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Abstract— Using historical data to forecast future trends in
time series is a key application of data mining. This paper
deals with the problem of time series forecasting using the non-
parametric Gaussian process model. The time series forecasting is
accomplished by using multiple Gaussian process models of each
step ahead predictor in accordance with the direct approach.
The separable least-squares approach is applied to train these
Gaussian process models. Hyperparameters of the covariance
function are coded into binary bit strings and candidate weighting
parameters of the mean function corresponding to each candidate
of hyperparameters are estimated by the linear least-squares
method. The genetic algorithm is utilized to determine these un-
known hyperparameters by minimizing the negative log marginal
likelihood of the training data. Simulation results are shown to
illustrate the proposed forecasting method and compared with
the iterated prediction method.

I. Introduction

One of the key applications in data mining is the use
of historical data for the forecasting of the future. This is
particularly important in cases where the data are dynamic
and there is little understanding of the underlying process
generating the data. Applications in areas such as finance, time
series forecasting is a key problem area and where knowledge
of underlying models are scarce. The focus of this paper is
to address this problem with an emerging machine learning
methodology based on the Gaussian process (GP) framework.

In recent years many approaches for multi-step ahead pre-
diction in time series analysis have been proposed by using
GP model [1]–[7]. GP model is a non-parametric model and
fits naturally into the Bayesian framework. The model was
originally utilized for the regression problem by O’Hagan [8]
and has recently received much attention for both regression
and classification problems [1], [9]. It gives us not only the
mean value but also the variance of the conditionally expected
value of the output, which is used as a measure of confidence
in the predicted output.

There are two approaches to multi-step ahead prediction
in time series. One is the direct method which makes multi-
step ahead prediction directly, and the other is the iterated
method which repeats one-step ahead prediction up to the

desired step. Girard et al [4] proposed iterated multi-step ahead
predictions with propagation of the prediction uncertainty. In
[6], [7], dynamic model identifications using GP prior model
were proposed and the estimated models were validated by
iterated multi-step ahead predictions both with and without
propagation of uncertainty. Moreover some model predictive
control designs based on iterated multi-step ahead prediction
by GP model have been presented in [10], [11]. Although the
iterated prediction method is attractive in the context of con-
trol problems such as model predictive control, unacceptable
prediction errors are gradually accumulated as the prediction
step progresses.

In this paper, we propose the direct method for time series
forecasting by using the GP framework. For each step ahead
GP prior is trained by minimizing the negative log marginal
likelihood of the training data. The time series forecasting is
directly performed by using every trained Gaussian process
model of each step ahead predictor. The GP model has fewer
parameters called hyperparameters compared to parametric
models such as neural network models and fuzzy models, but
this optimization still suffers from the local minima problem.
Therefore in this paper, the training is carried out by the
genetic algorithm (GA), which has a high potential for finding
global optima [12]. In the case when the prior mean is
assumed to be represented by a linear combination of the
input variables, the weighting parameters for prior mean and
hyperparameters of covariance functions can be estimated
separately by using the separable least-squares approach [13].
The separable least-squares method has been utilized for linear
space model identification [14], bilinear model identification
[15] and nonlinear parametrically varying model identification
[16]. In our method, the hyperparameters of covariance func-
tions are coded into binary bit strings in GA, and the weighting
parameters of the prior mean function corresponding to each
candidate hyperparameter, are estimated by the linear least-
squares method.

This paper is organized as follows. In section II, the time
series forecasting problem is formulated. In section III, the GP
prior model is reviewed. In section IV, the training method of
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the GP prior model based on separable least-squares approach
is proposed including the use of the GA. In section V, the
time series forecasting method using the direct approach is
presented. In section VI, simulation results are shown to
illustrate the effectiveness of the proposed forecasting method
and compared to the iterated prediction method. Finally con-
clusions are given in section VII.

II. Statement of the Problem

The time series data are represented by

Y1:T = {y(1), y(2), · · · , y(k), y(k + 1), · · · , y(T )}. (1)

The time series forecasting problem is to estimate

Ŷk+1:k+M = {ŷ(k + 1), ŷ(k + 2), · · · , ŷ(k + M)}, (2)

given the past data Y1:k. Each of the estimates ŷ(k + j) can
be thought of as a solution of multi-step ahead time series
prediction problem. An optimal predictor for ŷ(k + j) is given
by

ŷ(k + j) = E[y(k + j)|y(k), y(k − 1), · · · , y(1)], (3)

where E[·] is the expectation operator.
Typically, the time series data are assumed to be generated

by an underlying dynamic model such that the optimal pre-
dictor can be rewritten as

ŷ(k + j) = E[y(k + j)|x(k)] = g j(x(k)), (4)

where x(k) = [y(k), y(k − 1), · · · , y(k − L + 1)]T is the vector
consisting of the L most recent observations of the time series
and is linked to the order of the dynamic system.

The problem of time series forecasting then requires the
construction of multiple time step ahead predictors g j(x(k))
for which a GP framework is adopted here.

III. Gaussian Process PriorModel

A Gaussian Process (GP) is a Gaussian random function and
is completely described by its mean function and covariance
function. We can regard it as a collection of random variables
which has joint multivariable Gaussian distribution, i.e. for any
N, we have

f (x1), f (x2), · · · , f (xN) ∼ N(m(X),Σ), (5)

where xi = x(i + L), X = [x1, x2, · · · , xN], m(X) is the mean
function and Σ is the covariance matrix. The mean function
m(X) is usually represented by a linear combination of the
input, i.e.

m(X) = X̃θl (6)

where

X̃ = [ XT
... e ]

e = [1, 1, · · · , 1]T,
(7)

and θl = [θl0, θl1, · · · , θlL]T is the unknown weighting parameter
vector.
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Fig. 1. The proposed multi-step ahead predictor based time series forecasting
scheme

The covariance Σpq = Cov( f (xp), f (xq)) = C(xp, xq) is an
element of covariance matrix Σ which is a function of x p and
xq. Under the assumption that the process is stationary and
smooth, the following Gaussian kernel is often utilized for
Σpq:

Σpq = C(xp, xq) = σ2
y exp

(
−||xp − xq||2

2�2

)
, (8)

where || · || denotes the Euclidean norm.
In the presence of zero mean Gaussian white noise of

variance σ2
n, we have

y1, y2, · · · , yN ∼ N(m(X), K), (9)

where yi = y(i + L + j) ( j = 1, 2, · · · ,M), and K = Σ + σ2
n I (I:

N × N identity matrix).
θc = [σy, �, σn]T contains the hyperparameters. The overall

variance of the random function can be controlled by σ y and
the characteristic length-scale of the process can be changed
by �.

IV. Training of Gaussian Process PriorModel

To perform time series forecasting, 1 to M step ahead
prediction models are needed for the direct approach (see
Fig.1). The accuracy of prediction depends on the unknown
parameter vector θ = [θT

l , θ
T
c ]T and therefore θ has to be

optimized. In this paper, we propose a new training technique
using genetic algorithm and linear least-squares method based
on the idea of separable least-squares [13]. This training is
carried out by minimizing the negative log marginal likelihood
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Fig. 2. Coding

of the training data:

J = − log p(y|X, θ)
=

1
2

log |K| + 1
2

(y − m(X))TK−1(y − m(X))

+
N
2

log(2π)

=
1
2

log |K| + 1
2

(y − X̃θl)TK−1(y − X̃θl)

+
N
2

log(2π),

(10)

where y = [y1, y2, · · · , yN]T. Although this problem is a nonlin-
ear optimization one, we can separate the linear optimization
part and the nonlinear optimization part. The partial derivative
of (10) with respect to the weighting parameter vector θ l of
the mean function is as follows:

∂J
∂θl
= −X̃TK−1 y + X̃T K−1X̃θl. (11)

Note that if the hyperparameter θc of the covariance function
is given, then the weighting parameter θ l can be estimated by
linear least-squares method from (11),

θl = (X̃TK−1 X̃)−1X̃T K−1y. (12)

However even if the weighting parameter vector θ l is known,
the optimization with respect to hyperparameter vector θ c is a
complicated nonlinear problem and might suffer from the local
minima problem. Therefore only the hyperparameter vector θ c

of the covariance is coded into binary bit strings as shown in
Fig.2 and searched by the GA which has a high potential for
global optimizations [12].
σy is decoded logarithmically as follows:

σy = 10r

r =
log10 σy,max − log10 σy,min

2L1 − 1
R + log10 σy,min,

(13)

where R is the decimal value of the binary representation of
the first block of the string S and [σy,min, σy,max] is the search
range of σy. � and σn are also decoded logarithmically in the
same manner.

The proposed training algorithm is as follows:
step 1: Initialization for training

Set j = 1 and let the training input data be X =

[x1, x2, · · · , xN].
step 2: Preparation of training output data

Let the training output data be y = [y1, y2, · · · , yN]T, where
yi = y(i + L + j).

step 3: Initialization for GA
Generate an initial population of Q binary bit strings for θ c

randomly.
step 4: Decoding

Decode Q strings into real values θ̂c,i (i = 1, 2, · · · ,Q) by
above mentioned decoding method.
step 5: Construction of covariance matrix

Construct Q candidates of the covariance matrix K i using
θ̂c,i (i = 1, 2, · · · ,Q).
step 6: Estimation of θl

Estimate Q candidates of θ̂l,i corresponding to θ̂c,i (i =
1, 2, · · · ,Q) from (12)
step 7: Fitness value calculation

Calculate the negative log marginal likelihood of the training
data:

Ji = − log pi(y|X, θ̂i)

=
1
2

log |Ki| + 1
2

(y − X̃θ̂l,i)TK−1
i (y − X̃θ̂l,i)

+
N
2

log(2π) (i = 1, 2, · · · ,Q)

(14)

and the fitness values Fi = D− Ji using θ̂i = [θ̂T
l,i, θ̂

T
c,i]

T, where
D is a positive constant value.
step 8: Reproduction

Reproduce each of individual strings with the probability of
Fi/
∑Q

j=1 F j.
step 9: Crossover

Pick up two strings randomly and decide whether or not
to cross them over according to the crossover probability P c.
Exchange strings at a crossing position if the crossover is
required. The crossing position is chosen randomly.
step 10: Mutation

Alter a bit (0 or 1) of string according to the mutation
probability Pm.
step 11: Repetition for GA

Repeat step 4 ∼ step 10 from generation to generation so
that the fitness value of the population increases. In simula-
tions, the genetic operations will be repeated until prespecified
G-th generation.
step 12: Determination of the GP prior model

Construct the suboptimal prior mean and prior covariance
for the j step ahead predictor by using the string with the best
fitness value over all the past generations:

m(x) j = [xT, 1]θ̂l,best (15)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C(xp, xq) j = σ̂

2
y,best exp

⎛⎜⎜⎜⎜⎜⎝−||xp − xq||2
2�̂2best

⎞⎟⎟⎟⎟⎟⎠
K(xp, xq) j = C(xp, xq) j + σ̂

2
n,bestδpq,

(16)

where K(xp, xq) is an element of covariance matrix K and δ pq

is a Kronecker delta which is 1 if p = q and 0 otherwise.
step 13: Repetition for the GP prior model

If j < M then j = j + 1 and go to step 2.
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Fig. 3. The iterated multi-step ahead prediction scheme

V. Multi-step Ahead Prediction

For a new given test input X∗ = [x∗1, x∗2, · · · , x∗Ñ]T, we
have [

y
y∗

]
∼ N
([

m(X)
m(X∗)

]
,

[
K Σ(X, X∗)

Σ(X∗X), Σ(X∗, X∗)

])
.

(17)

From the formula for conditioning a joint Gaussian distri-
bution, the posterior distribution for a specific test data is

p(y∗|X, y, X∗) ∼ N(ȳ∗, cov(y∗)), (18)

where ȳ∗ is the predictive mean, cov(y∗) is the predictive
covariance, and is given by,

ȳ∗ = m(X∗) + Σ(X∗, X)K−1(y − m(X))
cov(y∗) = Σ(X∗, X∗) − Σ(X∗, X)K−1Σ(X, X∗) + σ2

n I.
(19)

In section IV, we obtained GP prior models for j ( j =
1, 2, · · · ,M) step ahead predictors. Using these models the
forecasting up to M step is carried out from (19), where the
number of the test input data Ñ = 1 and the test input is set
to be vector x∗(k) = [y∗(k), y∗(k − 1), · · · , y∗(k − L + 1)]T (see
Fig.1).

This direct multi-step ahead prediction method is compa-
rable to iterated multi-step ahead prediction which repeats
one step ahead prediction with feedback of predicted previous
output [3], [4], [6], [7], [10], [11] (see Fig.3). The advantage
with the iterated method is that only one GP model for one step
ahead prediction is required, and is therefore computationally
efficient. The direct approach on the other hand has the
potential for increased accuracy in predictions. In the next
section some simulation results by our forecasting method will
be given and compared with the iterated prediction method.

VI. Simulations

A. Example 1

Consider the following system:

0 10 20 30 40 50 60 70 80 90 100 110
−3

−2

−1

0

1

2

3

step k

y(
k+

1)

95% confidence region
predictive mean
measurements

Fig. 4. Prediction result for 1 step ahead predictor (example 1)
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step k
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25
)

95% confidence region
predictive mean
measurements

Fig. 5. Prediction result for 25 step ahead predictor (example 1)

{
y(k + 1) = a1y(k) + a2y(k − 1) + sin(2π f k) + e(k)
a1 = 0.9, a2 = −0.8, f = 0.1, e(k) : N(0, 0.052).

(20)

The training input is chosen as x(k) = [y(k), y(k−1)] T (L = 2
in (4)) and the time series forecasting up to M = 50 step is
carried out from the starting step k = k0 = 53. The number of
the training input and output data is taken to be N = 100 for
each j ( j = 1, 2, · · · ,M) step ahead predictor.

The design parameters of the GA are given as follows:
population size: Q = 100
string length: L1 = L2 = L3 = 10
crossover probability: Pc = 0.8
mutation probability: Pm = 0.03
search range of σy: [σy,min, σy,max] = [10−3, 10]
search range of �: [�y,min, �y,max] = [10−3, 10]
search range of σn: [σn,min, σn,max] = [10−6, 10]
termination criteria G = 100-th generation
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Fig. 6. Mean square error against step ahead (example 1)
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Fig. 7. Forecasting result (example 1)

To validate our training method, the prediction results for
1 and 25 step ahead predictors are shown in Figs.4 and 5,
where the number of the test data is Ñ = 100. In these
figures, the cross symbol shows the test output, the circle
symbol with line shows the predictive mean and the shaded
area gives the 95% confidence region. Moreover the mean
square error MSE=(

∑1+ j+Ñ
k=2+ j (y∗(k)− ŷ∗(k))2)/Ñ against the step

ahead j ( j = 1, 2, · · · ,M) is depicted in Fig.6. From Figs.4 ∼
6 we can confirm that the error between the test data and the
predictive mean is quite small for every step ahead predictors
and it does not become large as the step ahead increases.

Fig.7 shows the result of the time series forecasting from
the starting step k0 to k0 + M − 1 by the proposed method.
The mean square error (

∑k0+M−1
k=k0

(y∗(k)− ŷ∗(k))2)/M of the time
series forecasting is 8.3478×10−3. It is clear that we can carry
out the time series forecasting successfully by the proposed
method.
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Fig. 8. Forecasting result by the proposed method (example 2)
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Fig. 9. Forecasting result by the iterated method (example 2)

B. Example 2

Consider the following system called Mackey-Glass chaotic
system which has high nonlinearity:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dz(t)
dt
= −a1z(t) + a2

z(t − τ)
1 + z(t − τ)10

y(t) = z(t) + e(t)
a1 = 0.1, a2 = 0.2, τ = 17, e(t) : N(0, 0.012).

(21)

The time series is sampled with sampling period T s = 1 as
y(k) = y(t = k).

The training input is again chosen as x(k) = [y(k), y(k − 1),
· · · , y(k − 15)]T (L = 16 in (4)). The number of the training
input and output data is taken to be N = 100 for each j ( j =
1, 2, · · · ,M) step ahead predictor.

Fig.8 shows the forecasting result by the proposed method,
where the time series forecasting up to M = 50 step is carried
out from the starting step k = k0 = 53. For comparison the
forecasting result by the iterated multi-step ahead prediction
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is shown in Fig.9. The mean square error (
∑k0+M−1

k=k0
(y∗(k) −

ŷ∗(k))2)/M of the time series forecasting is 2.4317 × 10−4

for the proposed method and 2.0139 × 10−2 for the iterated
method, respectively. In the iterated method the error of the
predicted values increases as the prediction step progresses as
shown in Fig.9. On the other hand the proposed method gives
accurate predicted values and reasonable confidence region for
all step ahead predictions as shown in Fig.8. It is found from
these results that the proposed method can be also applied to
nonlinear time series forecasting.

VII. Conclusions

In this paper, we have presented a direct approach to
the time series forecasting using the GP prior model. The
time series forecasting is carried out directly by using every
Gaussian process model of each step ahead predictor. Based
on the idea of separable least-squares approach, a new training
algorithm for GP prior model using GA has been proposed.
Although the proposed prediction method is rather compu-
tationally demanding in the training, the prediction error is
not accumulated as the prediction step increases. In addition,
both the predictive mean and the predictive covariance can be
directly obtained without any modifications of the prediction
algorithm. Simulation results show that the proposed method
can be applied to the time series forecasting with high accuracy
for both linear and nonlinear time series.
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