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Abstract—Mining association rules is an important technique
for discovering meaningful patterns in datasets. Temporal as-
sociation rule mining can be decomposed into two phases:
finding temporal frequent patterns and finding temporal rules
construction. Till date, a large number of algorithms have been
proposed in the area of mining association rules. However, most
of these algorithms consider patterns as a collection of point
primitives and their three basic relations (<, =, >).
Several applications consider patterns with duration and need to
reason about intervals and their thirteen possible relationships.
In this paper we investigate properties of temporal sequences
represented as a collection of intervals. We present a sim-
ple framework for temporal sequence and describe DATTES
(Discovering pATterns in TEmporal Sequences), an innovative
algorithm using interval properties to mine temporal patterns.
The framework can be used to mine temporal association rules.
According to some interval algebra properties, this paper intro-
duces a new confidence evaluation function for mining temporal
rules. Experiments on real dataset (Human face identification
problem) show the effectiveness and the performances of this
approach.

I. INTRODUCTION

Association rule mining (ARM) was introduced in [1]. The
problem of mining temporal association rules (TAR) is consid-
ered as the generation of the ARM when the duration of pattern
is considered. In this paper, we assume that the reader knows
the basic assumptions and terminologies of ARM. However,
it is noteworthy at this point that the work of TAR can be
decomposed into two phases, i.e. (i) frequent temporal pattern
generation: Find frequent temporal pattern that exceed the
given minimum support,(ii) temporal rules construction: from
the frequent temporal patterns generated in step 1, generate all
temporal association rules having confidence higher than the
given minimum confidence.
The second phase is straightforward and less-expensive, re-
searchers have generally focused on the first phase only. We
can think of the problem of mining Frequent Temporal Patterns
(FTP) as a generalization of Frequent Pattern (FP) mining to
temporal datasets. There exists a vast body of work in which
many innovative algorithms were presented for solving the
same problem, also under different user-provided constraints
[2], [6], [12], [13]. A number of studies, such as [2], regard
a sequence as an order among primitives and do not consider
the duration of each primitive. These studies aim to find
patterns (itemsets) occurring with a given minimum support
within a dataset D, which corresponds to collections of point
primitives. A pattern is frequent if its support, the occurrence

number of pattern in dataset, is greater than (or equal to)
a given threshold. In [6], while the duration constraint of
pattern is considered, the author proposes a notion of temporal
pattern very similar to ours. Thus, an input dataset D for the
FTP problem is instead composed of a collection of interval
primitives. The attributes related to the temporal information
present in this type of datasets need to be treated differently
from other kinds of attributes. A temporal pattern is frequent
if its temporal support is greater than (or equal to) a given
threshold.
This paper is organized as follows: Section 2 develops the
problem statement and the suitable notions needed to model
the problem of temporal sequence mining. Section 3 addresses
the FTP problem. This section is started by a new evaluation
function for the temporal support, DATTES-Gen, the generator
function, and the algorithm details. Section 4 describes the
temporal association rules mining. Section 5 shows some
results of the proposed algorithm and comparative results. The
section 6 concludes the paper.

II. TEMPORAL SEQUENCES

The temporal sequence can be considered as subsections of
the temporal data, an observed data sequence which is ordered
in time. We confine our interest to temporal association rules
mining from temporal sequences and not on how to obtain
these temporal sequences which is called the discretization
techniques. Thus, we assume that this transformation has been
done along with other steps of preprocessing (see [7], [8], [9]).
Than, Figure 1 illustrates a simple intuitive transformation of
f and h, two observed temporal data: we are interested, for
example, when f (or h) ”goes up”, labeled f+ (or h+) and
when f (or h) ”goes down”, labeled f− (or h−).
As mentioned below, the input dataset for the FTP problem
consider the duration of each primitive (item). Let us consider
n primitives D = {si|i = 1 . . . n}. For each si ∈ D, [bi, ei] is
an interval, with begin and end points, in which the primitive
holds. An interval primitive can be represented as a triplet
(b, s, e) such that s and [b, e] are the primitive identifier and
the occurrence interval of the interval primitive respectively.
Assume for every ei and ej in D, [bi, ei]∩[bj , ej ] = ∅ if si and
sj did not refer the same primitive. In other wise,i.e. si and sj

refer the same primitive and [bi, ei] ∩ [bj , ej ] �= ∅, we replace
these two primitives by this one (min(bi, bj), si,max(ei, ej)).
This property is called the maximality assumption of interval
primitives. A temporal sequence S of n interval primitives is
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defined as (b1, s1, e1), . . . , (bi, si, ei), . . . , (bn, sn, en), where
bi < ei and bi ≤ bi+1. Therefore, we simplify the temporal
sequence as S = (s1, . . . , si, . . . , sn).

Fig. 1. A visual intuition of distinguish trend of f and h, two temporal data.

Since all primitives may potentially be defined, we need to
sweep these intervals sequence; this can be achieving by the
using of the sliding window [10]: the length of the sliding
window, denoted w, is must be specified in advance.

Fig. 2. The temporal sequence and two sliding windows: Note that f and
h are converted respectively into a five-symbol (”f−f+f−f+f−”) and a
four-symbol string (”h−h+h−h+”).

Example 1: Figure 2 shows nine states (s1, .., s9), obtained
from the discretization of f and h, and the sliding window.
The f ’s behavior: ”f goes up”, denoted f+, is expressed by
two interval primitives (t2, s3, t4) and (t5, s6, t8), ”f goes
down”, denoted f−, is expressed by three interval primitives:
(t1, s1, t2), (t4, s5, t5) and (t8, s9, t10).

Definition 1 (Temporal Pattern): A temporal pattern of di-
mension k, denoted by k − TP , is defined as a pair (S,R)
where S represents (si, si+1, ..., si+k−1), a sequence of in-
terval primitives, and R ∈ Ik×k, a matrix of qualitative
relationships between these k primitives, is given as follows:

R =




eq ri+1
i . . . ri+k−2

i ri+k−1
i

ri
i+1 eq . . . ri+k−2

i+1 ri+k−1
i+1

...
...

. . .
...

...
ri
i+k−1 ri+1

i+k−1 . . . ri+k−2
i+k−1 eq




where rj
i denote the temporal relation between si and

sj . This relation is expressed by Allen’s interval logic
[4]. Possible basic relations between two intervals
are {before,meets, overlaps, contains, starts,
finishes, equals}, and their opposite relations. The
abbreviate set of these relations, labeled I , is defined as
follows {b,m, o, c, s, f, eq, b−1,m−1, o−1, c−1, s−1, f−1}.
Remark 1: If we consider the opposite relation ri

j , we can
optimize the matrix representation by the linear representation
of R as follows:
R = ((ri+1

i ), (ri+2
i+1, r

i+2
i ), . . . , (ri+j

i+j−1, r
i+j
i+j−2, . . . , r

i+j
i ),

. . . , (ri+k−1
i+k−2, r

i+k−1
i+k−3, . . . , r

i+k−1
i )).

Example 2: If we consider the temporal sequence in Figure
2, we can generate the following k − TP :
1 − TP : (si) for i ∈ {1..9}

2 − TP : (s2, s3; (o)) and (s4, s5; (c))
3 − TP : (s3, s4, s5; (o)(c,m)) and (s4, s5, s6; (c)(m, o))
4 − TP : (s1, s2, s3, s4; (s)(m, b)(o,m, b)) and

(s3, s4, s5, s6; (o)(c,m)(m, o, b))
Definition 2 (Temporal Instance): Let us consider two k −

TP s Q = (SQ, RQ) and P = (SP , RP ) such that: RP = RQ,
all P ends points intervals have fixed real values and P �= Q
then P is said instance sequence of Q and Q is said model of
interval sequences.
The set of all instances of the pattern Q is denoted IQ. We
denote by Id

P ⊆ IP the set of instances of Q respecting the
maximality assumption of interval primitives.

Example 3: In Figure 2, if we consider P =
”h−overlaps f+” and Q = ”f−before h+”:
IP = {(s2, s3)}, IQ = {(s1, s4), (s1, s8), (s5, s8)} and
Id
Q = {(s1, s4), (s5, s8)} ⊆ IQ

Definition 3 (Prefix and Suffix Pattern): Given P and Q re-
spectively the n-TP and the k-TP . Q is the:

1) k-prefix of P iff sQ = {(sP )i|(sP )i ∈ sP ∧ 1 ≤ i ≤ k}
2) k-suffix of P iff sQ = {(sP )i|(sP )i ∈ sP ∧ n − k <

i ≤ n}
Example 4: If we consider Figure 2, the 2-TP repre-

sented by (s1, s2) is the 2-prefix of the 5-TP represented by
(s1, s2, s3, s4, s5) and the 3-TP represented by (s3, s4, s5) is
the 3-suffix of the 4-TP represented by (s1, s3, s4, s5).

Definition 4 (Precedence Relation): Let P and Q be two
k − TP s. We say P precedes Q, noted P � Q,iff ∃i =
max{1,min{j|(sP )j �= (sQ)j}} : (sP )i ≤ (sQ)i.

Theorem 1: The relation � defines a partial order on
TPk(S), the space of all temporal patterns of dimension k.
Proof: Let us consider M,P,Q ∈ TPk(S). The precedence
relation is:

1) reflexive: P � P for i=1.
2) transitive: M � P ∧ P � Q ⇒ M � Q.

M � P ⇔ ∃i = max{1,min{j/(sM )j �= (sP )j}} :
(sM )i ≤ (sP )i

P � Q ⇔ ∃r = max{1,min{j/(sP )j �= (sQ)j}} :
(sP )r ≤ (sQ)r

For l = min(i, r) : (sM )l ≤ (sP )l ≤ (sQ)l, i.e. M �
Q.

3) anti-symmetric: P � Q ∧ Q � P ⇒ P = Q.
P � Q ⇔ ∃i = max{1,min{j/(sP )j �= (sQ)j}} :
(sP )i ≤ (sQ)i,
Q � P ⇔ ∃r = max{1,min{j/(sQ)j �= (sP )j}} :
(sQ)r ≤ (sP )r,
Therefore i = r and (sP )i ≤ (sQ)i ∧ (sQ)r ≤ (sP )r

Then ∀i ≤ dim(P ) : (sP )i = (sQ)i, i.e. P = Q.

Definition 5 (Adjacent Pattern): Let P and Q be two (k +
1)-TP . We say P is adjacent to Q, denoted by P‖Q, iff P �
Q and the k-suffix of P is the same as the k-prefix of Q.

III. FREQUENT TEMPORAL PATTERN

The problem of recognizing interesting temporal patterns
with temporal constraints is discussed in [6]. The major dif-
ferences between our contribution and the Höppner’s work is
the construction of the pattern space: In contrast to [6], where
author proposes a simple adaptation of Apriori algorithm and
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where all possible combinations are explored, we propose a
new exploring relation, labeled adjacent relation. This main
component of DATTES exploits the topological neighborhood
property of interval relationships in order to discover the
compact set of frequent temporal patterns in polynomial time.

A. Temporal Support

As one can see the previous works, the definition of support
is based on the occurrence number within the sliding window
of this pattern. Unlike others, our intuitive definition of the
temporal support of a temporal pattern is based on the union
of the disjoined instances of the temporal pattern, i.e.:

Definition 6 (Temporal Support): The temporal support of
a temporal pattern P , denoted Tsupp(P ), is defined as the
optimum time in which its disjoined temporal instances can
be observed within the sliding window, i.e.:

Tsupp(P ) =
∑

card(∪Q∈IP
OQ)

where w is the width of the sliding window, and OQ, the time
in which the temporal instance of Q can be observed within
the sliding window, labeled the observability interval of Q [6],
is given as:

OQ =
{

[e(sQ)1 , b(sQ)1 + w] if dim(Q) = 1
OM ∩ [e(sQ)k

, b(sQ)k
+ w] otherwise

where M is the (k − 1)−prefix of Q.

Fig. 3. The observability interval of the temporal pattern ”f− before h+”.

Example 5: Let us consider Q, the temporal pattern given
in Example 3, and we take [t1, t7] as the sliding window
(w = t7 − t1), the pattern Q has three instances (s1, s4),
(s1, s8) and (s5, s8) (see Figure 3). Their respective observ-
ability intervals are [t3, t2 +w], [t7, t2 +w] and [t7, t5 +w]. If
we consider just the disjoined instances of Q, we can confirm
that the observation of (s1, s4) is sufficient to observe (s1, s8)
(because O(s1,s8) = [t7, t2 + w] ⊆ [t5, t2 + w] = O(s1,s4)).
Than, let us confine our attention just to (s1, s4) and (s5, s8),
the two instances not disjoined of Q. We can confirm that the
observation of Q is over [t3, t2+w]∪[t7, t5+w] = [t3, t5+w].
To declare P , a given k − TP , frequent or not we must to
consider this temporal pattern within S = (s1, . . . , sn). Thus,
P is considered frequent iff the ratio of the temporal support
of P and the duration of S is greater than or equal σ, a given
threshold, i.e.:

Tsupp(P )/D(S) ≥ σ

where D(S), the duration of S is given as follows:

D(S) = card([min{b(si)|si ∈ S},max{e(si)|si ∈ S}])

B. Candidate Generation Method
The most works for mining frequent pattern explore all

possible combinations between primitives. Instead, in our work
we use exploit the adjacent relation for a better selection of
the patterns two by two. Therefore, the candidate generation
method, denoted DATTES-Gen, generates C, a single candi-
date (k + 1) − TP , from P and Q, two adjacent k − TP .
These two adjacent patterns are represented respectively by
SP = (si, . . . , si+k−1) and SQ = (si+1, . . . , si+k), and their
temporal matrix are:

RP =




eq ri+1
i . . . ri+k−1

i

ri
i+1 eq . . . ri+k−1

i+1

...
...

. . .
...

ri
i+k−1 ri+1

i+k−1
. . . eq




RQ =




eq . . . ri+k−1
i+1 ri+k

i+1

...
. . .

...
...

ri+1
i+k−1

. . . eq ri+k
i+k−1

ri+1
i+k

. . . ri+k−1
i+k

eq




The candidate pattern C = (SC , RC) maintains P as prefix
pattern: DATTES-Gen adds si+k, the last state of SQ, to SP ,
to achieve SC = (si, si+1, . . . , si+k−1, si+k). The main idea
to create RC is to maintain RP as prefix matrix and to add a
new line and a new column. DATTES-Gen computes only r
and its converse ir. r denotes the temporal relation between
si and si+k, respectively the first interval primitive of P and
the last one of Q. RC is given as follows:

RC =




eq ri+1
i . . . ri+k−1

i r

ri
i+1 eq . . . ri+k−1

i+1 ri+k
i

...
...

. . .
...

...
ri
i+k−1 ri+1

i+k−1
. . . eq ri+k

i+k−1

ir ri+1
i+k

. . . ri+k−1
i+k

eq




Example 6: Let us consider (s1, s2; (s)) and (s2, s3; (o)),
two adjacent 2 − TP s represented in Figure 2. The 3 − TP
generated by the DATTES-Gen is (s1, s2, s3; (s)(o,m)).

C. Algorithm Details

Now, we present DATTES, our algorithm for discovering
the frequent patterns in temporal sequences. DATTES starts
with the generation of the 1 − TP , the elementary patterns,
which always have the observability intervals like temporal
support (steps 1 to 3). The second step uses the results of
the first one to generate the 2 − TP . Step by step, new
patterns of higher dimension respecting the adjacent relation
are generated (step 8), and the temporal support (step 15). At
each iteration k, DATTES creates a new subset of candidate
(k + 1) − TP from adjacent k − TP (step 10) discovered
during the previous iteration by the using DATTES-Gen.
Step 9 guaranties that the two adjacent hold in the same
sliding window. After the generation of the candidate pattern,
DATTES computes the observability interval of this candidate
(step 11). It takes the observability interval of the second
joined pattern and updates the right extremity. To consider
the candidate pattern frequent, DATTES computes the ratio
between the support of the candidate pattern and the temporal
support of S, the temporal sequence (loop 14 to 16). The
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process is repeated until no more frequent temporal pattern
can be found (loop 5 to 17). The fact that the temporal
support of a temporal pattern is always greater or equal to
the temporal support of any of its subpatterns [3].

DATTES algorithm
Input: S = (s1, s2, . . . , sn) the temporal sequence,

w the sliding windows width,
σ the temporal support threshold.

Output: MaxF the optimal set of TP
1. F1 = {((si); (Ri))|si ∈ S ∧ Ri(1, 1) = eq};
2. For (i = 1 to |F1|)
3. OF1[i] = [bi, ei + w];
4. k = 2; Tsupp(S) = (en − b1) + w;
5. While (Fk−1 �= ∅)
6. Fk = ∅;i = 1;
7. While (i < |Fk−1|)
8. If ((Fk−1[i]‖Fk−1[i + 1]) and
9. (OFk−1[i] ∩ OFk−1[i+1] �= ∅));
10. C =DATTES-Gen(Fk−1[i], Fk−1[i + 1]);
11. OC = [bFk−1[i+1],min(eFk−1[i], eFk−1[i+1])];
12. Ck = Ck ∪ {C};
13. i = i + 1;
14. For (j = 1 to |Ck|)
15. if(Tsupp(Ck[j])/D(S) ≥ σ)
16. Fk = Fk ∪ {Ck[j]};
17. k = k + 1;
18. MaxF = ∪i=k−1

i=1 Fi;
EndDATTES

The number of all generated patterns is given by the
following theorem.

Theorem 2: Given a temporal sequence of dimension n.
DATTES generates at least n(n + 1)/2 frequent patterns
independently with the sliding window width.
Proof: Let n be the dimension of the given intervals sequence
S. We note Si the interesting i−TP subset. Initially, DATTES
considers the n elementary patterns interesting (steps 1 to 3)
i.e. S1 = n. The generator function (step 10) guarantees that,
at each level k, the number of the candidate (k + 1)-patterns
is at least the number of interesting k-pattern truncated by
one, i.e. dim(Fk+1) ≤ dim(Sk) − 1. The step 9 confirms
that the number of interesting patterns is at least the number
of candidate patterns, i.e.: dim(Sk) ≤ (Fk). The number of
temporal patterns generated by DATTES, noted z, is computed
as follow:

z =dim(S1) + . . . + dim(Sj) + . . . + dim(Sn)
≤ dim(F1) + . . . + dim(Fj) + . . . + dim(Fn)
≤ (n − 1 + 1) + . . . + (n − j + 1) + . . . + (n − n + 1)
≤ ∑n

k=1 k = n(n + 1)/2

IV. MINING TEMPORAL RULES

Having defined the compact set of frequent temporal pat-
terns, we are now interested to generate the temporal associa-
tion rules X ⇒ Y . The problem was first defined in the context
of the market basket data to identify customer buying habits
[1]. For a temporal sequence, we want to discover similar
association rules, which reflect the relationships between the

frequent temporal patterns. In such association rules, X and
Y are frequent temporal patterns and X is the k−prefix of
Y with k ∈ {1 . . . dim(sY )}(i.e. X ⊆ Y ). Such a temporal
rule reveals that the subsequence in the temporal sequence,
containing pattern X tend to contain pattern Y , and the
probability, measured as the fractions of the temporal support
of the pattern X also of Y , is called the confidence of the
temporal rule, i.e.:

TARconf (X ⇒ Y ) = Tsupp(Y )/Tsupp(X)

For an association rule to hold, the temporal confidence of
the temporal rule should satisfy a user-specified minimum
confidence. Enumeration of all possible temporal rules can
be done efficiently by using techniques described in [3].

V. EVALUATION AND DISCUSSION

In order to show how DATTES performs, when it is run
to generate frequent patterns, we have chosen to compare it
with Apriori-Like [6]. The considered application contains real
dataset (Human face identification problem proposed in [5]).
We use our proposed framework in order to detect individual
facial movements and their characteristics in men and in
women. Behavioral results indicate quantitative differences
between men and women.

Fig. 4. Position of the face points

A. Dataset Definition

The basic dataset concern 10 persons (5 women and 5
men) volunteered to participate in the study. Subjects were
received by an experimenter and then left alone in a room
where they followed instructions given by a laptop screen.
The task consisted in looking at pictures and saying whether
it was ambiguous/normal or not. Some subjects were set aside
because of particular situations (important movements of the
body or the head, wearing glasses or a beard, etc.). With a
view to standardizing the dataset the experimenter chose 3
sequences (a, b and c) of 3 seconds centered on an easy to
locate verbal answer from the subjects. Thus 3 sequences with
a similar context are available per subject. Figure 4 indicates
36 face points involved in the facial movements that were
easy to identify [11]. The sequences were sampled at 13
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images per second, and an operator recorded the 36 face point
coordinates. This selection was repeated at least twice and the
mean position was retained to reduce errors due to tiredness
of the operator. The coordinates of the points were relative to
the subjects face.

B. FTP Space Evolution

For the sake of curiosity, we have compared the number of
patterns generated by DATTES and Apriori-Like proposed in
[6]. For the experiments, we have chosen two subjects Manb

4

and Womanb
4 (the second sequence of fourth subject) and

we have varied the window width w and fixed the minimal
threshold support σ to 2% of w of the sequence duration.

0 1 2 5 10 0 1 2 5 10
26 26 26 26 26 24 24 24 24 24
17 20 21 23 25 11 17 18 22 23
13 15 17 19 24 4 11 14 17 22
10 13 15 16 23 1 4 9 14 19
6 11 13 14 21 1 3 12 17
3 8 11 12 19 2 10 15
1 5 9 10 17 1 8 13

4 6 8 15 4 11
2 5 6 13 1 9

4 5 9 7
1 4 7 6

3 6 5
2 4 3
1 3 1

1
76 104 128 149 213 40 57 71 112 175

TABLE I
FTP SPACE EVOLUTION FOR DATTES ALGORITHM.

TABLE I and TABLE II show the evolution of the temporal
pattern space with the variation of the width of sliding win-
dow respectively for DATTES algorithm and for Apriori-Like
algorithm. The first line denotes the window width. The first
and the last five columns concerns respectively two subjects
Womanb

4 and Manb
4. The next 15th lines correspond to the

step number. They contain the number of FTP generated at
each step. Note that, the last lines denotes the number of
distinct primitive in the temporal sequence. TABLE I shows a
simple decreasing trend for the evolution of the patterns num-
ber. Therefore, the number of candidate patterns, generated at
each step, is bounded by the number of the frequent temporal
patterns at the preceding iteration.
In contrast, TABLE II illustrates the combinatorial explosion
of the candidate patterns generation for Apriori-Like algo-
rithm: It explores all possible combination between patterns,
which is very expensive. The colossal difference in pattern
space between DATTES and Apriori-Like is expressed by the
last line in TABLE I and the last line in TABLE II. These
two lines summarize the evolution of the two algorithms,
and give a significant comparison. The two algorithms are
initialized by the same number of elementary patterns. The
difference between the two algorithms for becomes colossal
when the width of the sliding window increases and becomes
vital for heavy sliding window (w > 5) which justify the time
complexity and the combinatorial explosion of Apriori-Like

algorithm. This difference can be case justified by the next
theorem.

Theorem 3: Given n the primitives number in the sequence
S. The number of temporal patterns extracted from the FTP
space generated by DATTES is smaller than

∑n
k=3(n − k +

1)(2k−2 − 1).
Proof: Let ((sP )1, (sP )2, . . . , (sP )k)) be the primitives series
of P , a frequent k − TP generated by DATTES at level
k > 2. The extraction process maintains the two primitives
bordering, (sP )1 and (sP )k, and takes all possible ordering
combinations of the k− 2 remainder intervals. Than, we have
2k−2 possible combinations. The number of extracted pattern
is the number of possible combination truncated by the last
greatest extracted pattern because it refers to the concerned
P i.e. 2k−2 − 1 for each level of DATTES. In consequence,
DATTES generates at least (n − k + 1) frequent k − TP .
We extract at least (n − k + 1)(2k−2 − 1) complementary
patterns. Thus, the quantity of complementary patterns is
bounded by the sum of the complementary patterns at level k
with 2 < k ≤ n and it expresses by

∑n
k=3(n−k+1)(2k−2−1).

0 1 2 5 10 0 1 2 5 10
26 26 26 26 26 24 24 24 24 24
57 81 104 124 189 20 35 47 88 151
95 189 302 428 780 10 27 54 192 570

100 305 604 1092 2202 2 11 40 271 1512
68 344 854 2093 4580 2 21 247 2953
30 273 868 3066 7272 7 145 4341
8 149 632 3461 8971 1 53 4854
1 53 322 3011 8654 11 4134

11 109 2003 6513 1 2663
1 22 1001 3784 1276

2 364 1663 441
91 534 104
14 118 15
1 16 1

1
385 1432 3845 16775 45303 56 99 194 1032 23039

TABLE II
FTP SPACE EVOLUTION FOR APRIORI-LIKE ALGORITHM.

C. Temporal Rule Generation

As mentioned above, we are interested to detect individual
facial movements and their characteristics in men and in
women. Thus, we aim to extract the maximum FTP for each
subject (men or women) i.e. as each subject has 3 sequences
(a, b and c), we try to mine FTP space these sequences. The
next step is the construction of the temporal rule space for
each subject. In this step we are interested on the X , k−TP ,
is considered as the k−prefix of Y , (k + 1) − TP . After, the
intersection of these three temporal rule spaces generates the
rule space for each subject. Finally, we mine the rule model
for each gender by the unification of the rule space for each
gender: Rule male for male and Rule female for female.
For the experiments, we have varied the sliding window width
w and fixed the minimal threshold support σ and the minimal
threshold confidence θ respectively to 2% and 25%.
TABLE III shows the temporal rule space for each gender
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model. This illustrates a quantitative comparison between
the female model the male model. The inspection of the
rule spaces indicates that male produce more temporal rule
than female. It’s due to the fact that the gap between the
primitives constituting the interval sequences is large between
the primitives generated by the women subject that those
between the men subject.
To evaluate a qualitative comparison between the two gender
model, we have varied w (see the first line in TABLE III)
and fixed σ and θ respectively to 2% and 1%. In this
special case we are attracted by the rules concerned the
male model { (25) → (25, 28; (e)), (2) → (2, 3; (e)) },
the rule concerned the female model {(14) → (14, 15; (e)),
(17) → (17, 18; (e)), (29) → (29, 30; (e)), (4) → (4, 5; (e)),
(11) → (11, 12; (e)), (3) → (3, 4; (e)), (4, 5; (e)) →
(4, 5, 6; (e)(e, e))} and the shared rules between these two
models {(5) → (5, 6; (e))}. Note that the confidence of each
temporal rule growth with the window width.
A deeper analysis of the rules values emphasized that male
model (respectively female model) is characterized by more
structured movements of points 2,3,25 and 28 (respectively 3,
4, 5, 6, 11, 12, 14, 15, 17, 18, 29 and 30). We notice that
the top of the face produces more information on the subject
gender. If we consider the vertical distribution of the points
face, 2/3 rules are from the high part of the face whereas
if we consider the horizontal distribution, 5/9 rules are from
the left part of the face. To conclude, 4/9 generated rules are
expressed from the high left part of the face.

w 0 2 10 20 40
(25) → (25, 28; (e)) 1 1 1 1 1
(2) → (2, 3; (e)) 0,5 0,6 0.85 0,92 0,95
(5) → (5, 6; (e)) 1 1 1 1 1
(14) → (14, 15; (e)) 5 0.5 0.5 0.5 0.53
(17) → (17, 18; (e)) 0,33 0.33 0.38 0.45 0.61
(29) → (29, 30; (e)) 0,75 0.7 0.25 0.47 0.67
(4) → (4, 5; (e)) 0,5 0.5 0.5 0.5 0.05
(11) → (11, 12; (e)) 0,5 0.5 0.5 0.5 0.63
(3) → (3, 4; (e)) 0,33 0.33 0.33 0.36 0.53
(4, 5; (e)) → (4, 5, 6; (e)(e, e)) 0,5 0.5 0.5 0.5 1.0

TABLE III
TEMPORAL RULES SPACE EVOLUTION.

VI. CONCLUSION

In this paper, we investigated an approach for temporal
association rules mining. This approach, based on a new
framework, treats the temporal sequences as an ordered col-
lection of intervals and matrix relationships between them.
The main component of our proposed framework is DATTES,
a new algorithm for discovering the optimal set of frequent
temporal patterns in sequences, and a new method for temporal
rule construction. In more that DATTES is based on the
anti-monotone Apriori property and explores some properties
of interval algebra relations (ex. symmetric property), our
proposed algorithm exploits a new support evaluation func-
tion. Compared to the generalization of Apriori algorithm for
interval sequences, the number of temporal patterns generated
by DATTES is polynomial according to the dimension of the

patterns and the width of the sliding window.
The temporal rules construction method, based on the prece-
dence relation, takes the ratio between the temporal support of
the conclusion rule and the temporal support of the premise
rule as the confidence evaluation function. This function
favors the temporal rules that the gap between the composite
primitives.
Using the new framework, it is possible to extract all other
frequent patterns and all other possible temporal rules respect-
ing both the adjacent relation and the prefix relation. The
extraction of the complementary patterns and rules is done
without explicit checking of Apriori property.
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