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Abstract – Dramatic advances in genotyping technology have 
established a need for fast, flexible analysis methods for genetic 
association studies.  Common complex diseases, such as 
Parkinson’s disease or multiple sclerosis, are thought to involve an 
interplay of multiple genes working either independently or 
together to influence disease risk.  Also, multiple underlying traits, 
each its own genetic basis may be defined together as a single 
disease.  These effects – trait heterogeneity, locus heterogeneity, 
and gene-gene interactions (epistasis) – contribute to the complex 
architecture of common genetic diseases.  Association Rule 
Discovery (ARD) searches for frequent itemsets to identify rule-
based patterns in large scale data.  In this study, we apply Apriori 
(an ARD algorithm) to simulated genetic data with varying degrees 
of complexity.  Apriori using information difference to prior as a 
rule measure shows good power to detect functional effects in 
simulated cases of simple trait heterogeneity, trait heterogeneity 
and epistasis, and moderate power in cases of trait heterogeneity 
and locus heterogeneity.  Also, we illustrate that bootstrapping the 
rule induction process does not considerably improve the power to 
detect these effects.  These results show that ARD is a framework 
with sufficient flexibility to characterize complex genetic effects.           
 

INTRODUCTION 
Over the past five years, advances in scientific technology 

have dramatically increased the rate and quantity of 
information produced from genetic studies.  Like many other 
disciplines, this change is prompting a shift from traditional 
data analysis techniques to data mining methodologies.  In the 
field of genetic epidemiology, the goal of an association study 
is to identify genetic variations that contribute to disease risk.  
Some platforms for genotyping these variants now produce 
300,000 to 500,000 variables for each individual in the study, 
with 1 million variables possible per individual in the near 
future.   

At the same time, there is a growing belief in the genetics 
community that the common diseases these platforms were 
developed to study are very complex, with tens or hundreds of 
genetic variants working independently or interacting to 
influence disease risk [1].  Also, complex disease phenotypes 
may be characterized with insufficient specificity, allowing 
multiple distinct traits or diseases (each with their own genetic 
risk factors) to be classified clinically as a single disorder.  In 
this vein, ideal tools for analysis in genetic association studies 
should not only scale well to the enormous amounts of data 
being produced, but should also be flexible enough to model 
the complex genetic effects anticipated to occur in common 
diseases, such as Parkinson’s disease or multiple sclerosis.   

In recent years, a number of computational and statistical 
techniques have been developed for or applied to the 
identification of gene-gene interactions, also known as 
epistasis.  Automated Detection of Informative Combined 
Effects (DICE)[2], Patterning and Recursive Partitioning 
(PRP)[3], set association[4], penalized logistic regression[5], 
logic regression[6], and multifactor dimensionality reduction 
(MDR)[7] have been used to find combinations of genetic 
variants that influence disease risk.  Much less attention has 
been devoted to methods that can detect trait or locus 
heterogeneity, where two or more genes independently 
contribute to disease risk.  Current statistical approaches to 
heterogeneity, such as the admixture test[8], are not very 
powerful and aim only to identify the existence of 
heterogeneity rather than characterize it.  Bayesian clustering 
was recently applied to trait heterogeneity with moderate 
success[9], but this method appears less useful when these 
traits have increased genetic complexity.  True models of 
common disease risk may involve combinations of trait and 
locus heterogeneity and epistasis, resulting in a complex 
genetic architecture.  Methods are needed that can address this 
level of complexity.   

Association rule discovery (ARD) was developed to 
identify patterns in extremely large datasets.  In a seminal 
work, Agrawal et al. presented the apriori algorithm for fast 
induction of association rules[10].  Apriori searches for 
frequently occurring variable combinations (called frequent 
itemsets).  There may be many frequent itemsets – many 
millions or more depending on the dataset size.  A minimum 
support threshold is specified by the user to limit the number 
of itemsets generated and increase computational efficiency.  
The support of a rule is the percentage of transactions (or data 
entries) that the rule can be applied to.  Once rules are 
generated, they are scored by a rule measure, sometimes called 
rule interestingness.  Traditionally, rule confidence is used, 
which is the number of transactions where the rule is true 
relative to the number of transactions where it can be applied.   

Association rule discovery has been applied to gene 
expression data, searching for patterns of differential 
expression across tens of thousands of genes [12, 13, 14].  To 
the authors’ knowledge however, association rule discovery 
techniques have not yet been applied to genetic association 
studies.   

ARD is an attractive platform for conducting large scale 
genetic analysis.  The scalability and optimization of ARD 
algorithms is a well-studied problem in the data mining 
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community[14], and several implementations (including 
parallel versions) are available.  It has yet to be shown, 
however, if rule discovery methods can identify the complex 
effects inherent to genetic diseases.   

Therefore, the focus of this paper is to test the ability of an 
association rule discovery method to detect complex genetic 
effects in simulated data, and to assess rule measures and 
algorithm considerations as a starting point for further study.    
 

DATA SIMULATIONS 
To characterize the ability of association rule discovery 

methods to identify complex genetic effects, datasets that 
contain a known genetic model were needed.  As real datasets 
with well-characterized and replicated complex effects are not 
available, we simulated data.  ARD is most amenable to case-
control data, consisting of individuals characterized by 
discrete genetic variables or loci (typically with three states 
AA, AB, and BB) and a binary disease status.  We simulated a 
set of functional genetic variables related to disease status 
through four probabilistic models, defined with increasing 
degrees of complexity (Fig. 1).  50 non-functional variables 
were simulated to add random noise typical of real genetic 
data[9].   

Model 1 is simple trait heterogeneity only (THO), where 
there is one genetic factor for each of the two traits.  Each 
factor acts recessively, so affected individuals have both 
copies of the high risk allele (BB).  For model 2, trait 
heterogeneity and locus heterogeneity (THL) was simulated 
for one of the two traits using a recessive model as described 
by Li and Reich[15].  The other trait has a single recessive 
genetic factor.  Model 3 contains trait heterogeneity and a 
gene-gene interaction (THG).  One trait has a non-linear, non-
additive gene-gene interaction model described by Frankel and 
Schork[16].  The second trait of this model has a single 
recessive locus.  Model 4 contains trait heterogeneity with 
both a gene-gene interaction and locus heterogeneity (THB).  
It uses the genetic heterogeneity model for the first trait and 
the gene-gene interaction model for the second trait (both as 
described above). For all models, each trait accounts for 
roughly half of affected individuals.  A natural overlap 
between traits can also occur, with some affected individuals 
having high-risk consistent with both traits.     

All four models simulate a disease with 5% population 
prevalence, typical of a disease such as prostate cancer[17].  
200 cases and 200 controls were used, a sample size similar to 
real world association studies. All genetic variables were 
simulated to have biallelic frequencies of 0.5.  100 datasets, 
each with different randomly seeded variables, were simulated 
for each genetic model, creating 400 datasets total.  The end 
result of each data simulation is an input file containing 
nominally encoded disease status (affected/unaffected), and a 
set of genotype variables with three nominally encoded states 
(AA, AB, BB).   

Data was simulated using a method developed by Thornton-
Wells et al. (refer to figure 10 of [9] for details).  Briefly, 
penetrance functions are translated into two probability arrays 
– one for unaffecteds containing the joint probability of being 
unaffected and having the multi-locus genotype, and one for 

affecteds containing (1- joint probability of being unaffected) 
and having the multi-locus genotype.  Essentially, each 
affected multi-locus genotype is allotted a space on a number 
line proportional to its probability.  Random uniform numbers 
between 0 and 1 are generated for each unaffected individual 
to assign that individual’s multi-locus genotype.  The sum of 
the joint probabilities of being unaffected across all multi-
locus genotypes is equal to (1 – P), the population prevalence, 
in this case set to 5%, and the sum of affected joint 
probabilities is equal to P.  These cell values were then 
normalized to fall between 0 and 1. 

 
METHODS 

An implementation of the apriori algorithm[10] by Borgelt 
and Kruse was used to generate association rules[18].  We 
chose apriori with the idea that future studies might exploit 
information about relationships between genetic variables that  

Fig. 1.  Penetrance tables for simulated genetic models.  Cell values 
indicate the penetrance, or the probability of having the trait, for each 
genotype combination.  The penetrance (X) is constrained by the 
population prevalence, set to 5%.     
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are independent of disease status.  This implementation was 
chosen because it offers a variety of options for execution, 
including alternate rule interestingness measures and itemset 
generation algorithms.  Apriori was used with a minimum 
support threshold from 5 to 30%.  Confidence was used for 
rule ranking at varying thresholds.  Information difference to 
prior (IDP) was also used as a rule ranking measure.  IDP was 
implemented by Borgelt and Kruse and is used by decision 
tree learners like C4.5 to select split attributes[19].  All itemset 
generation was performed with a minimum of 2 and a 
maximum of 3 items per itemset.  Unless noted, all 
implementation defaults were used.    

To adjust for potential over-fitting, the rule induction 
process was bootstrapped to produce a mean rule score.  The 
bootstrap is a re-sampling method used to estimate the 
standard error of a parameter[20].  It has also been used to 
provide stability to an induction process through a technique 
called bagging[21].  Specifically, bootstrapping rule induction 
may improve rule stability and quality[22].  In this study, 
bootstrapping was performed using 10 replicates. 

Thousands of rules were produced for some configurations 
of apriori.  To reduce the number of rules to an interpretable 
set, we reduce the ruleset to rules containing disease status and 
used rule ranking to select the top rule or top 5 rules.  Rules 
were ranked by either the rule measure or bootstrap estimates 
thereof.     

Performance was assessed in several ways.  For this study, 
power is defined as the number of times a variable was 
identified as functional out of 100 datasets. The false positive 
rate is the proportion of non-functional variables to the total 
number of variables averaged over all datasets.  A false 
positive rate of 25% means on average one of four variables in 
the reduced ruleset is spurious.  The number of functional 
variables identified by each ruleset was recorded also.  An 
ideal method, for example, would identify all four variables in 
the THB model, but some rulesets may identify three, two, 
one, or none of the functional variables.   

 
RESULTS 

Rule Induction 
We began analyzing the simulated datasets using default 

support and confidence thresholds ( >10% support, >80% 
confidence) (Table 1A).  Keeping the highest ranked rule only, 
functional variables from model 1 (THO) had 100% power, 
and in model 3 (THG), variables involved in the gene-gene 
interaction had 95% power.  Model 4 (THB) showed very 
poor performance, with two interacting variables around 30% 
power, and model 2 (THL) detected almost no functional 
variables.  Using the top 5 rules did not change the power 
results appreciably.   

Next, we tried lowering thresholds (Table 1B).  Changing 
the confidence threshold to >50% improved the power of all 
models except model 1 (THO).  The power for model 1 
recovered and power improved significantly for other models 
when keeping the top 5 rules. 

The false positive rate for confidence-based ranking was 
rather high, especially when using the top five rules.  The 
method did not consistently report a functional variable in the 

best rule, and seemed to promote noise variables into the top 
five rules.  To help alleviate this problem, we evaluated other 
rule measures.    

After testing on a subset of models (data not shown), the 
most promising measure for rule ranking in the Borgelt 
implementation of apriori was information difference to prior 
(IDP)[19].  The minimum cutoff for this statistic was set 
arbitrarily to 5 for all analyses to reduce the number of rules 
reported to a manageable number.   

Using this measure, apriori is still dependent on support and 
confidence thresholds for itemset generation.  To establish a 
baseline level of performance, we used extremely low cutoffs 
for support (>5%) and confidence (>5%) to evaluate the 
ranking ability of the IDP measure (Table 1C).  Compared to 
confidence ranking, the power generally improved and more 
functional variables from model 2 (THL) were identified, 
using the best rule.  The interacting variables were identified 
for model 3 (THG) (100% of datasets) and model 4 (THB) 
(98% of datasets).  Also, for model 2 (THL), each of the 3 
functional variables were identified with equal frequency 
(50%), with only one variable identified in 47% of datasets 
and two variables identified in 52%.  Using the top 5 rules, 
power improved for model 2 (THL), with all three variables 
identified in 51% of the datasets.  The overall increase in 
power was accompanied by a decrease in false positive rate.  
Power improvement for other models was marginal.  A 
functional variable was included in the top rule consistently, 
and using the top five rules increased power without a 
dramatic increase in false positive rate (model 2 was an 
exception, increasing to 23% false positive rate).  Information 
difference to prior seems to rank rules better than confidence.   

Given that IDP showed improved power, we were curious 
how sensitive the power results were to different support 
thresholds (Table 1E, 1G, 1I).  Using a higher support 
threshold of >10%, no appreciable power reduction was noted.  
At >20%, power for model 3 (THG) was unaffected, and there 
was a slight reduction in power for model 4 (THB).  Model 1 
(THO) showed dramatic power loss, with only one of the two 
variables identified, each at about equal frequency.  Model 2 
(THL) also had a power reduction, with only 18% of datasets 
reporting two or more of the functional variables.  Increasing 
the rules kept to the top 5 improved power for all models.  At 
>30%, there was a greater power loss for all models, almost 
completely for model 4 (THB).  Using the top 5 rules recovers 
power completely for model 1 (THO) and marginally for 
model 2 (THL), but has no effect for models 3 and 4.   
 
Bootstrapping 

The rules discovered for the more complex models (3 and 
4) tend to focus on one trait of the model, and show very little 
power to find the other trait.  Also, rules for model 2 do not 
consistently find all 3 variables.  We thought that instability in 
the induction process or inconsistency in scoring and ranking 
rules could influence our ability to detect these variables.  To 
correct these issues, we applied a simple bootstrapping 
procedure (Table 1D, 1F, 1H, 1J).   

Using 10 bootstrap replicates with a baseline support 
threshold (>5%), the power did not improve selecting either 
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the top rule or the top 5 rules (based on bootstrap estimates of 
IDP), respectively.  Increasing bootstrap replicates to 100 also 
did not improve power at this threshold (data not shown).  
Continuing with 10 bootstrap replicates, we evaluated the 
other three support thresholds, >10%, >20%, and >30%.  For 
10%, bootstrapping made no discernable improvement over a 
standard analysis with equivalent thresholds.  At 20%, power 
improved for some effects when keeping the top 5 rules.  For 

the 30% cutoff however, there was a general improvement 
over standard in models 3 (THG) and 4 (THB), power for 
model 2 (THL) improved slightly, and power for model 1 
(THO) was largely unchanged.  Most notably, using the single 
best rule, all functional variables were identified in at least 
15% of the datasets.  The false positive rate for model 4 
(THB) increased noticeably as well, however.

 
TABLE 1 

APRIORI RESULTS 

 
Table 1.  Each evaluation was performed on 100 datasets of each genetic model (THB, THG, THL, and THO), keeping the best rule only or the top 5 rules in the ruleset.  For each set of 100 datasets, the 
frequency of observing 0, 1, 2, 3, and 4 functional variables per ruleset was recorded.  The frequency of detecting each individual locus A, B, C, and D is also listed as power by variables.  FPR is the false 
positive rate, defined as the proportion of non-functional variables to total variables.  Blank cells indicate a frequency is not applicable, for example the THO model contains only two functional variables 
A and B, so no more than 2 functional variables will ever be observed, and variables C and D are not included.  Evaluations A and B use confidence as a rule metric.  All others use IDP.  Support and 
confidence cutoffs are denoted with S and C, and the use of bootstrapping is also noted.   
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Increasing the number of bootstrap replicates to 100 slightly 
drops the false positive rate in both the top rule and top 5 rule 
sets, but does not impact power (data not shown).   

 
Rule Quality 

The generated rules are readily interpretable, in that each 
rule designates a single cell of a multi-locus penetrance table.  
For model 1 (THO), the most common top rule illustrates that 
affected individuals who are heterozygous at one locus are 
very likely to be recessive at the other locus.  The top five 
rules contain variations of this idea, but occasionally include 
noise variables.  For model 2 (THL), a similar pattern is 
observed between the two variables with locus heterogeneity.  
The recessive allele for the other trait is usually identified 
alone as being related to disease.  Rules generated for model 3 
(THG) capture the interaction effect, with the best rule 
typically describing how affected individuals with an AA for 
one locus have BB for the other.  The other trait is 
occasionally identified as recessive.  For model 4 (THB), the 
interaction effects are detected as in model 3, and occasionally 
the locus heterogeneity is detected as in model 2.   
 

DISCUSSION 
Rule Measures 

Rule confidence shows appreciable power to highly rank 
rules including functional variables for the case of simple 
heterogeneity (model 1) and gene-gene interaction effects 
(model 3).  The IDP measure maintains the detection ability of 
confidence and greatly improves power to detect the 
remaining functional variables.  In this regard, information 
difference to prior is a superior measure for rule ranking. 

Increasing the minimal support threshold from 5% to 10% 
had a negligible impact on power using IDP as a rule measure.  
Increasing to 20% diminished power to detect heterogeneity 
effects in models 1 and 2, but interaction effects maintained 
high power.  Increasing the threshold to 30% abolished power 
to detect the interaction effects in models 3 and 4, and further 
reduced power to detect heterogeneity effects.  This illustrates 
the minimum support levels may be needed to capture specific 
effects in the data.   
 
Bootstrapping 

Bootstrapping rule induction surprisingly had little effect in 
most cases.  When the support threshold is set to a low level 
(5-20%), bootstrapping does not improve power or reduce 
false positive rates.  In some cases, it increased the appearance 
of spurious variables in the rule set.  At 30% minimum 
support however, bootstrapping improves power broadly, 
fostering detection (at some level) of all functional variables in 
each dataset.  In this circumstance, bootstrapping appears to 
help move weaker true signals higher in the rule ranking so 
they are more likely to be detected.  The false positive rate 
also increased as noisy rules or rules containing one functional 
and one noise variable were promoted in some datasets.  Here, 
increasing the number of bootstrap replicates from 10 to 100 
helps to reduce these spurious results.     

It is interesting to note that while the bootstrap does not 
improve power at low support thresholds, it can improve 
power at higher levels.  This poses an interesting 
computational question; is there an efficiency benefit to 
bootstrapping rule induction at higher support thresholds 
versus general induction at lower thresholds?  While the 
results of this study indicate that bootstrapping does not 
completely recover power, other parameterizations may prove 
otherwise.  Further study is needed to fully determine the 
utility of bootstrapping in this area. 

 
Application 

In general, association rule discovery works well for the 
complex genetic models simulated (Fig. 2).  Using a single 
best rule essentially identifies a single highly penetrant allele 
combination.  Using the top five rules allows multiple 
penetrant allele combinations to be highlighted.  These may be 
contained to a single locus or may include multiple influential 
loci.  In general, a high ranking subset does not include 
additional spurious variables.  Keeping a larger number of 
rules, however likely increases the number of noisy rules 
taken as true results.  Ideally, a rule measure cutoff would be 
established rather than selecting top ranked rules.  Identifying 
this cutoff is non-trivial, however, as rule measure values are 
data dependent.  The threshold required for adequate power in 
one dataset would be different for another dataset.  Assigning 
statistical significance to a rule poses similar problems.  
Permutation testing could provide p-values for a set of rules, 
and bootstrapping may also prove useful here, helping to 
normalize data specific effects so that a defined cutoff is 
useful.  These approaches may prove computationally 
prohibitive for larger datasets. 

Another option for reducing rule noise is to parse the rule 
list to identify similar rules.  Numerous rule comparison 
measures are available[23] which could help eliminate rules 
containing one functional and one spurious variable.  Also, 
including rules that do not relate to disease status may be 
useful in this regard, especially in the case of gene-gene 
interactions.  Variables that are related independent of disease 
status may generate high ranking rules that help confirm 
another effect.  This approach would also come at the cost of 
some increase in noise, however. 

  While these results are promising, it is important to 
recognize the limitations of this study design.  Real data from 
genetic studies can be characterized by several issues that are 
not addressed in our simulated data.  Missing data, 
correlations between variables (called linkage disequilibrium), 
variable allele frequencies, and small sample sizes are all 
potential limitations.  Also, the number of variables simulated 
in this study was small compared to the numbers possible in a 
large scale genetic study.  Nevertheless, it is important to 
demonstrate that this method has utility in smaller scale 
studies, as techniques for characterizing the complex effects 
simulated are scarce.   
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Fig. 2.  Best rules generated over 100 THB datasets using IDP with 
minimal confidence and support > 5% (evaluation C).  Using the best rule 
from each apriori run consistently finds functional variable combinations 

 
CONCLUSION 

This preliminary study demonstrates that association rule 
discovery using the apriori algorithm is an effective method 
for identifying variables involved in trait heterogeneity, locus 
heterogeneity, and gene-gene interactions, and shows 
moderate success with complex combinations of these effects.  
To date, there are very few approaches in the genetics 
community that can discover genetic effects with this degree 
of complexity.  We also highlight that bootstrapping the rule 
induction process may not improve the stability of rule 
ranking with low support thresholds, but may have utility in 
cases where computational limitations prevent itemset 
generation with very low support.         
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