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Abstract

Data privacy is an important issue in data mining. How
to protect respondents’ data privacy during the data collec-
tion and mining process is a challenge to the security and
privacy community. In this paper, we describe two schemes
for privacy preserving naive Bayesian classification which
is one of data mining tasks. More importantly, for each
scheme, we present a method to measure data privacy. We
finally compare these two methods.

Key Words: Privacy Quantification, Data Mining, Naive
Bayesain Classification.

1 Introduction

Data mining and knowledge discovery in databases are
important research areas that investigate the automatic ex-
traction of previously unknown patterns from large amounts
of data. The field connects the three worlds of databases, ar-
tificial intelligence and statistics. The information age has
enabled many organizations to gather large volumes of data.
However, the usefulness of this data is negligible if mean-
ingful information or knowledge cannot be extracted from
it. Data mining and knowledge discovery attempt to an-
swer this need. In contrast to standard statistical methods,
data mining techniques search for interesting information
without demanding an apriori hypotheses. As a field, it has
introduced new concepts and algorithms such as associa-
tion rule mining, classification, clustering, etc. Data min-
ing techniques are widely used and are becoming more and
more popular with time.

The term privacy is used frequently in ordinary lan-
guage, yet there is no single definition of this term [4]. The
concept of privacy has broad historical roots in sociological
and anthropological discussions about how extensively it is
valued and preserved in various cultures [6, 12, 13, 15]. Yet
historical use of the term is not uniform, and there remains
confusion over the meaning, value and scope of the concept
of privacy. Privacy refers to the right of users to conceal
their personal information and have some degree of control

over the use of any personal information disclosed to others
in [1, 3, 8]. So far, many schemes have been proposed for
privacy preserving data mining. However, a challenging is-
sue is how to define privacy. In this paper, we present two
different approaches to deal with privacy preserving naive
Bayesian classification, which is one of data mining tasks,
and compare two privacy measurements that we proposed
in [19, 20].

The rest of the paper is organized as follows: we discuss
how to build naive Bayesian classifiers using multi-variant
randomized response techniques in Section 2. In Section
3, we present how to apply homomorphic encryption tech-
niques to build naive Bayesian classifiers. We give our con-
clusion in Section 4.

2 Building Naive Bayesian Classifiers Using
Multi-variant Randomized Response Tech-
niques

Zhan et al. [18] proposed to use the multi-variant ran-
domized response technique (MRR) to address the prob-
lems of privacy preserving naive Bayesian classification.
We describe their scheme in the following.

Suppose data are binary and there are N private at-
tributes (A1, A2, . . ., AN ) in a data set A. We construct
N personal attributes (Y1, Y2, . . ., YN ). We want one pri-
vate attribute (question) to pair with one personal attribute
(question), therefore we make the number of attributes of Y
and the number of attributes of A be equal. Let A and Y
represent any logical expression based on those attributes
Ai(i ∈ [1, N ]) and Yi(i ∈ [1, N ]). For example, A can be
(A1 = 0) ∧ (A2 = 1) and Y can be (Y1 = 0) ∧ (Y2 = 1).

Let P (Y ) be the proportion of the records in the per-
sonal data that satisfy Y = true. Let P ∗(A) be the pro-
portion of the records in the whole randomized data set that
satisfies A = true. Let P (A) be the proportion of the
records in the whole non-randomized data set that satisfy
A = true. P ∗(A) can be observed from the randomized
data, but P (A), the actual proportion that we are interested
in, cannot be observed from the randomized data because
the non-randomized data set is not available to anybody; we
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have to estimate P (A). The goal of MRR is to find a way
to estimate P (A) from P ∗(A).

Multi-variant Randomized Response Scheme:
In this scheme, all the attributes including the class label

either keep the same values or obtain the values from per-
sonal data. In other words, when sending the private data
to the data collector, respondents either tell their answers
to the private questions or tell their answers to the personal
questions. The probability for the first event is θ, and the
probability for the second event is 1 − θ. For example, as-
sume a respondent’s attribute values A1 and A2 are 11 for
private data; and the respondent’s attribute values Y1 and Y2

are 01. The respondent generates a random number between
0 and 1; if the number is less than θ, she sends 11 to the
data collector; if the number is bigger than θ, she sends 01
to the data collector. Since the data collector only knows θ
which is the same for all respondents and does not know the
random number generated by each respondent, he cannot
know whether the respondent tells the values from private
data or personal data. To simplify our presentation, we use
P (A(11)) to represent P (A1 = 1 ∧ A2 = 1), P (Y (11)) to
represent P (Y1 = 1∧Y2 = 1) where“∧” is the logical and
operator. Because the contributions to P ∗(A(11)) partially
come from P (A(11)), and partially come from P (Y (11)),
we can derive the following equation:

P ∗(A(11)) = P (A(11)) · θ + P (Y (11)) · (1 − θ)

Since P (Y (11)) is known as Y is personal data, θ is de-
termined before collecting the data, and P ∗(A(11)) can be
directly computed on the disguised (randomized) data set.
By solving the above equation, we can obtain P (A(11)),
the information needed to build a naive Bayesian classifier.
The general model is described in the following:

P ∗(A) = P (A) · θ + P (Y ) · (1 − θ) (1)

Introducing Naive Bayesian Classification:
The naive Bayesian classifier is one of the most success-

ful algorithms in many classification domains. Despite of
its simplicity, it is shown to be competitive with other com-
plex approaches, especially in text categorization and con-
tent based filtering. The naive Bayesian classifier applies
to learning tasks where each instance x is described by a
conjunction of attribute values and where the target func-
tion f(x) can take on any value from some finite set V. A
set of training examples of the target function is provided,
and a new instance is presented, described by the tuple of
attribute values < a1, a2, · · · , an >. The learner is asked to
predict the target value for this new instance. Under a condi-
tional independence assumption, i.e., P (a1, a2, · · · , an|vj)
= Πn

i=1P (ai|vj), a naive Bayesian classifier can be derived
as follows:

vNB = argmaxvj∈V P (vj)Πn
i=1P (ai|vj)

= argmaxvj∈V P (vj)Πn
i=1

P (ai ∧ vj)
P (vj)

Building Naive Bayesian Classifiers:
To build a NB classifier, we need to compute P (vj)

and P (aj ∧ vj). To compute P (vj), we can use the gen-
eral model (Eq. 1) with A being (C = vj) and Y being
(CY = vj) where C is the class label for the private data
A and CY is the class label of personal data Y . P ∗(A) can
be computed directly from the (whole) randomized data set.
P (Y ) is known since it is personal and θ is known as well.
By knowing θ, data collector, who conducts the training,
only knows the probability of the training data being pri-
vate, but does not exactly know if each value is private data
or not. By solving the above equation, we can get P (A)
which is P (C = vj) in this case. Similarly, we can com-
pute P (ai ∧ vj) using the general model (Eq. 1) with A be-
ing (Ai = ai∧C = vj) and Y being (Yi = ai∧CY = vj).

Measuring Privacy:
To quantify privacy, we first measure privacy for a single

entry; we then select the minimal privacy value and treat
it as the privacy level for the group. The reason why we
choose the minimal value for the group is that, the entries
are randomized together, by finding the original value for
one entry will cause disclosing the original values for other
entries in the group.

For a single entry, original value can be 1 or 0; random-
ized value can be 1 or 0 as well. Privacy comes from uncer-
tainty of original value given a randomized value. In other
words, if original value is 1, given randomized value 1 or
0, privacy will be the probability of data collector guess the
original value being 0. There are four possible randomiza-
tion results:

• Original value is 1, the value after randomization is
still 1;

• Original value is 1 but the value after randomization is
0;

• Original value is 0 but the value after randomization is
1;

• Original value is 0, the value after randomization is
still 0.

Consequentially, there are four components in the pri-
vacy measure:
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• The probability that original value is 1, multiplies the
probability that original value is 1 and the value after
randomization is still 1 , then times the probability that
guessing the original value is 0 given the randomized
value is 1.

• The probability that original value is 1, multiplies the
probability that original value is 1 but the value after
randomization is still 0, then times the probability that
guessing the original value is 0 given the randomized
value is 0.

• The probability that original value is 0, multiplies the
probability that original value is 0 but the value af-
ter randomization is 1 , then times the probability that
guessing the original value is 1 given the randomized
value is 1.

• The probability that original value is 0, multiplies the
probability that original value is 0 and the value after
randomization is still 0, then times the probability that
guessing the original value is 1 given the randomized
value is 0.

Let’s use the following denotations:

• Let’s Om be the original value;

• Let’s Rm be the value after randomization;

• Let’s Wa be the probability that a value is 1 in data set
A, and the probability that a value is 0 in data set A is
(1 − Wa);

• Let’s Wy be the probability that a value is 1 in data set
Y, and the probability that a value is 1 in data set Y is
(1 − Wy);

Privacy denoted by PRE(PSE) for a single entry before
mining can be derived as follows:

PSE(PRE) =
Pr(Om = 1) ∗ Pr(Rm = 1|Om = 1) ∗ Pr(Om = 0|Rm = 1)

+
Pr(Om = 1) ∗ Pr(Rm = 0|Om = 1) ∗ Pr(Om = 0|Rm = 0)

+
Pr(Om = 0) ∗ Pr(Rm = 1|Om = 0) ∗ Pr(Om = 1|Rm = 1)

+
Pr(Om = 0) ∗ Pr(Rm = 0|Om = 0) ∗ Pr(Om = 1|Rm = 0)
=
Component1 + Component2

+Component3 + Component4

The first component can be computed as follows:

Component1 =
Wa ∗ [θ + (1 − θ) ∗ Wy ] ∗ Pr(Rm=1|Om=0)∗Pr(Om=0)

Pr(Rm=1)

= Wa∗[θ+(1−θ)∗Wy]∗(1−θ)∗(1−Wy)∗(1−Wa)
Pr(Rm=1|Om=1)∗Pr(Om=1)+Pr(Rm=1|Om=0)∗Pr(Om=0)

= Wa∗[θ+(1−θ)∗Wy]∗(1−θ)∗(1−Wy)∗(1−Wa)
[θ+(1−θ)∗Wy]∗Wa+(1−θ)∗(1−Wy)∗(1−Wa)

Similarly, we can obtain other components.

Component2 =
Wa∗(1−θ)∗(1−Wy)∗[θ+(1−θ)∗(1−Wy)]∗(1−Wa)
[θ+(1−θ)∗(1−Wy)]∗(1−Wa)+(1−θ)∗(1−Wy)∗Wa

Component3 =
(1−Wa)∗(1−θ)∗Wy∗[θ+(1−θ)∗Wy]∗Wa

(θ+(1−θ)∗Wy)∗Wa+(1−θ)∗Wy∗(1−Wa) , and

Component4 =
(1−Wa)∗[θ+(1−θ)∗(1−Wy)]∗(1−θ)∗(1−Wy)∗Wa

[θ+(1−θ)∗(1−Wy)]∗(1−Wa)+(1−θ)∗(1−Wy)∗Wa

We then get

PSE(PRE) =

Wa∗(θ+(1−θ)∗Wy)∗(1−θ)∗(1−Wy)∗(1−Wa)
(θ+(1−θ)∗Wy)∗Wa+(1−θ)∗(1−Wy)∗(1−Wa)

+
Wa∗(1−θ)∗(1−Wy)∗(θ+(1−θ)∗(1−Wy))∗(1−Wa)
(θ+(1−θ)∗(1−Wy))∗(1−Wa)+(1−θ)∗(1−Wy)∗Wa

+
(1−Wa)∗(1−θ)∗Wy∗(θ+(1−θ)∗Wy)∗Wa

(θ+(1−θ)∗Wy)∗Wa+(1−θ)∗Wy∗(1−Wa)

+
(1−Wa)∗(θ+(1−θ)∗(1−Wy))∗(1−θ)∗(1−Wy)∗Wa

(θ+(1−θ)∗(1−Wy))∗(1−Wa)+(1−θ)∗(1−Wy)∗Wa

= (1−Wa)∗Wa∗(1−θ)∗(θ+(1θ)∗Wy)
(θ+(1−θ)∗Wy)∗Wa+(1−θ)∗Wy∗(1−Wa)

+
2∗Wa∗(1−Wa)∗(1−θ)∗(1−Wy)∗(θ+(1−θ)∗(1−Wy)
(θ+(1−θ)∗(1−Wy))∗(1−Wa)+(1−θ)∗(1−Wy)∗Wa

3 Building Naive Bayesian Classifiers Using
Homomorphic Encryption Techniques

In our privacy-oriented protocols, we use the additive ho-
momorphism offered by [10] in which Paillier proposed a
new trapdoor mechanism based on the idea that it is hard
to factor a number n = pq where p and q are two large
prime numbers. We utilize the following instantiation of
the homomorphic encryption functions: e(m1) × e(m2) =
e(m1 +m2) where m1 and m2 are the data to be encrypted.
Because of the property of associativity, e(m1 + m2 + .. +
mn) can be computed as e(m1) × e(m2) × · · · × e(mn)
where e(mi) �= 0. That is

d(e(m1 + m2 + · · · + mn)) = d(e(m1) × e(m2) × · · · × e(mn))
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Note that a corollary of it is as follows:

d(e(m1)m2) = d(e(m1 × m2)),

where × denotes multiplication.
To build a naive Bayesian classifier, we need to conduct

the following major steps:

1. To compute Pr(ai, vj) =
∏n

i=1 Pr(ai|vj)Pr(vj).

2. To Compute Pr(vj)
∏n

i=1
Pr(ai,vj)

Pr(vj)
for each vj ∈ V .

3. To Compute VNB .

Next, we will present a privacy-consicious scheme to
deal with privacy preserving naive Bayesian classification
for horizontal collaboration.

In horizontal collaboration, there are N parties denoted
by P1, P2, · · ·, and Pn. Assume that P1 has a private data
set DS1, P2 has a private data set DS2, · · · and Pn has a pri-
vate data set DSn. The goal is to compute e(Pr(ai, vj)),
e(Pr(vj)

∏n
i=1

Pr(ai,vj)
Pr(vj)

) for each vj ∈ V , and VNB for
horizontal collaboration involving DS1, · · ·, and DSn with-
out compromising data privacy.

To deal with the above problem, we provide the follow-
ing protocols.

Highlight of Protocol 1: In our protocol, we first se-
lect a key generator. Let us assume that Pn is the key
generator who generates a homomorphic encryption key
pair (e, d). Pn encrypts

∏
ai∈Pn

Pr(ai|vj) and sends it to
P1. P1 computes e(

∏
ai∈Pn

Pr(ai|vj)·
∏

ai∈P1
Pr(ai|vj))

and sends it to P2, and so on. Finally, Pn computes
e(

∏τ
i=1 Pr(ai|vj)).

We present the formal protocol as follows:

Protocol 1 .

1. Pn generates a cryptographic key pair (e, d) of a ho-
momorphic encryption scheme.

2. Pn computes e(
∏

ai∈Pn
Pr(ai|vj)) denoted by e(Gn)

and sends it to P1.

3. P1 computes e(Gn)G1 = e(G1Gn) where G1 =∏
ai∈P1

Pr(ai|vj), then sends e(G1Gn) to P2.

4. P2 computes e(G1Gn)G2 = e(G1G2Gn) where G2 =∏
ai∈P2

Pr(ai|vj), then sends e(G1G2Gn) to P3.

5. Continue until Pn−1 obtains e(G1G2 · · ·Gn) =
e(

∏τ
i=1 Pr(ai|vj)).

The Correctness Analysis of Protocol 1: When P1

receives e(Gn), he computes e(Gn)G1 which is equal to
e(G1Gn) according to Equation 2. He sends it to P2 who
computes e(G1Gn)G2 which is equal to e(G1G2Gn) ac-
cording to Equation 2. Continue to send the result to

the next party. Finally, Pn−1 obtains e(G1G2 · · ·Gn) =
e(

∏τ
i=1 Pr(ai|vj)). Therefore, the Protocol 1 correctly

computes e(
∏τ

i=1 Pr(ai|vj)).
To compute e(Pr(vj)), each party computes Pr(vj) for

their own class label set. Let assume that P1 has the share
s1, P2 has the share s2, · · ·, Pn has the share sn. Our goal
is to compute e(

∑n
i=1 si) = e(Pr(vj)). We can apply Pro-

tocol 2 to deal with this problem.

Protocol 2 .

1. Pn generates a cryptographic key pair (e, d) of a se-
mantically secure homomorphic encryption scheme.
Pn also generates an integer X which is greater than
N .

2. P1 computes e(s1 +R1×X) and sends it to P2 where
R1 is a random integer generated by P1.

3. P2 computes e(s1 + R1 × X) × e(s2 + R2 × X) =
e(s1 + s2 + (R1 + R2)X) and sends it to P3. R2 is a
random integer generated by P2.

4. Repeat until Pn computes e(s1 + R1 × X) × e(s2 +
R2 × X) × · · · × e(sn + Rn × X) = e(

∑n
i=1 si +∑n

i=1 Ri × X).

5. Pn computes d(e(
∑n

i=1 si +(
∑n

i=1 Ri)×X)) modX
= (

∑n
i=1 si + (

∑n
i=1 Ri) × X) modX =

∑n
i=1 si.

The Correctness Analysis of Protocol 2: To show the
s is correct, we need to consider:

d[e(s1) × e(s2) × · · · × e(sn)]

= d[e(s1+R1×X)×e(s2+R2×X)×· · ·×e(sn+Rn×X)]modX.

The left hand side

d[e(s1) × e(s2) × · · · × e(sn)] =
n∑

i=1

si.

The right hand side

d[e(s1+R1×X)×e(s2+R2×X)×· · ·×e(sn+Rn×X)]modX

= [
n∑

i=1

si +
n∑

i=1

Ri) × X ]modX.

Since X > N ,
∑n

i=1 si ≤ N , and
∑n

i=1 Ri is an inte-
ger,

[
n∑

i=1

si + (
n∑

i=1

Ri) × X ]modX =
n∑

i=1

si.

Therefore, the
∑n

i=1 si is correctly computed.
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We follow the Protocol 2 until Pn−1 obtains
e(

∑n
i=1 si) = e(Pr(vj)). Next, we use Protocol 3 to

compute e(Pr(vj)
∏τ

i=1 Pr(ai|vj)).
Highlight of Protocol 3: In our protocol, Pn−1 gen-

erates t random numbers from the real domain, sends
e(Pr(vj)), e(r1), · · ·, e(rt) to Pn in a random order. Pn

decrypts them and sends the decrypted sequence to P1. P1

and Pn−1 jointly computes e(Pr(vj)
∏τ

i=1 Pr(ai|vj)).
We present the formal protocol as follows:

Protocol 3 .

1. Pn−1 generates a set of random numbers: R1, R2, · · ·,
Rt. He then sends e(Pr(vj)), e(R1), · · ·, e(Rt) to Pn

in a random order.

2. Pn decrypts each element in the sequence, then sends
them to P1 in the same order as Pn−1 did.

3. Pn−1 sends e(
∏τ

i=1 Pr(Pr(ai, vj))) to P1.

4. P1 computes e(
∏τ

i=1 Pr(Pr(ai, vj)))Pr(vj),
e(

∏τ
i=1 Pr(Pr(ai, vj)))R1 , · · ·,

e(
∏τ

i=1 Pr(Pr(ai, vj)))Rt . P1 then sends them to
Pn−1.

5. Pn−1 obtains e(Pr(vj)
∏τ

i=1 Pr(ai|vj)).

The Correctness Analysis of Protocol 3: In
step 4, P1 computes e(

∏τ
i=1 Pr(Pr(ai, vj)))Pr(vj),

e(
∏τ

i=1 Pr(Pr(ai, vj)))R1 , · · ·, and
e(

∏τ
i=1 Pr(Pr(ai, vj)))Rt . They are

equal to e(Pr(vj)
∏τ

i=1 Pr(Pr(ai, vj))),
e(R1

∏τ
i=1 Pr(Pr(ai, vj))), · · ·, and

e(Rt

∏τ
i=1 Pr(Pr(ai, vj))) respectively accord-

ing to Equation 2. In step 5, Pn−1 gets
e(Pr(vj)

∏τ
i=1 Pr(Pr(ai, vj))) since he knows the

permutations.
Through the above protocol, e(Pr(vj)

∏n
i=1 Pr(ai|vj))

can be computed for each vj ∈ V . Without loss of general-
ity, Let us assume P1 gets e(VNB1), e(VNB2), · · ·, e(VNBk

)
The goal is to find the largest one which can be achieved by
Protocol 4 in [16].

Measuring Privacy:
In this following, we first present some notations, we

then quantify the privacy according to our definition [17].

• We use ADVPi to denote Pi’s advantage to gain access
to the private data of any other party via the component
protocol.

• Pr(TPi |V IEWPj , P rotocolς): the probability that pj

sees Pi’s private data via protocol ς .

• We use ADVS to denote the advantage of one party to
gain the other party’s private data via the component

protocol by knowing the semantically secure encryp-
tions. According to definition of semantic security [7],
ADVS is negligible.

Theorem 1 Protocol 1 preserves data privacy at a
level equal to ADVS .

Proof 1 We will identify the value of ε such that

|Pr(T |CP ) − Pr(T )| ≤ ε

holds for T = TPi , i ∈ [1, n], and CP = Protocol 1.

According to our notation,

ADVPi = Pr(TPj |V IEWPi , P rotocol1) −
Pr(TPj |V IEWPi ), j �= i, i �= n.

Since all the information that Pi obtains from other
parties is the encrypted by e which is semantically se-
cure,

ADVPi = ADVS .

In order to show that privacy is preserved, we need to
know the value of the privacy level ε. We set

ε = ADVS .

Then

Pr(TPj |V IEWPi , P rotocol1) −
Pr(TPj |V IEWPi) ≤ ADVS , j �= i, i �= n,

which completes the proof.

Theorem 2 Protocol 2 preserves data privacy at a
level equal to ADVPn .

Proof 2 We will identify the value of ε such that

|Pr(T |CP ) − Pr(T )| ≤ ε

holds for T = TPi , i ∈ [1, n], and CP = Protocol 2.

According to our notation,

ADVPi = Pr(TPj |V IEWPi , P rotocol2)
−Pr(TPj |V IEWPi), i �= n,

634

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



and

ADVPn = Pr(TPj |V IEWPn , P rotocol2)
−Pr(TPj |V IEWPn),

where ADVPn is the advantage of Pn to gain access to
other parties’ private data by obtaining the final result∑n−1

i=1 si.

Since P1 obtains no data from other parties, ADVP1 =
0. For P2, · · ·, Pn−1, all the information that each of
them obtains about other parties’ data is encrypted,
thus,

ADVPi = ADVS ,

which is negligible.

In order to show that privacy is preserved, we need to
know the value of the privacy level ε. We set

ε = max(ADVPi , ADVPn)
= max(ADVS , ADVPn) = ADVPn .

Then

Pr(TPj |V IEWPi , P rotocol2)
−Pr(TPj |V IEWPi) ≤ ADVPn , i �= n,

and

Pr(TPj |V IEWPn , P rotocol2)
−Pr(TPj |V IEWPn) ≤ ADVPn ,

which completes the proof.

Theorem 3 Protocol 3 preserves data privacy at a
level equal to ADVPn .

Proof 3 We will identify the value of ε such that

|Pr(T |CP ) − Pr(T )| ≤ ε

holds for T = TPi , i ∈ [1, n], and CP = Protocol 3.

According to our notation,

ADVP1 = Pr(TPj |V IEWP1 , P rotocol3) −
Pr(TPj |V IEWP1 ), j �= 1,

ADVPn−1 = Pr(TPi |V IEWPn−1 , P rotocol3)
−Pr(TOthers|V IEWPn−1), i �= n − 1,

and

ADVPn = Pr(TPi |V IEWPn , P rotocol3)
−Pr(TPi |V IEWPn), i �= n.

Since all the information that P1 and Pn−1 obtain from
other parties is encrypted by e which is semantically
secure,

ADVP1 = ADVS ,

and

ADVPn−1 = ADVS .

In order to show that privacy is preserved, we need to
know the value of the privacy level ε. We set

ε = max(ADVPn , ADVPn−1 , ADVP1)
= max(ADVPn , ADVS) = ADVPn .

Then

Pr(TPj |V IEWP1 , P rotocol3)
−Pr(TPj |V IEWP1 ) ≤ ADVPn , j �= 1,

P r(TPi |V IEWPn−1 , P rotocol3)
−Pr(TPi |V IEWPn−1) ≤ ADVPn , i �= n − 1,

and

Pr(TPi |V IEWPn , P rotocol3)
−Pr(TPi |V IEWPn) ≤ ADVPn , i �= n,

which completes the proof 1.

1Note that the information that Pn obtains from Pn−1 is hidden by t
random numbers.

635

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



4 Conclusion

To achieve privacy preserving data mining, a set of
schemes have been proposed such as Secure Multi-
party Computation- based (SMC) techniques [9, 14],
randomization-based approach [2, 11, 5], crypto-based
approach [16, 19], etc. An important issue among
privacy-consicious schemes is privacy quantification.
In this paper, we have presented two approaches to
build naive Bayesian classifiers using multi-variant
randomized response technique and homomorphic en-
cryption. We describe two different privacy quantifica-
tion schemes. The first one can be treated as a special
case of the second one. In the future, we would like to
follow the second method to quantify the data privacy.
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