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Ab-This work introduccs a ncw mthod for timc scrics 
prediction - Tfrne-delay Added Evolutionary Forecasting (TAEF) 
- that arries out an wolutionary search of the minimum 
necessary time lags embedded in the problem for determining the 
phtrse space that generates the time series. The method proposed 
consists of a hybrid model wmposed of an artificial neural 
network (ANN) combiid with a H i e d  genetic algorithm 
(GA) that is capable to evolve the complete network architecture 
and parameters, its trainiog algorithm and the necessary time 
lags to represent the series. Initially, the TAEF method finds 
the most fitted predictor model and then performs a behavioral 
statistical test in order to adjust time phase distortions that may 
appear in the representation of some series. An experimental 
investigation is conducted with the method with some rrlevant 
lime series and the results achieved are d i i  and compared, 
according to seveml performance measures, to results found with 
the multilayer perceptmn networks and other works reported in 
the literat-. 

Many nonlinear approaches have been developed by inde- 
pendent researchers for the prediction of time series such as the 
bilinear models [I], the threshold autoregressive models [2], 
the exponential autoregressive models [3], the general state 
de~nden t  models [4] and nthers. However, thnse nonlinear 
approaches usually involve high technical and mathematical 
complexities. 

Alternative approaches based on artificial neural networks 
(ANNs) have k n  proposed for the same purpose [5]. In order 
to define a solution to a given problem, ANNs q u i r e  the 
setting up of a series of system parameters, some of them not 
always easy to determine. The network topology, the number 
of processing units, the algorithm for network training (and its 
corresponding variables) are just some of the parameters that 
q u i r e  definition. In addition to (hose, in  he pmicular cllsr: 

of time series prediction, another crucial element necessary to 
determine is the relevant time lags to represent the series. 

Many researches based on the evolutionary approach for 
the definition of neural network parameters have produced 
interesting results in the past 161. Some of these works have 
focussed on the evolution of the network weights whereas 
others aimed at evolving the network architecture. The pio- 
neering work of Stanley e Miikkulainen [7] shows an effi- 
cient evolutionary methodology (NEM) that combines genetic 
algorithms and neural networks to define optimal solutions, 
making use of a evolutionary adjustment for the network 
topologies. Since then, many other works have been proposed 

such as the research of Miller [8] that investigates mutation 
operators biologicaly inspired in an evolutionary algorithm. 
More particularly, in the case of time series prediction, some 
previous works have provided different approaches for tackling 
the problem [91, [lo], 161, [Ill ,  [121, [131. 

In this paper, a systematic procedure based on a hybrid 
intelligent system is proposed with the capability of auto- 
matically defining both network weights and architecture, 
the most fitted algorithm for training the network and, in 
addition, the most important parameter for the prediction of 
time series: the relevant time lags that represent the series. 
The adopted method consists of a combination of a standard 
neural network with a modified genetic algorithm (GA) [9] 
which efficiently searches and defines 1. the best evolved 
neural network structure in terms of the number of processing 
units and network weights, 2. the most fitted training algorithm 
[ 141 that boosts the prediction performance, 3. the minimum 
number of (and the particular) temporal lags necessary to solve 
the problem, and 4. a behavioral statistical test carried out at 
the prediction model output to fix relative phase distortions in 
the series reprentation. 

It is shown how this procedure can enhance prediction per- 
fonnanu making use of a test bed composed of four relevant 
time series, according to a number of different performance 
metrics. 

11. THE TIME SERIES PROBLEM 
A time series can be defined as a set of points, generally 

timc quidistant, such as Xt = {xt f IR I t = 1 , 2 , 3 . .  . N ) ,  
where t is the temporal index and N is the number of obser- 
vations. Therefore xt is a sequence of temporal observations 
orderly w q u m ~  and equally spaced. 

The aim when applying prediction techniques to a given 
time series is to identify certain regular patterns present in 
historical data in order to create a model capable of generating 
the next temporal patterns. In this context, a crucial factor for 
a good forecasting performance is the correct choice of the 
time lags considered for representing the series. Such ~lational 
structures among historical data constitute a d-dimensional 
phase space, where d is the minimum dimension capable 
of representing such relationship. Therefore, a d-dimensional 
phase space can be built so that it is possible to unfold a 
time series in its interior. The work of F. Takens [15] has 
proved that if d is sufficiently large, such built phase space is 
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homeomorphic to the phase space which gene& the time 
series. Thus Takens' theorem [IS] has, firstly, provided the 
theoretical guarantee that it is possible to build a state space 
using the correct lags, and, secondly, that if this space is 
correctly rebuilt. the dynamics of this space is topologically 
identical to the dynamics of the original system state space. 

The bii problem in reconstructing the original state space 
is naturally the correct choice of the variable d, or, more 
specifically, the choice of the important time lags necessary 
for characterization of the system dynamics, In order to 
achieve such objective some tests for the verification of the 
dependence of the time lags such as the &Test method [16], 
and somc othcr mcthods (171 b a d  on Takcns' thcorcm [15], 
can be applied. However, in general, these tests are based 
on the primary dependence between the variables and do not 
consider any possible induced dependencies. For example if 
F ( X ~ - ~ )  = F ( F ( X ~ - ~ ) ) ,  it is said that st-1 is the primary 
dependence, and the dependence induced on xt-2 is not 
considered (any variable without a primary dependence is 
denoted as irrelevant). 'Ihe method proposed in this paper, 
conversely, does not make any prim assumption about the 
dependencies between the variables. In other words, it does 
not discard any possible correlation that can exist between 
the series parameters, even higher order correlations, since it 
carries out an iterative automatic search for finding the relevant 
time lags. 

111. RIE TAEF METHOD 

The method proposed in this work - the Tune-delay Added 
Evolutionary Forecasting (TAW) method - is an evolution of 
the work 6rst reported in [18] and tries to reconstruct the phase 
space of a given time series by carrying out a search for the 
minimum dimensionality necessary to reproduce, to a certain 
accuracy, the phenomenon generator of the times series. 

The proposed procedure is a jntelligent hybrid system based 
on a multilayer pmptron network (MLP) trained with a 
m&ed genetic algorithm (GA) [9] which not only searches 
for a number of the ANN parameters but also for the adequate 
embedded dimension represented in the lags. The minimal 
acceptable accuracy of the prediction generated is initially 
sct by thc uscr, but is automatically changcd by thc training 
algorithm if it finds a model with better accuracy (evolution 
process). 

The scheme describing the proposed algorithm is based on 
the iterative definition of the three main elements necessary 
for building an accurate forecasting system: 1. the underlying 
information necessary to predict the series (the minimum 
number of time lags adequate for representing the series); 
2. the structure of the model capable of representing such 
underlying information for the purpose of prediction (the 
number of units in the ANN structure); and 3. the appropriate 
algorithm for training the model. 

It is important to consider the minimum possible number 
of time lags in the representation of the series because the 

larger the number of lags the larger the cost associated with 
the model training. 

Following this principle, the important parameters defined 
by the algorithm are: 

1) The number of time lags to represent the series: 
initially, a maximum number of lags (MaxLags) is 
defined by the user and a GA can choose any number 
of specific lags in the interval (1, MiLags] for each 
individual of the population; 

2) Thc numbcr of units in thc ANN hiddcn layer: the 
maximum number of hidden layer units (NHi&nmax) 
is determined by the user and the GA chooses, for each 
candidate individual, the number of units in the hidden 
layer (in the interval [ l ,  NHidd-I); 

3) The aaining algoruhm for the ANN: RPROP, 
Levenberg-Marquardt, Scaled Conjugate Gradient, One 
Step Secant Conjugate Gradient [I41 are candidates for 
the best algorithm for training the ANN and the GA 
&fines one of these algorithms for each individual in 
the population. 

B. Metkod Operation 
The algorithm starts with the user defining a minimum 

initial fitness value (MinFit) which should be reached by at 
least one individual of the population in a given GA round. 
The fitness function is defined as, 

Fitness = 
1 

1 + M S R  (1) 

whcrc MSE is thc Mcan Squarcd Error of thc ANN and will 
be formally &fined in the next section. 

In each GA round, a population of M individuals is gene- 
rated, each of them being represented by a chro111osome (in 
the experiments ccarried out here M = 10). Each individual 
is a three-layer ANN where the h s t  layer is defmed by the 
nwnba of time lags, the second laya is composed of a number 
of hidden processing units (sigmoidal units) and the third layer 
consists of a linear processing unit (prediction horizon of one 
step ahead). 

Each individual has distinct network initialization and cross 
validation. The stopping criteria for each one of the individual 
are: 

The number of Epochs: NEpochs: 
The increase in the validation error: GI; 
The decrease in the training error: Pt. 

The best repetition with the smallest validation error is cho- 
sen to represent the best individual. Following this procedure, 
the GA evolves towards a good fitness solution (which may 
not be the best solution yet), according to the stopping criteria: 

Number of generations created: NGm, 
Fitness evolution of the best individual: BestFit. 

After this point, when the GA reaches a solution, the 
algorithm checks if the fitness of the best individual paired 
or overcame the initial value specified for the variable MinFit 
(minimum fitness). If this is not the case, the value of MaxLags 
(maximum number of lags) is increased by the unit and the 
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GA procedure is repeated to search for a better solution. The 
objective here is to inmase the possible number of lags in the 
lag set until a solution of minimum fitness is reached. 

However, if the fitness reached was satisfactory, then the 
algorithm checks the number of lags chosen for the best 
individual, places this value as MaxLugs, sets MinFit with 
the fitness value reached by this individual, and repeats the 
whole GA pmedure. In this case, the fitness achieved by the 
best individual was better than the fitness previously set and, 
therefore, the model can possibly generate a solution of higher 
accuracy with the lags of the best individual (and with the 
MinEf reached by the best individual as the new target). If, 
however, the new value of MinFif is not reached in the next 
round, M&gs gets again the same value defined for it just 
before the round that found the best individual, increased by 
the unit (the maximum number of lags is increased by one). 
The idea is that if the time lags found by the best individual 
were not capable of producing a higher fitness than the one 
previously found then that may be because some important lag 
(or lags) was discarded. The state space for the lag search is 
then increased by one to allow a wider search for the definition 
of the lag set. This procedure goes on until the stop condition is 
reached. Afta that, the TAEF method chooses the best model 
found among all the candidates. 

C. Method Improvement 

During the development of the method, a peculiar behavior 
was observed in the prediction model. While the represen- 
tations of some series were developed by the model with a 
very close approximation between the actual series and the 
predicted series fin-phase" matching), the predictions of other 
series were always presented with a one step shift (delay) 
with respect to the original data ("out-of-phase" matching). 
This out-of-phase behavior was always found in the prediction 
of the financial series, whereaq the in-phaw matching waq 

observed in all the other types of sehies (natural phenomena 
series). An interesting point to observe is that this one step 
delay behavior is similar to a random walk like model. 
Since it is a mmmm sense in finance and emnomics that 
financial times series behave like random walks [19], as a h t  
approximation, it is not stmge that predictor models generated 
for them show this time delay distortion. 

If this fact is analyzed in comparison to a random walk 
model, the prediction error nlininlization will be reached when 
Xt = Xt-l - the value at the time t is equal to the value at 
the time t - 1, once that the expected value of the noise (R t )  
is zero. 

This observation is also in accordance with some other 
results reported in the literature 1201 which showed that 
predictions of financial time series represented by an ANN 
exhibit a chmcteristic one step shift with respect to the 
original data (out-of-phase matching). They argued that the 
financial series is represented by the ANN as if it were a 
random walk. 
In any case, in order to make the TAEF method more robust 

for representation of any time series, another element was 

introduced in the method operation. After the best model is 
chosen when training is hished, a statistical test is employed 
to check if the network representation has reached an in-phase 
or out-of-phase matching. This is conducted by comparing the 
outputs of the prediction model with the actual series. making 
use of the validation data set. This comparison is a simple 
hypothesis test, where the null hypothesis is that the predic- 
tion corresponds to an in-phase match@ and the albmative 
hypothesis is that the prediction does not correspond to an 
in-phase matching (or out-of-phase matching). 

If this test (t-test) accepts the in-phase matching hypothesis, 
the elected mdel is ready for practical use. Otherwise, the 
methd carries out a new procedure to adjust the relative 
phase between the prediction and the actual time series. The 
validation patterns are presented to the ANN and the output 
of these patterns are marranged to create new inputs that are 
both presented to the ANN and set as the output (prediction) 
target. Figure 1 illustrates this idea. 

First stsp 

Fig. 1, Pmxdure to adjust the relative p h .  

The approximation results for both the in-phase and out- 
of-phase models are measured and the best model (smaller 
MSE e m }  is elected as the final model. Figure 2 depic* the 
complete TAEF algorithm for the model oodsmctim. 

I PbubM&h 

NotPbuabdacb 
End 

Fig 2. 'Ihe TAEF metbod's algorithm 

The fase adjustment procedure does not assume that the 
ANN behave like a random walk model, but it behaves 
similarly to a random walk: the t + 1 @tion is taken as 
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the t value. 

IV. PERFORMANCE EVALUATION 

Most of the works found in the literature of time series 
prediction employ only the mean squared error (MSE) as 
performance criterion for model evaluation: 

1 - 
MSE = - C (targetj - outputj) 2 

N 

where N is the number of pattern, targetj is the desired 
output for pttem j and is the predicted value for 

j. 
For allowing a more robust performance assertiveness[21], 

a set of 6 (six) additional criteria was taken into account 
for assessment of the method proposed. The second measure 
employed was the MAPE (Mean Absolute Percentage Error), 
given by 

where N, targetj, and w 9 t p t j  the MSE par-- 
ters, and Xj is the time series at point j. 

The third measure was the U of Theil Statistics, or NMSE 
(No.tmahd Mean Squared Error): 

which associates the model performance with a random walk 
model. If the U of Theil Statistics is equal to I, the predictor 
has the same paformance of a random walk model. If the U 
of Theil Statistics is greater than 1, then the predictor has a 
worse performance than a Random Walk model, and if the U 
of Theil Statistics is less than 1, then the predictor is better 
than a random walk model. So, the predictor is usable if its 
U of Theil Statistics is less than 1, and tends to the perfect 
model if the U nf Theil Statistics tends to zero. 

The fourth metrics applied considess the c o r m m e s s  of 
Prediction of Change in Ilhction (POCID): 

zN Dj 
POCID= 100 

where 

same perfonnance of calculating the mean over the series. If 
the ARV value is greater than 1, then the predictor performs 
worse than a mean time series prediction. Otherwise, if the 
ARV value is less than 1, then the predictor is better than a 
mean time series prediction. So, the predictor is usable if its 
ARV is less than 1, and tends to the perfect model if the ARV 
tends to zero. 

The last two evaluation criteria corresponded to the Akaike 
(AIC) and the Bayesian (BIC) i n f o d o n  which include 
the freedom degrees (penalizing the models with additional 
parameters) in the model evaluation. The N C  and BIC are 
appro xi ma^ by 

AIC = N ln(MSE) + 2p 

BIC = N ln(MSE) + p + N ln(p) 

where N is the number of time series points, MSE is the 
Mean Squared Earor and p is the number of M o m  degrees. 

A set of four relevant times series was employed for evalu- 
ation of the method proposed. l k o  of these series are arti6cial 
-the series of Henon Map and GARCH Model series, and the 
other series were drawn from real world situations: Sunspot 
and Nasdaq Index. 

All the series investigated were normalized to lie within the 
interval [0,1] and divided in training set (50% of the data), 
validation set (25% of the data) and test set (25% of the data). 
The GA pammeters were the same for all the series with a 
mutation probability of 10%. For all the experiments carried 
out, the following system parameters were employed: 

Initialization pameters: 
1) MiaFdt = 0.99 (- 1% of error); 
2) MaxLags = 4;  
3) NHiddenmax = 20. 

Stopping conditions for the GA: 

1) NGen = 1000; 
2) BestFit =< 

Stopping conditions for each individual: 

2) G1-< 5%; { 1 if(targetj-targ&j-l)(outptj-outptj-l)>O, 3) Pt -< lo-6. 
0 otherwise. 

In addition, experiments with standard multi-layer percep- 
mm 0 networks were used for compa-rison with the The fifth was the Average Relative %ciame (ARV), which tirw method, were examined within is given by these experiments, with 10 (ten) random initializations for each 

1 x g 1 ( ~ t p l l t j  - targetj)' ANN architecture attempted. For all the cases, the Levenberg- 
ARV = - 

N ~ , N _ l ( m t p l t j  - ta).gct)2 (7) Marquardt Algorithm was employed for network training. For 
all the series, the best ANN initialization was elected as the 

where N, targetj, and outputi are the same parameters of ANN model to be beaten. The statistical behavioral test for 
the other evaluation measures, and targd is the time series phase correction was also applied to the standard ANN model 
mean. If the ARV value is equal to 1, the predictor has the to guarantee a fair comparison between the models. 
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prediction hypotheses (in-phase matching and out-of-phase 
matching). 

Fa. 4. Mct ion  mulls for the Sunvpot !&ex (test set) - actual valuex 
(solid lines) and predicted value$ (daKhad liaerr) for both caws: "in-phase" 
matchmg and "oat-of-phase". 

Observing the Table 11 and the predictions graphs of Figure 
4 it is possible to notice that the method correctly classified 
the Sunspot series in the in-phase matching category. 

C. Nasdaq Index Series 

The Nasdaq series (National Association of Securities Deal- 
ers Automated Quotation) corresponds to daily observations 
from 2nd February 1971 to 18th of June 2004 of the Nasdaq 
index (8428 points). 

For the Nasdaq Index Series the TAEF Methd identified the 
lags 3, 4, 6 and 8 as the relevant to the problem, defined 11 
processing units in the hidden layer of the network, elected 
the Leventmg-Marquardt algorithm as the most fitted for 
the ANN braining and classified the model as "out-of-phase" 
matching. In the experimentes with the standard ANN models 
the following architectures were examined : 3- 1-1, 3-5-1 and 
3-10-1, where the best model was 3-5- 1. Table 111 shows 
thc rcsults with all thc pcrformancc mcasurcss for both caw: 
"out-of-phase" matching and if the prediction model had been 
chosen as "in-phase" matching. Of particular interest to this 
financial wries are h e  values shown by (he Slalislics U or 
Theil(O.17), by the POCID (89.6%) and by the ARV (0.0005) 
which show that the "out-of-phase" hypothesis produces far 
better results than those given by the ''in-phase" hypothesis. 

Figure 5 shows a comparative graph of the actual Nasdaq 
series (solid lines) and the prediction generated by the method 
(dash lines) for the last 100 points of the test set. Once again 
it is possible to notice that the prediction generated in the out- 
of-phase matching hypothesis is not delayed with respect to 
the original data and that the "out-of-phase" model pointed 
out by the method was the correct choice. 

TABLE m 
EXPERIMENTAL RESULTS FOR THE NASDAQ SERIES 

AKV 3.497783 3.501 183 0.0034 5.1500P4 
-22536.0 -22536.4 -223424331 -26310.0737 I 1 - 3 . 1  1 - 3 . 9  1 -21391.1810 1 -2S358.8956 I 

lwommcc 
Measure 

Fig. 5. Redictiw re~ult.~ for the Nasdaq Index Series (test set) - actual 
d u e y  (solid lines) and predicted value.u (dashed lines) for both caw: "in- 
phasc" matching aQd "rn-of-phase" matching. 

ANN Model I T A W  Method 
In-Ph~sc I Out-Of-Yhase 1 In-Ph~se I Out--Phase 

D. GARCH Model Series 
The General Auloregressive Conditional H e w d a s l i c i ~ y  

(GARCH) [24] is a model that, loosely speaking, is related 
to a --varying variance function, i.e., volatility. The con- 
ditional term indicates a dependency on the observations of 
the immediate past, and the autoregressive tenn describes a 
feedback mechanism that incorporates past observations into 
the present. This model is a time-series technique that allows 
users to model the serial dependency of volatility. 

Bollerslev [24] developed the GARCH Model as a gener- 
alization of Engle's [25] original ARCH volatility modeling 
technique. Bollerslev 1241 designed the GARCH model to 
offer a more parsimonious model with less computational cost. 

The GARCH models are usually applied to return series, 
where financial decisions are rarely based solely on expected 
returns and volatilities. The return series is simply the differ- 
ence between the series value at time t and the series value at 
time t - 1. 

Let the return series be: 

MSC! I 0.0022 I Omrn 1 21449e-5 1 3277- 

where C is a constant and E~ is a white noise disturbance. The 
conditional variance of this innovation (xt)  is, by definition, 

1 - 2  Vart-l(xt) = Et-l(&t) - gt (12) 
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where Et- 1 denotes the expected value conditional on the past, 
of the process, along with any other information available at 
the time t - 1. 

The general GARCH(P,Q) model for the conditional vari- 
ance of innovations is, 

with the constraints, 

gi 2 0 for i = 1 , 2 , 3  ,..., P; 
a j z O  for j=1,2,3 ,..., Q 

W o  GARCH models were set up for experimentation: 
GARCH(1,l) and GARCH(1,2). According to these models, 
a data set with 1000 points was created and times series were 
built based on the return series. The initial time series point 
is xo = 0, and other points are given by, 

where Returnt is the point at time t of the return series. 
In Table IV the pramems elected by the TAEF method 

are shown for each one of the GARCH series, where the first 
column presents the series and the next columns show the 
parameters chosen by the method. The last oolumn shows 
the series classification (in-phase matching or out-of-phase 
matching). 

TABLE lV 
C o n r n G u R m o n s  REACHED BY THE TAW METHOD FOR THE GARCH 

MODEL TIMES SERIES. 

In Table V the results with all the performance measures 
are shown for all the GARCH series for both cases: out- 
of-phase matching and "in-phase"matching for the test set. 
Figures 6 and 7 present the comparative graphs of the actual 
GARCH series (solid lines) and the prediction gentrated by 
the TAEF method (dashed lines) for the test set, for both cases 
of prediction hypotheses (in-phase matching and out-of-phase 
matching). 

VI.  CONCLUSION^ 
This paper has presented a hybrid system for application in 

time series forecasting problems which consists of an ANN 
combined with a modified genetic algorithm and a behavioral 
test of phase matching hypthesis carried out at the model's 
output. 

The experimental results using seven different metrics 
(MSE, MAPE, U of Theil Statistics, POCID, ARV, AIC and 

Fa. 6. GARCH(1.1) Model. 'lhe graph the 1 n - m  Hypothesilr (top) 
and OotM-Plwie HypothRpis @ottwl) fw k test riet. Solid lines qmsent 
realdataanddashedlin*rthepdicteddara. 

Fu. 7. GARCH(l.2) MMod el. mgraph the 1 n - m  Hypothesix (top) 
and Oat-Of-Phase Hyporkis (bottom) for the test .set. Solid lines represeat 
realdataanddashedlinesiheprediueddata. 

BIC) showed that this system can boost the performance 
of time series prediction on both artificially generated time 
wries and real world (fmaucilil market and nand phenomena) 
time series. The experimental validation of the method was 
carried out on some complex and relevant time series and 
were mpared  to standard MLPs in the same conditions: two 
real world time series, the Henon Map series (with its non- 
linear relations and chaotic characteristics), and the artificially 
generated GARCH Model series. 

W1th the introduction of the behavioral test for identifying 
the best prediction model: c'in-phase" or ccout-of-phase", the 
TAEF method was able to classify if a given time series 
tends or not to a Random Walk like model, thus adjusting 
the model if necessary. Such adjustment is automatically 
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TABLE V 
RESULTS FOR THE GARCH MODEL TIMES SERLES 

conducted without the use of any additional training phase 
nor the use of any additional trahhg data (the same original 
validation data is employed). Only one additional epoch is 
used for presenting the original validation data and deciding 
which of the models generated (in-phase or out-of-phase) 
produces the best approximation. 

The out-of-phase behavior reached by the ANN appears 
mostly w h  thc timc scrics is a financial scrim, an economical 
series, or (as a first approximation) a random walk like model. 
If the time series is generated by natural phenomena, the 
choice of in-phase matching is reached by the ANN. Although 
the out-of-phase behavior is charamrid  by a prediction shift 
(delay) with respect to original data (and this is a random 
walk like behavior), the ANN generated by TAEF method 
is not a random walk model (although behaves with the 
same behavior). This affmmiw is supported by the phase 
fix procedure. If the ANN was a real random walk model, 
the phase fix procedure would generate the same result of the 
original prediction, because in the random walk model the t + 1 
value is always the t value. Why the ANN has this peculiar 
behavior is a mystery to us at the moment, and studies are 
Wing accomplished to explain such behavior. 

When compared to the best results found with standard 
MLPs and in the literature, the TAEF method presented a 
superior performance in all the oompatisws made. A further 
study is being conducted to determine any p s i b l e  limitations 
of the method when dealing with other types of components 
found in other different real world time series such as trends, 
sear;mality, impulses, steps, model exchange and other n m -  
linearitis. 
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