The variable c is initially set at 0.
STEP 1: The safety number f for new transactions is

calculated as:

4
5.01

10)3.05.0(
1

)(
u

lu

S
dSSf

STEP 2: The three new transactions are first scanned to get
the items and their counts.

STEP 3: All the items a to i in new transactions are divided
into three parts, {a}{b}{f}{g}{h}, {c}{d}{e}, and
{i} according to whether they are large (appearing in
the Header_Table), pre-large (appearing in the
pre-large table) or small in the original database.
Results are shown in Table 4, where the counts are
only from the new transactions.

TABLE 4
THE THREE NEW TRANSACTIONS

1h
0g

0e1f
3d2b

3i1c3a
CountItemsCountItemsCountItems

Small items in
the original

database

Pre-large items
in the original

database

Large items
in the original

database

STEP 4: The items in the new transactions which are large in
the original database are first processed. In this
example, items a, b, f, g, and h (the first partition)
satisfy the condition and are processed. The support
ratios of items a, b and f are larger than 0.5. Take
item a as an example to illustrate the substeps. The
count of item a in the Header_Table is 8, and the
count in the new transactions is 3. The new count of
item a is thus 8+3 (= 11). The new support ratio of
item a is 11/(10+0+3) 0.5. Item a is thus still a large
item after the database is updated. The frequency
value of item a in the Header_Table is thus changed
as 11, and item a is then put into the set of
Insert_Items. Items b and f are similarly processed.
Next, both the support ratios of items g and h are
smaller than 0.5 but larger than 0.3. Items h and g
will become pre-large after the database is updated.
Take item h as an example. Item h is removed from
the Header_Table and its corresponding FUFP tree,
and put in the pre-large table with its updated count
as 6. In this case, the FUFP tree needs to be

processed as well. The results after item h is
processed are shown in Figure 4.

STEP 5: The items in the new transactions which are
pre-large in the original database are processed. In
this example, items c, d and e satisfy the condition
and are processed. Take item d first as an example to
illustrate the supsteps. The count of item d in the
pre-large itemset is 4, and its count in the new
transactions is 3. The new count of item d is thus 4+3
(= 7). The new support ratio of item d is 7/(10+0+3)
0.5. Item d will thus become a large item after the
database is updated. d is then put into the set of
Insert_Items and Branch_Items. The new support
ratio of item c is 0.4, which is between the lower and
the upper thresholds. Item c is then put into the
pre-large table and its count is updated as 4. At last,
the new support ratio of item e is small than 0.3. Item
e is thus removed from the pre-large table. After
STEP 5, we can get Insert_Items = {a, b, f, d} and
Branch_ Items = {d}.

Header Table

Item Frequency Head

b 11

a 11

f 7

{}

b:9 a:1

f:2a:7

f:4 Null

Null

Null
 Fig.4. The Header_Table and the FUFP tree after STEP 4

STEP 6: Since the item i is neither large nor pre-large in the
original database but large in the new transactions, it
is put into the set of Rescan_Items, which is used
when rescanning in STEP 7 is required. After STEP
6, Rescan_Items = {i}.

STEP 7: Since t+c = 3+0 < f (= 4), rescanning the original
database is unnecessary. Nothing is done in this step.

STEP 8: The items in the set of Branch_Items are sorted in
descending order of their updated counts and then
inserted into the end of the Header_Table. In this
example, the set of Branch_Items contains only d,
and no sorting is needed. Item d is thus inserted into
the end of the Header_Table.

STEP 9: The FUFP tree is updated according to the original
transactions with items existing in the Branch_Items.
In this example, Branch_Items = {d}. The
corresponding branches for the original transactions
with d are show in Table 5.

TABLE 5
THE CORRESPONDING BRANCHES FOR THE ORIGINAL

TRANSACTIONS WITH ITEM d

b, f, db, c, d, f, g8
a, da, c, d, e, g, h6

b, f, db, d, e, f, g3
b, a, da, b, c, d, e, g, h1

Corresponding branchesItemsTransaction No.

601

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

The first branch is then processed. This branch shares the
same prefix (b, a) as the current FUFP-tree. A new node
(d:1) is thus created and linked to (a:7) as its child. The
same process is then executed for the other three
corresponding branches. The final results are shown in
Figure 5.

Header Table

Item Frequency Head

b 11

a 11

f 7

d 7

{}

b:9 a:1

f:2a:7

f:4

Null

Null

Null

d:1

Null

d:2

d:1

Fig. 5. The Header_Table and the FUFP tree after STEP 9

STEP 10: The FUFP tree is updated according to the new
transactions with items existing in the Insert_Items.
In this example, Insert_Items = {a, b, f, d}. The
corresponding branches for the new transactions
with any of these items are shown in Table 6.

TABLE 6
THE CORRESPONDING BRANCHES FOR THE NEW TRANSACTIONS

a, da, c, d, h, i3
b, a, da, b, d, i2

b, a, f, da, b, d, f, i1
Corresponding branchesItemsTransaction No.

The first branch shares the same prefix (b, a, f) as the
current FUFP tree. The counts for items b, a, and f are then
increased by 1 since they have not yet counted in the
construction of the previous FUFP tree. The same process is
then executed for the other two branches. The final results are
shown in Figure 6.

Header Table

Item Frequency Head

b 11

a 11

f 7

d 7

{}

b:11 a:2

f:2a:9

f:5

d:1

d:2

d:2

Null

Null

Null

d:2

Fig. 6. The Final FUFP tree after all the new transactions are processed

STEP 11: Since t (= 3) + c (= 0) < f (= 4), set c = t+c = 3+0 =3.
After STEP 11, the FUFP tree are updated. Note that the

final value of c is 3 in this example and f - c = 1. This means
that one more new transaction can be added without
rescanning the original database for Case 7. Based on the
FUFP tree shown in Figure 5, the desired large itemsets can

then be found by the FP-Growth mining approach as
proposed in [7].

V. EXPERIMENTAL RESULTS

Experiments were made to compare the performance of
the batch FP-tree construction algorithm, the FUFP-tree
maintenance algorithm and the Pre-FUFP maintenance
algorithm. When new transactions came, the batch FP-tree
construction algorithm integrated new transactions into the
original database and constructed a new FP-tree from the
updated database. The process was executed whenever new
transactions came. The incremental FUFP-tree maintenance
algorithm and the Pre-FUFP maintenance algorithm
processed new transactions incrementally in the way
mentioned in Sections 2.A and 3.

The experiments were performed in C++ on an Intel x86
PC with a 3.0G Hz processor and 512 MB main memory and
running the Microsoft Windows XP operating system. A
real dataset called BMS-POS [16] was used in the
experiments. This dataset was also used in the KDDCUP
2000 competition. The BMS-POS dataset contained several
years of point-of-sale data from a large electronics retailer.
Each transaction in this dataset consisted of all the product
categories purchased by a customer at one time. There were
515,597 transactions with 1657 items in the dataset. The
maximal length of a transaction was 164 and the average
length of the transactions was 6.5.

The first 500,000 transactions were extracted from the
BMS-POS database to construct an initial FP-tree. The
value of the minimum threshold was set at 1% to 5% for the
three algorithms, with 1% increment each time. The next
2,000 transactions were then used in incremental mining.
For the Pre-FUFP maintenance algorithm, the upper
minimum support threshold was set at 1% to 5% (1%
increment each time) and the lower minimum support
threshold was set at 0.5% to 2.5% (0.5% increment each
time). The execution times and the numbers of nodes
obtained from the three algorithms were compared. Figure 7
shows the execution times of the three algorithms for
different threshold values.

Fig. 7. The comparison of the execution times for different threshold values

It can be observed from Figure 7 that the proposed
Pre-FUFP maintenance algorithm ran faster than the other
two. The comparison of the numbers of nodes for the three
algorithms is given in Figure 8. It can be seen that the three

602

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

algorithms generated nearly the same sizes of trees. The
effectiveness of the Pre-FUFP maintenance algorithm is
thus acceptable.

VI. CONCLUSION

In this paper, we have proposed the Pre-FUFP maintenance
algorithm for incremental mining based on the concept of
pre-large itemsets. It first partitions items of new transactions
into three parts according to whether they are large, pre-large
or small in the original database. Each part is then processed
in its own way. The Header_Table and the FUFP-tree are
correspondingly updated whenever necessary. Experimental
results also show that the proposed Pre-FUFP maintenance
algorithm runs faster than the batch FP-tree and the
FUFP-tree construction algorithm for handling new
transactions and generates nearly the same tree structure as
them.

Fig.8. The comparison of the numbers of nodes for different threshold values

REFERENCES

[1] R. Agrawal, T. Imielinksi and A. Swami, “Mining association rules
between sets of items in large database,“ The ACM SIGMOD
Conference, pp. 207-216, Washington DC, USA, 1993

[2] R. Agrawal, T. Imielinksi and A. Swami, “Database mining: a
performance perspective,” IEEE Transactions on Knowledge and Data
Engineering, pp. 914-925, 1993.

[3] R. Agrawal and R. Srikant, “Fast algorithm for mining association
rules,” The International Conference on Very Large Data Bases, pp.
487-499, 1994.

[4] D.W. Cheung, J. Han, V.T. Ng and C.Y. Wong, “Maintenance of
discovered association rules in large databases: An incremental
updating approach,” The Twelfth IEEE International Conference on
Data Engineering, pp. 106-114, 1996.

[5] D.W. Cheung, S.D. Lee and B. Kao, “A general incremental technique
for maintaining discovered association rules,” In Proceedings of
Database Systems for Advanced Applications, pp. 185-194, 1997.

[6] C. I. Ezeife, “Mining Incremental association rules with generalized
FP-tree,” Proceedings of the 15th Conference of the Canadian Society
for Computational Studies of Intelligence on Advances in Artificial
Intelligence, pp. 147-160, 2002.

[7] J. Han, J. Pei and Y. Yin, “Mining frequent patterns without candidate
generation,” The 2000 ACM SIGMOD International Conference on
Management of Data, pp. 1-12, 2000.

[8] T. P. Hong, C. Y. Wang and Y. H. Tao, "A new incremental data mining
algorithm using pre-large itemsets," Intelligent Data Analysis, Vol. 5,
No. 2, 2001, pp. 111-129.

[9] T. P. Hong, J. W. Lin and Y. L. Wu, “A fast updated frequent pattern
tree,” The IEEE International Conference on Systems, Man, and
Cybernetics, pp.2167-2172, 2006.

[10] J. L. Koh and S. F. Shieh, “An efficient approach for maintaining
association rules based on adjusting FP-tree structures,” The Ninth
International Conference on Database Systems for Advanced
Applications, pp. 417-424, 2004.

[11] M. Y. Lin and S. Y. Lee, “Incremental update on sequential patterns in
large databases,” The Tenth IEEE International Conference on Tools
with Artificial Intelligence, pp. 24-31, 1998.

[12] Y. Qiu, Y. J. Lan and Q. S. Xie, “An improved algorithm of mining
from FP- tree,” Proceedings of the Third International Conference on
Machine Learning and Cybernetics, pp. 26-29, 2004.

[13] N. L. Sarda and N. V. Srinivas, “An adaptive algorithm for incremental
mining of association rules,” The Ninth International Workshop on
Database and Expert Systems, pp. 240-245, 1998.

[14] O. R. Zaiane and E. H. Mohammed, “COFI-tree mining: A new
approach to pattern growth with reduced candidacy generation,” IEEE
International Conference on Data Mining, 2003.

[15] S. Zhang, “Aggregation and maintenance for database mining,”
Intelligent Data Analysis, pp. 475-490, 1999.

[16] Z. Zheng, R. Kohavi and L. Mason, “Real world performance of
association rule algorithms,” The International Conference on
Knowledge Discovery and Data Mining, pp. 401-406, 2001.

603

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

