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Abstract— This work introduces a new method for time series
prediction - Time-delay Added Evolutionary Forecasting (TAEF)
- that carries out an evolutionary search of the minimum
necessary time lags embedded in the problem for determining the
phase space that generates the time series. The method proposed
consists of a hybrid model composed of an artificial neural
network (ANN) combined with a modified genetic algorithm
(GA) that is capable to evolve the complete network architecture
and parameters, its training algorithm and the necessary time
lags to represent the series. Imitially, the TAEF method finds
the most fitted predictor model and then performs a behavioral
statistical test in order to adjust time phase distortions that may
appear in the representation of some series. An experimental
investigation is conducted with the method with some relevant
time series and the results achieved are discussed and compared,
according to several performance measures, to results found with
the multilayer perceptron networks and other works reported in
the literature.

1. INTRODUCTION

Many nonlinear approaches have been developed by inde-
pendent researchers for the prediction of time series such as the
bilinear models [1], the threshold autoregressive models [2],
the exponential autoregressive models [3], the general state
dependent models [4] and others. However, those nonlinear
approaches usually involve high technical and mathematical
complexities.

Alternative approaches based on artificial neural networks
(ANNSs) have been proposed for the same purpose [5]. In order
to define a solution to a given problem, ANNs require the
setting up of a series of system parameters, some of them not
always easy to determine. The network topology, the number
of processing units, the algorithm for network training (and its
corresponding variables) are just some of the parameters that
require deflinition. In addition to those, in the particular case
of time series prediction, another crucial element necessary to
determine is the relevant time lags to represent the series.

Many researches based on the evolutionary approach for
the definition of neural network parameters have produced
interesting results in the past [6]. Some of these works have
focussed on the evolution of the network weights whereas
others aimed at evolving the network architecture. The pio-
neering work of Stanley e Miikkulainen [7] shows an effi-
cient evolutionary methodology (NEAT) that combines genetic
algorithms and neural networks to define optimal solutions,
making use of a evolutionary adjustment for the network
topologies. Since then, many other works have been proposed
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such as the research of Miller [8] that investigates mutation
operators biologicaly inspired in an evolutionary algorithm.
More particularly, in the case of time series prediction, some
previous works have provided different approaches for tackling
the problem [9], [10], [6], [11], [12], [13].

In this paper, a systematic procedure based on a hybrid
intelligent system 1s proposed with the capability of auto-
matically defining both network weights and architecture,
the most fitted algorithm for training the network and, in
addition, the most important parameter for the prediction of
time series: the relevant time lags that represent the series.
The adopted method consists of a combination of a standard
neural network with a modified genetic algorithm (GA) [9]
which efficiently searches and defines 1. the best evolved
neural network structure in terms of the number of processing
units and network weights, 2. the most fitted training algorithm
[14] that boosts the prediction performance, 3. the minimum
number of (and the particular) temporal lags necessary to solve
the problem, and 4. a behavioral statistical test carried out at
the prediction model output to fix relative phase distortions in
the series representation.

It is shown how this procedure can enhance prediction per-
formance making use of a test bed composed of four relevant
time series, according to a number of different performance
metrics.

II. THE TIME SERIES PROBLEM

A time series can be defined as a set of points, generally
time equidistant, such as X, = {z; e R |t = 1,2,3... N},
where ¢ is the temporal index and N is the number of obser-
vations. Therefore x; is a sequence of temporal observations
orderly sequenced and equally spaced.

The aim when applying prediction techniques to a given
time series is to identify certain regular patterns present in
historical data in order to create a model capable of generating
the next temporal patterns. In this context, a crucial factor for
a good forecasting performance is the correct choice of the
time lags considered for representing the series. Such relational
structures among historical data constitute a d-dimensional
phase space, where d is the minimum dimension capable
of representing such relationship. Therefore, a d-dimensional
phase space can be built so that it is possible to unfold a
time series in its interior. The work of E Takens [15] has
proved that if d is sufficiently large, such built phase space is
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homeomorphic to the phase space which generated the time
series. Thus Takens’ theorem [15] has, firstly, provided the
theoretical guarantee that it is possible to build a state space
using the correct lags, and. secondly, that if this space is
correctly rebuilt, the dynamics of this space is topologically
identical to the dynamics of the original system state space.

The big problem in reconstructing the original state space
is naturally the correct choice of the variable d, or, more
specifically. the choice of the important time lags necessary
for characterization of the system dynamics. In order to
achieve such objective some tests for the verification of the
dependence of the time lags such as the ¢-Test method [16],
and some other methods [17] based on Takens® theorem [15],
can be applied. However, in general, these tests are based
on the primary dependence between the variables and do not
consider any possible induced dependencies. For example if
Flay—y) = F(F(x;—9)), it is said that x, 1 is the primary
dependence, and the dependence induced on ;2 1is not
considered (any variable without a primary dependence is
denoted as irrelevant). The method proposed in this paper,
conversely, does not make any prior assumption about the
dependencies between the variables. In other words, it does
not discard any possible correlation that can exist between
the series parameters, even higher order correlations, since it
carries out an iterative automatic search for finding the relevant
time lags.

III. THE TAEF METHOD
A. Inrroduction

The method proposed in this work — the Time-delay Added
Evolutionary Forecasting (TAEF) method — is an evolution of
the work first reported in [18] and tries to reconstruct the phase
space of a given time series by carrying out a search for the
minimum dimensionality necessary to reproduce, to a certain
accuracy, the phenomenon generator of the times series.

The proposed procedure is a intelligent hybrid system based
on a multilayer perceptron network (MLP) trained with a
modified genetic algorithm (GA) [9] which not only searches
for a number of the ANN parameters but also for the adequate
embedded dimension represented in the lags. The minimal
acceptable accuracy of the prediction generated is initially
set by the user, but is automatically changed by the training
algorithm if it finds a model with better accuracy (evolution
process).

The scheme describing the proposed algorithm is based on
the iterative definition of the three main elements necessary
for building an accurate forecasting system: 1. the underlying
information necessary to predict the series (the minimum
number of time lags adequate for representing the series);
2. the structure of the model capable of representing such
underlying information for the purpose of prediction (the
number of units in the ANN structure); and 3. the appropriate
algorithm for training the model.

It is important to consider the minimum possible number
of time lags in the representation of the series because the

larger the number of lags the larger the cost associated with
the model training.

Following this principle, the important parameters defined

by the algorithm are:

1) The number of time lags to represent the series:
initially, a maximum number of lags (MaxLags) is
defined by the user and a GA can choose any number
of specific lags in the interval [1, MaxLags] for each
individual of the population;

2) The number of units in the ANN hidden layer: the
maximum number of hidden layer units (NHiddenmax)
is determined by the user and the GA chooses, for each
candidate individual, the number of units in the hidden
layer (in the interval [1, NHiddenmax]);

3) The training algorithm for the ANN: RPROP,
Levenberg-Marquardt, Scaled Conjugate Gradient, One
Step Secant Conjugate Gradient [14] are candidates for
the best algorithm for training the ANN and the GA
defines one of these algorithms for cach individual in
the population.

B. Method Operation

The algorithm starts with the user defining a minimum
initial fitness value (Minfir) which should be reached by at
least one individual of the population in a given GA round.
The fitness function is defined as,

. 1
Fitness TTMSE (1)
where MSE is the Mean Squared Error of the ANN and will
be formally defined in the next section.

In each GA round, a population of M individuals is gene-
rated, each of them being represented by a chromosome (in
the experiments carried out here M = 10). Each individual
is a three-layer ANN where the first layer is defined by the
number of time lags, the second layer is composed of a number
of hidden processing units (sigmoidal units) and the third layer
consists of a linear processing unit (prediction horizon of one
step ahead).

Each individual has distinct network initialization and cross
validation. The stopping criteria for each one of the individual
are:

« The number of Epochs: NEpochs:

o The increase in the validation error: GI;

o The decrease in the training error: Pt.

The best repetition with the smallest validation error is cho-
sen to represent the best individual. Following this procedure,
the GA evolves towards a good fitness solution (which may
not be the best solution yet), according to the stopping criteria:

o Number of generations created: NGen,

» Fitness evolution of the best individual: BestFit.

After this point, when the GA reaches a solution, the
algorithm checks if the fitness of the best individual paired
or overcame the initial value specified for the variable MinFit
(minimum fitness). If this is not the case, the value of MaxLags
(maximum number of lags) is increased by the unit and the

617



Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

GA procedure is repeated to search for a better solution. The
objective here is to increase the possible number of lags in the
lag set until a solution of minimum fitness is reached.

However, if the fitness reached was satisfactory, then the
algorithm checks the number of lags chosen for the best
individual, places this value as MaxLags, sets MinFit with
the fitness value reached by this individual, and repeats the
whole GA procedure. In this case, the fitness achieved by the
best individual was better than the fitness previously set and,
therefore, the model can possibly generate a solution of higher
accuracy with the lags of the best individual (and with the
MinFir reached by the best individual as the new target). If,
however, the new value of MinFir is not reached in the next
round, MaxLags gets again the same value defined for it just
before the round that found the best individual, increased by
the unit (the maximum number of lags is increased by one).
The idea is that if the time lags found by the best individual
were not capable of producing a higher fitness than the one
previously found then that may be because some important lag
(or lags) was discarded. The state space for the lag search is
then increased by one to allow a wider search for the definition
of the lag set. This procedure goes on until the stop condition is
reached. After that, the TAEF method chooses the best model
found among all the candidates.

C. Method Improvement

During the development of the method, a peculiar behavior
was observed in the prediction model. While the represen-
tations of some series were developed by the model with a
very close approximation between the actual series and the
predicted series (“in-phase™ matching), the predictions of other
series were always presented with a one step shift (delay)
with respect to the original data (“out-of-phase” matching).
This out-of-phase behavior was always found in the prediction
of the financial series. whereas the in-phase matching was
observed in all the other types of series (natural phenomena
series). An interesting point to observe is that this one step
delay behavior is similar to a random walk like model.
Since it is a common sense in finance and economics that
financial times series behave like random walks [19], as a first
approximation, it is not strange that predictor models generated
for them show this time delay distortion.

If this fact is analyzed in comparison to a random walk
model, the prediction error minimization will be reached when
X = X, — the value at the time ¢ is equal to the value at
the time ¢ — 1, once that the expected value of the noise (/)
is zero.

This observation is also in accordance with some other
results reported in the literature [20] which showed that
predictions of financial time series represented by an ANN
exhibit a characteristic one step shift with respect to the
original data (out-of-phase matching). They argued that the
financial series is represented by the ANN as if it were a
random walk.

In any case, in order to make the TAEF method more robust
for representation of any time series, another element was

introduced in the method operation. After the best model is
chosen when training is finished, a statistical test is employed
to check if the network representation has reached an in-phase
or out-of-phase matching. This is conducted by comparing the
outputs of the prediction model with the actual series, making
use of the validation data set. This comparison is a simple
hypothesis test, where the null hypothesis is that the predic-
tion corresponds to an in-phase matching and the alternative
hypothesis is that the prediction does not correspond to an
in-phase matching (or out-of-phase matching).

If this test (t-test) accepts the in-phase matching hypothesis,
the elected model is ready for practical use. Otherwise, the
method carries out a new procedure to adjust the relative
phase between the prediction and the actual time series. The
validation patterns are presented to the ANN and the output
of these patterns are re-arranged to create new inputs that are
both presented to the ANN and set as the output (prediction)
target. Figure 1 illustrates this idea.

First Step Second Step

[ o

Fix-Phasc Output

ANN s — 3 ANN

Fig. 1. Procedure to adjust the relative phase.

The approximation results for both the in-phase and out-
of-phase models are measured and the best model (smaller
MSE error) is elected as the final model. Figure 2 depicts the
complete TAEF algorithm for the model construction.

Begin

MinFit // Minimum Value of Fitness

MaxILags /MMaximum Number of Lags

Nhiddenmax // Maximum of Hidden Processing Unit
Cont // Number of Iteration

B

e T i Start GA

P .
False o o Tominaion- TTUE ‘ .
= Condition - Cant >10)._~ Evaluate Population

Not Phase-Match

_’—'_§ End
Fix Phase

Fig. 2. The TAEF method’s algorithm

The fase adjustment procedure does not assume that the
ANN behave like a random walk model, but it behaves
similarly to a random walk: the ¢ | 1 prediction is taken as
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the ¢ value.

IV. PERFORMANCE EVALUATION

Most of the works found in the literature of time series
prediction employ only the mean squared error (MSE) as
performance criterion for model evaluation:

A7
MSE % Z (target; — output j}g (2)
=1
where N is the number of patterns, target; is the desired
output for pattern j and oufput; is the predicted value for
pattern j.
For allowing a more robust performance assertiveness[21],
a set of 6 (six) additional criteria was taken into account
for assessment of the method proposed. The second measure
employed was the M AP E (Mean Absolute Percentage Error),
given by
N

>

=1

100
MAPE = —
N

target; — output;

X

(3)

where N, target;, and ouytput; are the same MSE parame-
ters, and X; is the time series at point 7.

The third measure was the U of Theil Statistics, or NMSE
(Normalized Mean Squared Error):

N target; — culput; 4
=1 gety pul 4

,j' | (target; — target ., 1)2.

UofTheil = 4
which associates the model performance with a random walk
model. If the U of Theil Statistics is equal to 1, the predictor
has the same performance of a random walk model. If the U
of Theil Statistics is greater than 1, then the predictor has a
worse performance than a Random Walk model, and if the U
of Theil Statistics is less than 1, then the predictor is better
than a random walk model. So, the predictor is usable if its
U of Theil Statistics is less than 1, and tends to the perfect
model if the U of Theil Statistics tends to zero.

The fourth metrics applied considers the correctness of
Prediction of Change in Direction (POCT D

N
Zj’:l D;

N

POCID = 100 (5)

where

L)1
Dy
s
(6)

The fifth was the Average Relative Variance (ARV), which
is given by

if(target; — target; 1 )(output; — output;_1) > 0,

otherwise.

1 Z?;l(ouf.putj — target;)?
N z;;l((fff.fjlicf.j — Target )?

ARV %)

where N, target;, and output; are the same parameters of
the other evaluation measures, and farget is the time series
mean. If the ARV value is equal to 1, the predictor has the

same performance of calculating the mean over the series. If
the ARV value is greater than 1, then the predictor performs
worse than a mean time series prediction. Otherwise, if the
ARV value is less than 1, then the predictor is better than a
mean time series prediction. So, the predictor is usable if its
ARV is less than 1, and tends to the perfect model if the ARV
tends to zero.

The last two evaluation criteria corresponded to the Akaike
(AIC) and the Bayesian (BIC) information which include
the freedom degrees (penalizing the models with additional
parameters) in the model evaluation. The AIC and BIC are
approximated by

AIC = NIn(MSE) + 2p 8)

BIC = NIn(MSE) +p+ NIn(p) )]
where NV is the number of time series points, MSE is the

Mean Squared Error and p is the number of freedom degrees.

V. EXPERIMENTAL RESULTS

A set of four relevant times series was employed for evalu-
ation of the method proposed. Two of these series are artificial
— the series of Henon Map and GARCH Model series, and the
other series were drawn from real world situations: Sunspot
and Nasdaq Index.

All the series investigated were normalized to lie within the
interval [0,1] and divided in training set (50% of the data),
validation set (25% of the data) and test set (25% of the data).
The GA parameters were the same for all the series with a
mutation probability of 10%. For all the experiments carried
out, the following system parameters were employed:

« Initialization parameters:

1) MinFit =0.99 (~ 1% of error);
2) MaxLags = 4;
3) NHiddenmazx = 20,

+ Stopping conditions for the GA:

1) NGen = 1000;
2) BestFit =< 1074,

« Stopping conditions for each individual:

1) NEpochs = 1000;
2) Gl =< 5%;
3) Pt=<107%,

In addition, experiments with standard multi-layer percep-
won (MLP) networks were used for comparison with the
TAEF method. Several architectures were examined within
these experiments, with 10 (ten) random initializations for each
ANN architecture attempted. For all the cases, the Levenberg-
Marquardt Algorithm was employed for network training. For
all the series, the best ANN initialization was elected as the
ANN model to be beaten. The statistical behavioral test for
phase correction was also applied to the standard ANN model
to guarantee a fair comparison between the models.

619



Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

A. Henon Map Series

The Henon series is a very popular example of time series
due to its complex nature and chaotic dynamics. An interesting
work that employed this series was conducted by D.B.Murray
[22]. Such as in the present work., Murray was interested in
proposing a model to represent the phase space of the temporal
lags. He developed his approach based on the idea of building
this phase space of embedded dimensions from a metric tensor
whose components are adjusted in order to the minimize the
prediction error (root mean square error, RMSE). The best
prediction results obtained by Murray corresponded to 3.7¢-3
(RMSE), or 1.4e-5 (1.4e-3 %), if considered the mean squared
error (MSE) .

The Henon series considered in this work was the same
as that used by Murray, being composed of 10.000 points
generated from Equation (10) with parameters a = 1.4 and
b = 0.3. This series is generated without the inclusion of any
noise (the r terms are null) .

(10)

For the prediction of Henon Map series (1 step ahead
prediction), the TAEF method identified the lags 2, 3, 5 and
7 as the relevant to the problem, defined 14 processing units
in the hidden layer of the network, elected the Levenberg-
Marquardt algorithm as the most fitted for the ANN training
and classified the prediction model as “in-phase” matching. In
the ANN experiments, the architectures used were 4-1-1, 4-5-
I and 4-10-1, where the best model was 4-10-1. Table I shows
the results (best standard ANN model and TAEF method) with
all the performance measures presented in Section IV for both
cases: “in-phase” matching and if the prediction model had
been chosen as “out-of-phase™ matching.

Xi=1—-a(X; 25— ?'1—2)2 +b(Xeg —ri_g) + e

TABLE 1
EXPERIMENTAL RESULTS FOR THE HENON SERIES
Performance ANN Model TAEF Method
Measure In-Phase Out-Of-Phase In-Phase Out-Of-Phase

MSE 41.0840e-9 0.1588 3.1678¢-11 1.0445
MAPE (%) 1.0349¢-10 1227.5241 0.0061 305.0857

Theil 3.9090e-10 0.9998 1.9836¢-10 0.9996
POCID (%) 100,00 42,3823 100.00 41.5064

ARV 7.8006e-11 2.6363 1.3932¢-10 1.3187

AlC -59657.5 -8746.5570 -55250.9695 556.6590

BIC -59241.3 -7062.8850 -53722.5625 2084.9763
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Fig. 3. Prediction results for the Henon series (last 100 points of the test
set) — actual values (solid lines) and predicted values (dashed lines) for both
cases: “in-phase” matching and “out-of-phase”.

N.Terui and H.K.Van Dijk [23] developed a work where
a combination of some linear and non-linear models were
employed for times series prediction. Among the series in-
vestigated, Terui and Van Dijk employed the sunspot series
from the years 1720 to 1989 to test their method based on the
combination of the AR, TAR and ExpAR models [23]. The
best experimental results reported with their proposed method
(best model combination) corresponded to an MSE error of
0.0390.

For the prediction of the Sunspot series (1 step ahead
prediction), the TAEF method identified again the lags 1 to 4
as the relevant to the problem, defined 4 processing units in the
hidden layer of the network, elected the Levenberg-Marquardt
algorithm as the most fitted for the ANN training and classified
the model as “in-phase” matching. In the cxpcrimcntcs with
ANN models were examined the architectures: 3-1-1, 3-5-1
and 3-10-1, where the best model was 3-5-1. The ldbib I
shows the results (the best ANN model and TAEF method)
with all the performance measures for both cases: “in-phase”
matching and if the prediction model had been chosen as “out-
of-phase™ matching.

Figure 3 shows a comparative graph of the actual Henon
series (solid lines) and the prediction generated by the TAEF
method (dash lines) for the last 100 points of the test set, for
both cases of prediction hypotheses (in-phase matching and
out-of-phase matching).

Observing the performance measures (Table I) and the
prediction graphs (Figure 3), it is possible to notice that the
TAEF method correctly classified the Henon series in the in-
phase matching category.

B. Sunspot Series

The sunspot series used consisted of the total annual mea-
sures of the sun spots from the years 1700 to 1988, generating
a database of 289 examples.

TABLE I

EXPERIMENTAL RESULTS FOR THE SUNSPOT SERIES

Performance ANN Model TAEF Method
Measure | In-Phase | Owi-Of-Phase | In-Phase | Out-Of-Phase

MSE 0.9205 1.0163 0.0070 0.0307

MAPE (%) 241 133.5613 30.0661 R2.5523
Theil 0.3443 1.3295 0.1763 1.2225

POCID (%) 90.00 61.7021 B4.0580) 63.2174
ARY 0.1418 0.3020 0.1233 04125
AlC -280.9 76,9087 -321.5201 -195.8776
BIC -196.0 81,9688 -305.5321 -117.9137

Figure 4 shows a comparative graph of the actual Sunspot
series (solid lines) and the prediction generated by the TAEF
method (dashed lines) for the test set, for both cases of
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prediction hypotheses (in-phase matching and out-of-phase
matching).

200
150

100

Sunspot

A0

200

150

100

Sunspot

th
=

LV
40
Test Set

Fig. 4. Prediction results for the Sunspot series (test set) — actual values
(solid lines) and predicted values (dashed lines) for both cases: “in-phase”
matching and “out-of-phase”.

Observing the Table II and the predictions graphs of Figure
4 it is possible to notice that the method correctly classified
the Sunspot series in the in-phase matching category.

C. Nasdaq Index Series

The Nasdagq series (National Association of Securities Deal-
ers Automated Quotation) corresponds to daily observations
from 2nd February 1971 to 18th of June 2004 of the Nasdaq
index (8428 points).

For the Nasdaq Index Series the TAEF Method identified the
lags 3. 4, 6 and 8 as the relevant to the problem, defined 11
processing units in the hidden layer of the network, elected
the Levenberg-Marquardt algorithm as the most fitted for
the ANN training and classified the model as “out-of-phase”
matching. In the experimentes with the standard ANN models
the following architectures were examined : 3-1-1, 3-5-1 and
3-10-1, where the best model was 3-5-1. Table III shows
the results with all the performance measures for both cases:
“out-of-phase” matching and if the prediction model had been
chosen as “in-phase” matching. Of particular interest to this
(inuncial series are the values shown by the Statistics U ol
Theil (0.17), by the POCID (89.6%) and by the ARV (0.0005)
which show that the “out-of-phase™ hypothesis produces far
better results than those given by the “in-phase” hypothesis.

Figure 5 shows a comparative graph of the actual Nasdaq
series (solid lines) and the prediction generated by the method
(dash lines) for the last 100 points of the test set. Once again
it is possible to notice that the prediction generated in the out-
of-phase matching hypothesis is not delayed with respect to
the original data and that the “out-of-phase™ model pointed
out by the method was the correct choice.

TABLE III
EXPERIMENTAL RESULTS FOR THE NASDAQ SERIES

Performance ANN Model TAEF Method
Measure In-Phase | Out-Of-Phase In-Phase Out-Of-Phase
MSE 0.0022 0.0023 2.1449¢-5 32374e-6
MAPE (%) | 2.6988e-3 2.7001e-3 0.2012 0.0774
Theil 1.1728 1.1759 1.1441 0.1726
POCID (%) 53.0641 53.9458 52,7091 89.6338
ARV 3.4977e-3 3.5011e-3 0.0034 5.1500e-4
AlC -22536.0 -22536.4 -22342.4331 -26310.0737
BIC -22363.1 -22363.9 -21391.1870 -25358.8956
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Fig. 5. Prediction results for the Nasdaq Index Series (test set) — actual

values (solid lines) and predicted values (dashed lines) for both cases: “in-
phase™ matching and “out-of-phase™ matching.

D. GARCH Model Series

The General Autoregressive Conditional Heteroscedasticity
(GARCH) [24] is a model that, loosely speaking, is related
10 a time-varying variance function, i.e., volatility. The con-
ditional term indicates a dependency on the observations of
the immediate past, and the autoregressive term describes a
feedback mechanism that incorporates past observations into
the present. This model is a time-series technique that allows
users to model the serial dependency of volatility.

Bollerslev [24] developed the GARCH Model as a gener-
alization of Engle’s [25] original ARCH volatility modeling
technique. Bollerslev [24] designed the GARCH model to
offer a more parsimonious model with less computational cost.

The GARCH models are usually applied to return series,
where financial decisions are rarely based solely on expected
returns and volatilities. The return series is simply the differ-
ence between the series value at time ¢ and the series value at
time ¢ — 1.

Let the return series be:
€Ty C I &;

(11)

where C' is a constant and =; is a white noise disturbance. The
conditional variance of this innovation (z;) is, by definition,

Var, i(z,) = Ei_1(2) =07 (12)
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where F; | denotes the expected value conditional on the past,
of the process, along with any other information available at
the time ¢ — 1.

The general GARCH(P,Q) model for the conditional vari-
ance of innovations is,

r 4]
ot =kt g0t it ) aEi (13)
i=1 J=1
with the constraints,
P Q
Mot e <
i— j=1
k> 0;
gi =0 for =1,2,3,...,PF;
a; =20 for §=1,2,3,...,0Q

Two GARCH models were set up for experimentation:
GARCH(1,1) and GARCH(1,2). According to these models,
a data set with 1000 points was created and times series were
built based on the return series. The initial time series point
is 79 = 0, and other points are given by,

(14)

xy = Returng + @y

where Return, is the point at time ¢ of the return series.

In Table IV the parameters elected by the TAEF method
are shown for each one of the GARCH series, where the first
column presents the series and the next columns show the
parameters chosen by the method. The last column shows
the series classification (in-phase matching or out-of-phase
matching).

TABLE IV
CONFIGURATIONS REACHED BY THE TAEF METHOD FOR THE GARCH
MODEL TIMES SERIES.

Scric Lags Hidden Units Algorithm Classification
GARCHU(IT) | 4681011 K] RProl Oul-OF-Phase
GARCH(1,2) | 2343 8 Sealed Conjugaie Gradient | Owl-OF-Phase

In Table V the results with all the performance measures
are shown for all the GARCH series for both cases: out-
of-phase matching and “in-phase”matching for the test set.
Figures 6 and 7 present the comparative graphs of the actual
GARCH series (solid lines) and the prediction generated by
the TAEF method (dashed lines) for the test set, for both cases
of prediction hypotheses (in-phase matching and out-of-phase
matching).

VI. CONCLUSIONS
This paper has presented a hybrid system for application in
time series forecasting problems which consists of an ANN
combined with a modified genetic algorithm and a behavioral
test of phase matching hypothesis carried out at the model’s
output.

The experimental results using seven different metrics
(MSE, MAPE, U of Theil Statistics, POCID, ARV, AIC and
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Fig. 6. GARCH(1,1) Model. The graph shows the In-Phase Hypothesis (top)
and Out-Of-Phase Hypothesis (bottom) for the test set. Solid lines represent
real data and dashed lines the predicted data,
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Fig. 7. GARCH(1.2) Model. The graph shows the In-Phase Hypothesis (top)
and Out-Of-Phase Hypothesis (bottom) for the test set. Solid lines represent
real data and dashed lines the predicted data.

BIC) showed that this system can boost the performance
of time series prediction on both artificially generated time
series and real world (financial market and natural phenomena)
time series. The experimental validation of the method was
carried out on some complex and relevant time series and
were compared to standard MLPs in the same conditions: two
real world time series, the Henon Map series (with its non-
linear relations and chaotic characteristics), and the artificially
generated GARCH Model series.

With the introduction of the behavioral test for identifying
the best prediction model: “in-phase™ or *“out-of-phase”, the
TAEF method was able to classify if a given time series
tends or not to a Random Walk like model, thus adjusting
the model if necessary. Such adjustment is automatically
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TABLE V
RESULTS FOR THE GARCH MODEL TIMES SERIES

i Fvrohins - - Performarice Meastrs - -
£ s MSE WMAFE | Uof Thell | POCI | ARV ATC HIC
GARHC(1,1 Tn-Phase 0.000% W096% | 03187 023 | 6534 | 248
Z i Ou-OrPhase | 2100-10~% | 258% | o003 QOMT | 2474 | 19694
= Ti-Phae D000 338w | 27 0015 | 16508 | 12274
GARHC{1,2) i . s i 5 4

OuwOfPhase | 8.0000-10—% | 103% | 00643 00017 | 23146 | 20034

conducted without the use of any additional training phase
nor the use of any additional training data (the same original
validation data is employed). Only one additional epoch is
used for presenting the original validation data and deciding
which of the models generated (in-phase or out-of-phase)
produces the best approximation.

The out-of-phase behavior reached by the ANN appears
mostly when the time series is a financial series, an economical
series, or (as a first approximation) a random walk like model.
If the time series is generated by natural phenomena, the
choice of in-phase matching is reached by the ANN. Although
the out-of-phase behavior is characterized by a prediction shift
(delay) with respect to original data (and this is a random
walk like behavior), the ANN generated by TAEF method
is not a random walk model (although behaves with the
same behavior). This affirmation is supported by the phase
fix procedure. If the ANN was a real random walk model,
the phase fix procedure would generate the same result of the
original prediction, because in the random walk model the 41
value is always the ¢ value. Why the ANN has this peculiar
behavior is a mystery to us at the moment, and studies are
being accomplished to explain such behavior.

When compared to the best results found with standard
MLPs and in the literature, the TAEF method presented a
superior performance in all the comparisons made. A further
study is being conducted to determine any possible limitations
of the method when dealing with other types of components
found in other different real world time series such as trends,
seasonality, impulses, steps, model exchange and other non-
linearities.
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