
Abstract—In the past, we proposed a Fast Updated FP-tree 
(FUFP-tree) structure to efficiently handle new transactions and 
to make the tree update process become easier. In this paper, we 
attempt to modify the FUFP-tree construction based on the 
concept of pre-large itemsets. Pre-large itemsets are defined by 
a lower support threshold and an upper support threshold. The 
proposed approach can achieve a good execution time for tree 
construction especially when each time a small number of 
transactions are inserted. Experimental results also show that 
the proposed Pre-FUFP maintenance algorithm has a good 
performance for incrementally handling new transactions. 

I. INTRODUCTION

Many algorithms for mining association rules from 
transactions have been proposed, most of which were based 
on the Apriori algorithm [1][2][3], which generated and 
tested candidate itemsets level-by–level. This may cause 
iterative database scans and high computational costs. Han et
al. thus proposed the Frequent-Pattern-tree (FP-tree) 
structure for efficiently mining association rules without 
generation of candidate itemsets [7]. The FP-tree [7] was used 
to compress a database into a tree structure which stored only 
large items. Both the Apriori and the FP-tree mining 
approaches belong to batch mining. In real-world 
applications, new transactions are usually inserted into 
databases incrementally. In this case, the originally desired 
large itemsets may become invalid, or new large itemsets may 
appear in the resulting updated databases [4][5][11][13][15]. 
Designing an efficient algorithm that can maintain 
association rules as a database grows is thus critically 
important. 

One noticeable incremental mining algorithm was the 
Fast-Updated Algorithm (called FUP), which was proposed 
by Cheung et al. [4] for avoiding the shortcomings mentioned 
above. Although the FUP algorithm could indeed improve 
mining performance for incrementally growing databases, 
original databases still needed to be scanned when necessary. 
A pre-large-itemset algorithm was thus proposed to further 
reduce the need for rescanning original database based on two 
support thresholds [8]. The algorithm did not need to rescan 
the original database until a number of new transactions have 
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been inserted. Since rescanning the database spent much 
computation time, the maintenance cost could thus be 
reduced in the pre-large-itemset algorithm. 

In the past, Hong et al. [9] modified the FP-tree structure 
and designed the fast updated frequent pattern trees 
(FUFP-trees) to efficiently handle newly inserted transactions 
based on the FUP concept. The FUFP-tree structure was 
similar to the FP-tree structure except that the links between 
parent nodes and their child nodes were bi-directional. 
Besides, the counts of the sorted frequent items were also 
kept in the Header_Table of the FP-tree algorithm.  

In this paper, we attempt to further modify the FUFP-tree 
algorithm for incremental mining based on the pre-large 
concept [8]. Based on two support thresholds, the proposed 
approach can effectively handle cases in which itemsets are 
small in an original database but large in newly inserted 
transactions. Experimental results also show that the 
proposed maintenance algorithm has a good performance for 
incrementally handling new transactions. 

II. REVIEW OF RELATED WORKS

A. The FUFP-tree algorithm 
The FUFP-tree construction algorithm is the same as the 

FP-tree algorithm [7] except that the links between parent 
nodes and their child nodes are bi-directional. Bi-directional 
linking will help fasten the process of item deletion in the 
maintenance process. Besides, the counts of the sorted 
frequent items are also kept in the Header_Table. 

An FUFP tree must be built in advance from the original 
database before new transactions come. When new 
transactions are added, the FUFP-tree maintenance algorithm 
will process them to maintain the FUFP tree. It first partitions 
items into four parts according to whether they are large or 
small in the original database and in the new transactions. 
Each part is then processed in its own way. The 
Header_Table and the FUFP-tree are correspondingly 
updated whenever necessary. 

Several other algorithms based on the FP-tree structure 
have been proposed. For example, Qiu et al. proposed the 
QFP-growth mining approach to mine association rules [12]. 
Mohammad proposed the COFI-tree structure to replace the 
conditional FP-tree [14]. Ezeife constructed a generalized 
FP-tree, which stored all the large and non-large items, for 
incremental mining without rescanning databases [6]. Koh et
al. adjusted FP trees also based on two support thresholds 
[10], but with a more complex adjusting procedure and 
spending more computation time than the one proposed in 
this paper. Some related researches are still in progress. 
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B. The pre-large-itemset algorithm 
A pre-large itemset is not truly large, but may be large with 

a high probability in the future. Two support thresholds, a 
lower support threshold and an upper support threshold, are 
used to realize this concept. The upper support threshold is 
the same as that used in the conventional mining algorithms. 
On the other hand, the lower support threshold defines the 
lowest support ratio for an itemset to be treated as pre-large. 

Considering an original database and transactions which 
are newly inserted by the two support thresholds, itemsets 
may fall into one of the following nine cases illustrated in 
Figure 1. 

Cases 1, 5, 6, 8 and 9 will not affect the final association 
rules according to the weighted average of the counts. Cases 2 
and 3 may remove existing association rules, and cases 4 and 
7 may add new association rules. If we retain all large and 
pre-large itemsets with their counts after each pass, then cases 
2, 3 and case 4 can be handled easily. Also, in the 
maintenance phase, the ratio of new transactions to old 
transactions is usually very small. This is more apparent when 
the database is growing larger. It has been formally shown 
that an itemset in case 7 cannot possibly be large for the entire 
updated database as long as the number of transactions is 
smaller than the number f shown below [8]: 

u

lu

S
dSSf
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where f is the safety number of the new transactions, Su is the 
upper threshold, Sl is the lower threshold, and d is the number 
of original transactions. 

Fig.1. Nine cases arising from adding new transactions to existing databases 

III. THE PROPOSED MAINTENANCE ALGORITHM

An FUFP tree must be built in advance from the initially 
original database before new transactions come. Its initial 
construction is similar to that of an FP tree. The database is 
first scanned to find the items with their supports larger than a 
predefined minimum support. These items are called large 
items. Next, the large items are sorted in descending 
frequency. At last, the database is scanned again to construct 
the FUFP tree according to the sorted order of large items. 
The construction process is executed tuple by tuple, from the 
first transaction to the last one. After all transactions are 
processed, the FUFP tree is completely constructed. Besides, 
a variable c is used to record the number of new transactions 

since the last re-scan of the original database with d 
transactions. The details of the proposed algorithm are 
described below. 

The Pre-FUFP maintenance algorithm: 
INPUT: An old database consisting of (d+c) transactions, its 

corresponding Header_Table storing the frequent 
items initially in descending order, its 
corresponding FUFP tree, a lower support threshold 
Sl, an upper support threshold Su, its corresponding 
pre-large table storing the set of pre-large items 
from the original database, and a set of t new 
transactions.

OUTPUT: A new FUFP tree for the updated database by 
using the Pre-FUFP maintenance algorithm. 

STEP 1: Calculate the safety number f of new transactions 
according to the following formula [8]: 
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STEP 2: Scan the new transactions to get all the items and 
their counts.  

STEP 3: Divide the items in the new transactions into three 
parts according to whether they are large, pre-large 
or small in the original database. 

STEP 4: For each item I from STEP 3, which is large in the 
original database (appearing in the Header_Table), 
do the following substeps (Cases 1, 2 and 3): 
Substep 4-1: Set the new count SU(I) of I in the 

entire updated database as:  
                      SU(I)=SD(I)+ST(I),

where SD(I) is the count of I in the 
Header_Table (original database) and 
ST(I) is the count of I in the new 
transactions.

Substep 4-2: If SU(I)/(d+c+t) Su, update the count 
of I in the Header_Table as SU(I), and 
put I in the set of Insert_Items, which 
will be further processed in STEP 10; 
Otherwise, if Su SU(I)/(d+c+t) Sl,
remove I from the Header_Table, 
connect each parent node of I directly 
to its child node in the corresponding 
FUFP tree, set SD(I) = SU(I), and keep 
I with SD(I) in the pre-large table; 
Otherwise, item I is small after the 
database is updated; remove I from the 
Header_Table and connect each 
parent node of I directly to its child 
node in the corresponding FUFP tree. 

STEP 5: For each item I from STEP 3 which is pre-large in 
the original database, do the following substeps 
(Cases 4, 5 and 6): 
Substep 5-1: Set the new count SU(I) of I in the 

entire updated database as:  
                    SU(I)=SD(I)+ST(I).

Substep 5-2: If SU(I)/(d+c+t) Su, item I will be 
large after the database is updated; put 
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I in the set of Insert_Items and 
Branch_Items, which will be further 
processed in STEP 8;  
Otherwise, if Su SU(I)/(d+c+t) Sl,
set SD(I) = SU(I) and keep I with the 
new SD(I) in the pre-large table; 
Otherwise, remove item I from the 
pre-large table. 

STEP 6: For each item I from STEP 3 which is neither large 
nor pre-large in the original database but large or 
pre-large in the new transactions (Cases 7 and 8), put 
I in the set of Rescan_Items, which is used when 
rescanning the database in STEP 7 is necessary. 

STEP 7: If t+c f or the set of Rescan_Items is null, then do 
nothing; 
Otherwise, do the following substeps for each item I
in the set of Rescan_Items:
Substep 7-1: Rescan the original database to decide 

the original count SD(I) of I.
Substep 7-2: Set the new count SU(I) of I in the 

entire updated database as: 
              SU(I)=SD(I)+ST(I).

Substep 7-3: If SU(I)/(d+c+t) Su, item I will 
become large after database is updated, 
put I in the set of Insert_Items and 
Branch_Items;
Otherwise, if Su SU(I)/(d+c+t) Sl,
set SD(I) = SU(I) and keep I with SD(I)
in the pre-large table; 

Substep 7-4: Otherwise, neglect I.
STEP 8: Insert the items in the Branch_Items to the end of the 

Header_Table according to the descending order of 
their updated counts.  

STEP 9: For each original transaction with an item I existing 
in the Branch_Items, if I has not been at the 
corresponding branch of the FUFP tree for the 
transaction, insert I at the end of the branch and set 
its count as 1; Otherwise, add 1 to the count of the 
node I.

STEP 10: For each new transaction with an item I existing in 
the Insert_Items, if I has not been at the 
corresponding branch of the FUFP tree for the new 
transactions, insert I at the end of the branch and set 
its count as 1; Otherwise, add 1 to the count of the 
node I.

STEP 11: If t+c > f, then set d = d+t+c and set c = 0; otherwise, 
set c = t+c.

In STEP 9, a corresponding branch is the branch generated 
from the large items in a transaction and corresponding to the 
order of items appearing in the Header_Table. After STEP 11, 
the final updated FUFP tree by using the Pre-FUFP 
maintenance algorithm is constructed. The new transactions 
can then be integrated into the original database. Based on the 
FUFP tree, the desired association rules can then be found by 
the FP-Growth mining approach as proposed in [7]. 

IV. AN EXAMPLE

In this section, an example is given to illustrate the 
proposed Pre-FUFP algorithm for maintaining an FUFP tree 
when new transactions are inserted. Table 1 shows a database 
to be used in the example. It contains 10 transactions and 9 
items, denoted a to i . 

TABLE 1
THE ORIGINAL DATABASE IN THE EXMAPLE

a, b, g, h10
a, b, f9

b, c, d, f, g8
a, b, h, i7

a, c, d, e, g, h6
a, b, f, i5
a, b, f, h4

b, d, e, f, g3
a, b, f, g2

a, b, c, d, e, g, h1
ItemsTransaction No.

Old database

Assume the lower support threshold Sl is set at 30% and the 
upper one Su at 50%. For the given database, the large 
1-itemsets are a, b, f, g and h, from which the Header_Table 
can be constructed. The FUFP tree is then formed from the 
database and the Header_Table, with the results shown in 
Figure 3. Besides, the sets of pre-large items for the given 
database are shown in Table 2. 

Header Table

Item Frequency Head

b         9

a         8

f          6                   

g         6      

h         5

{}

b:9 a:1

g:1

h:1

f:2

g:2

a:7

g:2 f:4 h:1

h:1g:1h:2

Null

Null

Null

Null Null

Null

 Fig. 3. The Header_Table and the FUFP tree constructed 

TABLE 2
THE PRE_LARGE ITEMSET FOR THE ORIGINAL DATABASE

3e
4d
3c

Count Items 
Pre-large itemset in the original database

Assume the three new transactions shown in Table 3 
appear.
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TABLE 3
THE THREE NEW TRANSACTIONS

a, c, d, h, i3
a, b, d, i2

a, b, d, f, i1
ItemsTransaction No.

The proposed Pre-FUFP maintenance algorithm proceeds 
as follows. The variable c is initially set at 0. 
STEP 1: The safety number f for new transactions is 

calculated as: 

4
5.01
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STEP 2: The three new transactions are first scanned to get 
the items and their counts.  

STEP 3: All the items a to i in new transactions are divided 
into three parts, {a}{b}{f}{g}{h}, {c}{d}{e}, and 
{i} according to whether they are large (appearing in 
the Header_Table), pre-large (appearing in the 
pre-large table) or small in the original database. 
Results are shown in Table 4, where the counts are 
only from the new transactions.  

TABLE 4
THE THREE NEW TRANSACTIONS

1h
0g

0e1f
3d2b

3i1c3a
CountItemsCountItemsCountItems

Small items in 
the original 

database

Pre-large items 
in the original 

database

Large items 
in the original 

database

STEP 4: The items in the new transactions which are large in 
the original database are first processed. In this 
example, items a, b, f, g, and h (the first partition) 
satisfy the condition and are processed. The support 
ratios of items a, b and f are larger than 0.5. Take 
item a as an example to illustrate the substeps. The 
count of item a in the Header_Table is 8, and the 
count in the new transactions is 3. The new count of 
item a is thus 8+3 (= 11). The new support ratio of 
item a is 11/(10+0+3) 0.5. Item a is thus still a large 
item after the database is updated. The frequency 
value of item a in the Header_Table is thus changed 
as 11, and item a is then put into the set of 
Insert_Items. Items b and f are similarly processed. 
Next, both the support ratios of items g and h are 
smaller than 0.5 but larger than 0.3. Items h and g
will become pre-large after the database is updated. 
Take item h as an example. Item h is removed from 
the Header_Table and its corresponding FUFP tree, 
and put in the pre-large table with its updated count 
as 6. In this case, the FUFP tree needs to be 

processed as well. The results after item h is 
processed are shown in Figure 4. 

STEP 5: The items in the new transactions which are 
pre-large in the original database are processed. In 
this example, items c, d and e satisfy the condition 
and are processed. Take item d first as an example to 
illustrate the supsteps. The count of item d in the 
pre-large itemset is 4, and its count in the new 
transactions is 3. The new count of item d is thus 4+3 
(= 7). The new support ratio of item d is 7/(10+0+3) 
0.5. Item d will thus become a large item after the 
database is updated. d is then put into the set of 
Insert_Items and Branch_Items. The new support 
ratio of item c is 0.4, which is between the lower and 
the upper thresholds. Item c is then put into the 
pre-large table and its count is updated as 4. At last, 
the new support ratio of item e is small than 0.3. Item 
e is thus removed from the pre-large table. After 
STEP 5, we can get Insert_Items = {a, b, f, d} and 
Branch_ Items = {d}.

Header Table

Item Frequency Head 

b         11

a         11

f         7      

{}

b:9 a:1

f:2a:7

f:4 Null

Null

Null
           Fig.4. The Header_Table and the FUFP tree after STEP 4 

STEP 6: Since the item i is neither large nor pre-large in the 
original database but large in the new transactions, it 
is put into the set of Rescan_Items, which is used 
when rescanning in STEP 7 is required. After STEP 
6, Rescan_Items = {i}.

STEP 7: Since t+c = 3+0 < f (= 4), rescanning the original 
database is unnecessary. Nothing is done in this step. 

STEP 8: The items in the set of Branch_Items are sorted in 
descending order of their updated counts and then 
inserted into the end of the Header_Table. In this 
example, the set of Branch_Items contains only d,
and no sorting is needed. Item d is thus inserted into 
the end of the Header_Table. 

STEP 9: The FUFP tree is updated according to the original 
transactions with items existing in the Branch_Items.
In this example, Branch_Items = {d}. The 
corresponding branches for the original transactions 
with d are show in Table 5. 

TABLE 5
THE CORRESPONDING BRANCHES FOR THE ORIGINAL

TRANSACTIONS WITH ITEM d

b, f, db, c, d, f, g8
a, da, c, d, e, g, h6

b, f, db, d, e, f, g3
b, a, da, b, c, d, e, g, h1

Corresponding branchesItemsTransaction No.
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The first branch is then processed. This branch shares the 
same prefix (b, a) as the current FUFP-tree. A new node 
(d:1) is thus created and linked to (a:7) as its child. The 
same process is then executed for the other three 
corresponding branches. The final results are shown in 
Figure 5. 

Header Table

Item Frequency Head 

b         11

a         11

f         7  

d         7    

{}

b:9 a:1

f:2a:7

f:4

Null

Null

Null

d:1

Null

d:2

d:1

Fig. 5. The Header_Table and the FUFP tree after STEP 9 

STEP 10: The FUFP tree is updated according to the new 
transactions with items existing in the Insert_Items.
In this example, Insert_Items = {a, b, f, d}. The 
corresponding branches for the new transactions 
with any of these items are shown in Table 6. 

TABLE 6
THE CORRESPONDING BRANCHES FOR THE NEW TRANSACTIONS

a, da, c, d, h, i3
b, a, da, b, d, i2

b, a, f, da, b, d, f, i1
Corresponding branchesItemsTransaction No.

The first branch shares the same prefix (b, a, f) as the 
current FUFP tree. The counts for items b, a, and f are then 
increased by 1 since they have not yet counted in the 
construction of the previous FUFP tree. The same process is 
then executed for the other two branches. The final results are 
shown in Figure 6. 

Header Table

Item Frequency Head 

b         11

a         11

f          7 

d         7     

{}

b:11 a:2

f:2a:9

f:5

d:1

d:2

d:2

Null

Null

Null

d:2

Fig. 6. The Final FUFP tree after all the new transactions are processed 

STEP 11: Since t (= 3) + c (= 0) < f (= 4), set c = t+c = 3+0 =3. 
After STEP 11, the FUFP tree are updated. Note that the 

final value of c is 3 in this example and f - c = 1. This means 
that one more new transaction can be added without 
rescanning the original database for Case 7. Based on the 
FUFP tree shown in Figure 5, the desired large itemsets can 

then be found by the FP-Growth mining approach as 
proposed in [7]. 

V. EXPERIMENTAL RESULTS

Experiments were made to compare the performance of 
the batch FP-tree construction algorithm, the FUFP-tree 
maintenance algorithm and the Pre-FUFP maintenance 
algorithm. When new transactions came, the batch FP-tree 
construction algorithm integrated new transactions into the 
original database and constructed a new FP-tree from the 
updated database. The process was executed whenever new 
transactions came. The incremental FUFP-tree maintenance 
algorithm and the Pre-FUFP maintenance algorithm 
processed new transactions incrementally in the way 
mentioned in Sections 2.A and 3. 

The experiments were performed in C++ on an Intel x86 
PC with a 3.0G Hz processor and 512 MB main memory and 
running the Microsoft Windows XP operating system. A 
real dataset called BMS-POS [16] was used in the 
experiments. This dataset was also used in the KDDCUP 
2000 competition. The BMS-POS dataset contained several 
years of point-of-sale data from a large electronics retailer. 
Each transaction in this dataset consisted of all the product 
categories purchased by a customer at one time. There were 
515,597 transactions with 1657 items in the dataset. The 
maximal length of a transaction was 164 and the average 
length of the transactions was 6.5.  

The first 500,000 transactions were extracted from the 
BMS-POS database to construct an initial FP-tree. The 
value of the minimum threshold was set at 1% to 5% for the 
three algorithms, with 1% increment each time. The next 
2,000 transactions were then used in incremental mining. 
For the Pre-FUFP maintenance algorithm, the upper 
minimum support threshold was set at 1% to 5% (1% 
increment each time) and the lower minimum support 
threshold was set at 0.5% to 2.5% (0.5% increment each 
time). The execution times and the numbers of nodes 
obtained from the three algorithms were compared. Figure 7 
shows the execution times of the three algorithms for 
different threshold values. 

Fig. 7. The comparison of the execution times for different threshold values 

It can be observed from Figure 7 that the proposed 
Pre-FUFP maintenance algorithm ran faster than the other 
two. The comparison of the numbers of nodes for the three 
algorithms is given in Figure 8. It can be seen that the three 
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algorithms generated nearly the same sizes of trees. The 
effectiveness of the Pre-FUFP maintenance algorithm is 
thus acceptable.

VI. CONCLUSION

In this paper, we have proposed the Pre-FUFP maintenance 
algorithm for incremental mining based on the concept of 
pre-large itemsets. It first partitions items of new transactions 
into three parts according to whether they are large, pre-large 
or small in the original database. Each part is then processed 
in its own way. The Header_Table and the FUFP-tree are 
correspondingly updated whenever necessary. Experimental 
results also show that the proposed Pre-FUFP maintenance 
algorithm runs faster than the batch FP-tree and the 
FUFP-tree construction algorithm for handling new 
transactions and generates nearly the same tree structure as 
them.

Fig.8. The comparison of the numbers of nodes for different threshold values 
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