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Abstract

To conduct data mining, we often need to collect data
from various parties. Privacy concerns may prevent the
parties from directly sharing the data. A challenging prob-
lem is how multiple parties collaboratively conduct data
mining without breaching data privacy. The goal of this
paper is to provide solutions for privacy-preserving deci-
sion tree classification which is one of data mining tasks.
Our goal is to obtain accurate data mining results without
disclosing private data.

Key Words: Privacy, Data Mining, Decision Tree Clas-
sification.

1. Introduction

Recent advances in data collection, data dissemination
and related technologies have inaugurated a new era of re-
search where existing data mining algorithms should be re-
considered from the point of view of privacy preservation
[20]. The need for privacy is sometimes due to law (e.g.,
for medical databases) or can be motivated by business in-
terests. However, there are situations where the sharing of
data can lead to mutual benefit. For example, there are
several biomedical labs involved into a multi-site medical
study. Each lab has its own data set containing medical
records. These labs would like to conduct data mining over
the data sets from all of labs with the goal of more valuable
information would be obtained via mining the joint data set.
Because of legal privacy rules, one lab cannot disclose their
private records to other labs. How can these labs achieve
their goal? In this paper, we present technologies to solve
privacy-preserving collaborative decision tree classification
problem over large data sets with reasonable efficiency.

The paper is organized as follows: We present our pri-
vacy definition in section 2. Our technologies are provided
in section 3 and 4. Thereafter, we describe our problem and
privacy-oriented protocols for privacy-preserving collabo-
rative decision tree classification in section 5, section 6 and

section 7. We present some related works and our conclu-
sions in section 8.

2 Definition of Privacy

We presented a definition of privacy in [19, 20]. In this
paper, we follow the same concept of privacy which is de-
scribed as follows:

Definition 1 A privacy-oriented scheme S preserves data
privacy if for any private data T , the following is held:

|Pr(T |PPDMS) − Pr(T )| ≤ ε

where

• PPDMS: Privacy-preserving data mining scheme.

• ε: A probability parameter.

• Pr(T |PPDMS): The probability that the private
data T is disclosed after privacy-preserving data min-
ing schemes being applied.

• Pr(T ): The probability that the private data T is
disclosed without any privacy-preserving data mining
scheme being applied.

• Pr(T |PPDMS) − Pr(T ): The probability that pri-
vate data T is disclosed with and without privacy-
preserving data mining schemes being applied.

We call ε the privacy level that the privacy-oriented
scheme S can achieve. The goal is to make ε as small as
possible.

We have defined privacy for data mining algorithms.
However, often time, we need to reduce the whole privacy-
preserving data mining algorithm to a set of component
privacy-oriented protocols. We say the privacy-preserving
data mining algorithm preserves privacy if each component
protocol preserves privacy and the combination of the com-
ponent protocols do not disclose private data. In the secure
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multiparty computation literature, a composition theorem
[6] describes the similar idea.

Theorem 1 Suppose that g is privately reducible to f and
that there exists a protocol for privately computing f. Then
there exists a protocol for privately computing g.

Proof 1 Refer to [6].

We now formally define privacy for a component proto-
col.

Definition 2 A privacy-oriented component protocol CP
preserves data privacy if for any private data T , the fol-
lowing is held:

|Pr(T |CP ) − Pr(T )| ≤ ε

where

• CP : Component protocol.

• Pr(T |CP ): The probability that the private data T is
disclosed after a privacy-preserving component proto-
col being applied.

• Pr(T |CP )−Pr(T ): The probability that private data
T is disclosed with and without privacy-preserving
component protocol.

We call ε the privacy level that the privacy-oriented com-
ponent protocol CP can achieve. The goal is to make ε as
small as possible.

Next, we introduce homomorphic encryption and digital
envelope technique.

3 Homomorphic Encryption

The concept of homomorphic encryption was originally
proposed in [14]. Since then, many such systems have been
proposed. In this paper, we base our privacy-oriented pro-
tocols on [10] which is semantically secure. In our privacy-
oriented protocols, we use additive homomorphism offered
by [10] in which Paillier proposed a new trapdoor mecha-
nism based on the idea that it is hard to factor number n = pq
where p and q are two large prime numbers. In the perfor-
mance evaluation, Paillier compares the proposed encryp-
tion scheme with existing public-key cryptosystems. The
results show that the encryption process is comparable with
encryption process of RSA in terms of the computation cost;
the decryption process is faster than the decryption process
of RSA.

In this paper, we utilize the following property of the
homomorphic encryption functions: e(m1) × e(m2) =
e(m1 +m2) where m1 and m2 are the data to be encrypted.

Because of the property of associativity, e(m1 + m2 + .. +
mn) can be computed as e(m1) × e(m2) × · · · × e(mn)
where e(mi) �= 0. That is

e(m1 + m2 + · · · + mn) = e(m1) × e(m2) × · · · × e(mn). (1)

d(e(m1)m2) = d(e(m1 × m2)), (2)

where × denotes multiplication.

4 Digital Envelope

A digital envelope [2] is a random number (or a set
of random numbers) only known by the owner of private
data. To hide the private data in a digital envelope, we
conduct a set of mathematical operations between a ran-
dom number (or a set of random numbers) and the private
data. The mathematical operations could be addition, sub-
traction, multiplication, etc. For example, assume the pri-
vate data value is υ. There is a random number R which is
only known by the owner of υ. The owner can hide υ by
adding this random number, e.g., υ + R.

5 Privacy-Preserving Collaborative Decision
Tree Classification Problems

In this paper, we consider the privacy-preserving collab-
orative decision tree classification problem which is defined
as follows:

Problem 1 P1 has a private data set DS1, P2 has a private
data set DS2, · · · and Pn has a private data set DSn. The
data set [DS1∪DS2∪· · ·∪DSn] forms a dataset, which is
actually the concatenation of DS1, DS2, · · · and DSn. The
n parties want to conduct decision tree classification over
[DS1 ∪ DS2 ∪ · · · ∪ DSn] to obtain the mining results
satisfying the given constraints.

There are two types of collaborative models. In the ver-
tical collaboration, diverse features of the same set of data
are collected by different parties. In the horizontal collab-
oration, diverse sets of data, all sharing the same features,
are gathered by different parties. The collaborative model
that we consider is the vertical collaboration.

6. Privacy-Preserving Decision Tree Classifica-
tion

The decision tree is one of the classifiers. The induction
of decision trees [11, 12, 13] from attribute vectors is an
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important and fairly explored machine learning paradigm.
The decision tree representation is the most widely used
method. There is a large number of decision tree induction
algorithms described in the machine learning and applied
statistics literature. In general, the decision tree is built in a
top-down style, using a greedy strategy to choose, based on
the instances corresponding to the sub-tree in construction,
the root of this sub-tree.

A decision tree is a class discriminator that recursively
partitions the training set until each partition entirely or
dominantly consists of examples from one class. A well
known algorithm for building decision tree classifiers
is ID3 [11]. We describe the algorithm below where S
represents the training instances and AL represents the
attribute list:

Algorithm 1 . ID3(S, AL)

1. Create a node V.
2. If S consists of instances with all the same class C then

return V as a leaf node labelled with class C.
3. If AL is empty, then return V as a leaf-node with the

majority class in S.
4. Select test attribute (TA) among the AL with the high-

est information gain.
5. Label node V with TA.
6. For each known value ai of TA

(a) Grow a branch from node V for the condition
TA = ai.

(b) Let si be the set of instances in S for which
TA = ai.

(c) If si is empty then attach a leaf labeled with the
majority class in S.

(d) Else attach the node returned by ID3(si, AL −
TA).

According to ID3 algorithm, each non-leaf node of the
tree contains a splitting point, and the main task for building
a decision tree is to identify an attribute for the splitting
point based on the information gain. Information gain can
be computed using entropy. In the following, we assume
there are nc number of classes in the whole training data
set. Entropy(S) is defined as follows:

Entropy(S) = −
nc∑

j=1

Qj log Qj , (3)

where Qj is the relative frequency of class j in S. Based on
the entropy, we can compute the information gain for any
candidate attribute A if it is used to partition S:

Gain(S, A) = Entropy(S) −
∑

v∈A

(
|Sv|
|S| Entropy(Sv)),

(4)
where v represents any possible values of attribute A; Sv is
the subset of S for which attribute A has value v; |Sv| is the
number of elements in Sv; |S| is the number of elements
in S. To find the best split for a tree node, we compute in-
formation gain for each attribute. We then use the attribute
with the largest information gain to split the node.

To build a decision tree classifier, we have to decide and
assign an attribute for each node. In order to determine each
node for the tree, we need to conduct the following steps:

1. To compute Entropy(Sv).

2. To compute |Sv|
|S| .

3. To compute |Sv|
|S| Entropy(Sv).

4. To compute information gain for each candidate at-
tribute.

5. To compute the attribute with the largest information
gain.

Next, we will provide privacy-oriented protocols to con-
duct each step in the scenarios of vertical collaboration.

7 Privacy-Preserving Protocols

Each party has a private data set. The data set normally
contains many attributes. For example, P1 has DS1 which
includes five attributes denoted by A11, A12, · · · , A15 re-
spectively. To compute Qj , we need to compute the fre-
quency count involving all the private data. Each party can
first join their own attribute vectors and obtain a single vec-
tor. For example, in Figure 1, there are three attribute vec-
tors which are denoted by Ai1, Ai2 and Ai3, after being
combined, they reduce to a single vector which is denoted
by Ai. The combination process is as follows: if Ai1 = 1,
Ai2 = 1 and Ai3 = 1, then Ai = 1; otherwise, Ai = 0.
The cross-parties computation will solely use this combined
vector (Figure 1).

We first select a key generator who produces the encryp-
tion and decryption key pairs. Let us assume that Pn is
the key generator who generates a homomorphic encryp-
tion key pair (e, d). Next, we will show how to conduct
each step.
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Highlight of Protocol 1: There are three steps in
the protocol. In step I, Pn−1 obtains e(Qj). In this
step, Pn sends e(Ani) to P1 who computes e(An1A11)
then sends it to P2. Continue this process until Pn−1

obtains e(A1iA2i · · ·Ani), i ∈ [1, N ]. Pn−1 then com-
putes e(Qj) = e(A11A21 · · ·An1 + A12A22 · · ·An2 +
· · · + A1NA2N · · ·AnN )

1
N = e(A11A21 · · ·An1) ×

e(A12A22 · · ·An2) × · · · × e(A1NA2N · · ·AnN )
1
N .

In step II, Pn−1 computes e(Qj log(Qj)). In this step,
Pn−1 first generates set of random numbers R1, R2, · · ·, and
Rt, then sends the sequence of e(Qj), e(R1), e(R2), · · ·,
e(Rt) to Pn in a random order. Pn decrypts each element
in the sequence, computes, then sends log(Qj), log(R1),
log(R2), · · ·, log(Rt) to P1 in the same order as Pn−1 did.
P1 and Pn−1 compute e(Qj log(Qj)). Step I and step II are
repeated to obtain e(Qjlog(Qj)) for all j’s. Finally, Pn−1

computes e(Entropy(Sv)).
We present the formal protocol as follows:

Protocol 1 .

1. Step I: To compute e(Qj).

(a) Pn sends e(An1) to P1.

(b) P1 computes e(An1)A11 = e(An1A11), then
sends it to P2.

(c) P2 computes e(An1A11)A21 = e(An1A11A21),
then sends it to P3.

(d) Continue until Pn−1 obtains e(A11A21 · · ·An1).

(e) Repeat all the above steps for A1i, A2i, · · ·, and
Ani until Pn−1 gets e(A1iA2i · · ·Ani) for all i ∈
[1, N ].

(f) Pn−1 computes e(A11A21 · · ·An1) ×
e(A12A22 · · ·An2) × · · · ×
e(A1NA2N · · ·AnN ) = e(A11A21 · · ·An1 +
A12A22 · · ·An2 + · · · + A1NA2N · · ·AnN ).

(g) Pn−1 computes e(A11A21 · · ·An1 +
A12A22 · · ·An2 + · · ·+ A1NA2N · · ·AnN )

1
N =

e(Qj).

2. Step II: To compute e(Qj log(Qj)).

(a) Pn−1 generates a set of random numbers R1, R2,
· · ·, and Rt.

(b) Pn−1 sends the sequence of e(Qj), e(R1),
e(R2), · · ·, e(Rt) to Pn in a random order.

(c) Pn decrypts each element in the sequence, and
sends log(Qj), log(R1), log(R2), · · ·, log(Rt)
to P1 in the same order as Pn−1 did.

(d) P1 adds a random number R to each of the ele-
ments, then sends them to Pn−1.

(e) Pn−1 obtains log(Qj) + R and computes
e(Qj)(log(Qj)+R) = e(Qj log(Qj) + RQj).

(f) Pn−1 sends e(Qj) to P1.

(g) P1 computes e(Qj)−R = e(−RQj) and sends it
to Pn−1.

(h) Pn−1 computes e(Qjlog(Qj) + RQj) ×
e(−RQj) = e(Qj log(Qj)).

3. Step III: To compute e(
∑

j Qj log(Qj)).

(a) Repeat Step I and Step II to compute
e(Qjlog(Qj)) for all j’s.

(b) Pn−1 computes e(Entropy(Sv)) =∏
j e(Qjlog(Qj)) = e(

∑
j Qj log(Qj)).

The Correctness Analysis of Protocol 1: In step I,
Pn−1 obtains e(Qj). In step II, Pn−1 gets e(Qjlog(Qj)).
These two protocols are repeatedly used until Pn−1 obtains
e(Qjlog(Qj)) for all j’s. In step III, Pn−1 computes the
entropy by all the terms previously obtained. Notice that
although we use Entropy(Sv) to illustrate the protocol,
Entropy(S) can be computed following the above proto-
cols with different input attributes.

The Complexity Analysis of Protocol 1:
To calculate the computation cost for each component

protocol, we utilize the total number of primary operations
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such as addition, subtraction, multiplication, modulo, etc 1.
The generation of a cryptographic key pair [10] is constant.
We use g1 to denote it. The encryption involves 6 primary
operations. The decryption involves 13 primary operations.
A permutation of N numbers needs g2N operations where
g2 is a constant. To sort n numbers, the computation cost is
denoted by g3nlog(n). We denote the cost for generating N
random numbers as g4N .

The bit-wise communication cost has the upper bound of
2α(n+ t+2)nc consisting of (1) the cost of α(n− 1) from
step I; (2) the cost of α(t + 1) + 2β(t + 1) + 2α where β
denotes the number of bits for each plaintext and is assumed
that β < α; (3) (nc− 1) times of the total cost of step I and
step II since the step I and step II are repeated (nc − 1)
times.

The following contributes to the computational cost: (1)
The generation of a cryptographic key pair. (2)The gen-
eration of t random numbers. (3)The total number of
nN−N +3 exponentiations. (4)The total number of n+nc
multiplications where nc is the total number of classes.
(5)One summation.

Therefore, the total computation cost is g1 +g4t+nN −
N + 3 + n + nc + 1 = (n− 1)N + n + g4t + nc + g1 + 4.

Theorem 2 Protocol 1 preserve data privacy at a level
equal to ADVPn .

For the purpose of proof, let us introduce the following
notations.

• In the component protocol involving multiple parties,
we use ADVPi to denote the Pi’s advantage to gain
access to the private data of any other party via the
component protocol.

• We use ADVS to denote the advantage of one party to
gain the other party’s private data via the component
protocol by knowing the semantic secure encryptions.

• We use ADVPi to denote Pi’s advantage to gain access
to the private data of any other party via the component
protocol.

• We use V IEWPi to denote the extra information that
Pi obtains via a privacy-oriented protocol.

Proof 2 We will identify the value of ε such that

|Pr(T |CP ) − Pr(T )| ≤ ε

holds for T = TPi , i ∈ [1, n], and CP = Protocol 1.

According to our notation,

1We will follow this convention for the whole thesis.

ADVPn = Pr(TPi |V IEWPn , P rotocol1) − Pr(TPi |V IEWPn),
i �= n,

and

ADVPi = Pr(TPj |V IEWPi , P rotocol1) − Pr(TPj |V IEWPi),
i �= n, i �= j.

The information that Pi for i �= n obtains from other par-
ties is encrypted by e which is semantically secure, there-
fore,

ADVPi = ADVS .

In order to show that privacy is preserved according to
Definition 2, we need to know the value of the privacy level
ε. We set

ε = max(ADVPn , ADVPi)
= max(ADVPn , ADVS) = ADVPn .

Then

Pr(TPi |V IEWPn , P rotocol1) − Pr(TPi |V IEWPn) ≤ ADVPn ,

i �= n,

and

Pr(TPj |V IEWPi , P rotocol1) − Pr(TPj |V IEWPi ) ≤ ADVPn ,

i �= n, i �= j.

which completes the proof 2.

In the next section, we present how to compute
|Sv|
S Entropy(Sv).

|Sv|
S Entropy(Sv)

Highlight of Protocol 2: There are three steps in the

protocol. In step I, Pn−1 obtains e(|Sv|)
1

|S| = e( |Sv|
|S| ).

In this step, Pn−1 sends e(|Sv|) to the party (e.g.,
Pi) who holds the parent node, then Pi computes

e(|Sv|)
1

|S| = e( |Sv|
|S| ), and sends it to Pn−1. In step II,

Pn−1 obtains |Sv|
|S| Entropy(Sv). First, Pn−1 sends e( |Sv|

|S| )

to P1 who computes e( |Sv|
|S| ) × e(R′) = e( |Sv|

|S| + R′)
where R′ is a random number from the real domain
and only known by P1, then sends e( |Sv|

|S| + R′) to

2The information that Pn obtains from Pn−1 is e(Qj), e(R1), e(R2),
· · ·, e(Rt) in a random order.
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Pn. Pn decrypts it and sends |Sv|
|S| + R′ to Pn−1

who Pn−1 computes e(Entropy(Sv))(
|Sv|
|S| +R′) =

e( |Sv|
|S| Entropy(Sv) + R′Entropy(Sv)). Next,

Pn−1 sends e(Entropy(Sv)) to P1 who com-
putes e(Entropy(Sv))−R′

= e(−R′Entropy(Sv)),
and sends it to Pn−1. Then Pn−1 com-
putes e( |Sv|

|S| Entropy(Sv) + R′Entropy(Sv)) ×
e(−R′Entropy(Sv)) = e( |Sv|

|S| Entropy(Sv)). Finally,
Pn−1 obtains e(Gain(S, A)).

We present the formal protocol as follows:

Protocol 2 .

1. Step I: To Compute |Sv|
|S|

(a) Pn−1 sends e(|Sv|) to the party (e.g., Pi) who
holds the parent node.

(b) Pi computes e(|Sv|)
1

|S| = e( |Sv|
|S| ), then sends it

to Pn−1.

2. Step II: To Compute |Sv|
|S| Entropy(Sv).

(a) Pn−1 sends e( |Sv|
|S| ) to P1.

(b) P1 computes e( |Sv|
|S| ) × e(R′) = e( |Sv|

|S| + R′)
where R′ is a random number from the real do-
main and only known by P1, then sends e( |Sv|

|S| +
R′) to Pn.

(c) Pn decrypts it and sends |Sv|
|S| + R′ to Pn−1.

(d) Pn−1 computes e(Entropy(Sv))(
|Sv|
|S| +R′) =

e( |Sv|
|S| Entropy(Sv) + R′Entropy(Sv)).

(e) Pn−1 sends e(Entropy(Sv)) to P1.

(f) P1 computes e(Entropy(Sv))−R′
=

e(−R′Entropy(Sv)), and sends it to Pn−1.

(g) Pn−1 computes e( |Sv|
|S| Entropy(Sv) +

R′Entropy(Sv)) × e(−R′Entropy(Sv))
= e( |Sv|

|S| Entropy(Sv)).

3. Step III: To Compute Information Gain for An At-
tribute.

(a) Pn−1 computes
∏

v∈A e( |Sv|
|S| Entropy(Sv)) =

∑
v∈A

|Sv|
|S| Entropy(Sv).

(b) He computes e(
∑

v∈A
|Sv|
|S| Entropy(Sv))−1 =

e(−∑
v∈A

|Sv|
|S| Entropy(Sv)).

(c) He computes e(Gain(S, A)) =
e(Entropy(S)) ×
e(−∑

v∈A
|Sv|
|S| Entropy(Sv)).

The Correctness Analysis of Protocol 2: In step
I, Pn−1 obtains e( |Sv|

|S| ). In step II, Pn−1 gets
|Sv|
|S| Entropy(Sv). In step III, Pn−1 gets e(Gain(S, A)).

The computation uses the both properties of homomorphic
encryption.

The Complexity Analysis of Protocol 2: The bit-wise
communication cost of this protocol is 7α consisting of (1)
the cost of α from step 1; (2) the cost of 6α from step 2.

The following contributes to the computational cost:
(1)The generation of a cryptographic key pair. (2) 4 expo-
nentiations. (3) The total number of 3 + nc multiplications
where nc is the total number of classes.

Therefore, the total computation cost is g1+4+3+nc =
nc + g1 + 7.

Theorem 3 Protocol 2 preserve data privacy at a level
equal to ADVPn .

Proof 3 We will identify the value of ε such that

|Pr(T |CP ) − Pr(T )| ≤ ε

holds for T = TPi , i ∈ [1, n], and CP = Protocol 2.
According to our notation,

ADVPn = Pr(TPi |V IEWPn , P rotocol2) − Pr(TPi |V IEWPn),
i �= n,

and

ADVPi = Pr(TPj |V IEWPi , P rotocol2) − Pr(TPj |V IEWPi),
i �= n, i �= j.

The information that Pi for i �= n obtains from other par-
ties is encrypted by e which is semantically secure, there-
fore,

ADVPi = ADVS .

In order to show that privacy is preserved according to
Definition 2, we need to know the value of the privacy level
ε. We set

ε = max(ADVPn , ADVPi)
= max(ADVPn , ADVS) = ADVPn .

Then

Pr(TPi |V IEWPn , P rotocol2) − Pr(TPi |V IEWPn) ≤ ADVPn ,

i �= n,

and
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Pr(TPj |V IEWPi , P rotocol2) − Pr(TPj |V IEWPi )
≤ ADVPn , i �= n, i �= j,

which completes the proof.

Once we compute the information gain for each candi-
date attribute, we then compute the attribute with the largest
information gain. Without loss of generality, Let us as-
sume there are k information gains: e(g1), e(g2), · · ·, and
e(gk), with each corresponding to a particular attribute. We
then apply privacy preserving sorting protocol, which is pre-
sented in next section, to compute the attribute with the
largest information gain.

Problem 2 Assume that P1 has a private number t1, P2 has
a private number t2, · · ·, and Pn has a private number tn.
The goal is to sort ti, i ∈ [1, n] without disclosing ti to Pj

where i �= j.

Highlight of Protocol ??: In our protocol, we ran-
domly select a key generator, e.g., Pn, who generates a
cryptographic key pair (e, d) of a homomorphic encryption
scheme. Each party encrypts their number using e, then
sends it to Pn−1. Pn−1 computes the encryption difference
of two numbers and obtains a sequence ϕ of n2 elements.
Pn−1 randomly permutes this sequence and sends the per-
muted sequence to Pn who decrypts each element in the
permuted sequence and obtains a +1/−1 sequence accord-
ing to the decrypted results. Pn sends this +1/−1 sequence
to Pn−1 who determines the sorting result.

We present the formal protocol as follows:

Protocol 3 .

1. Pn generates a cryptographic key pair (e, d) of a se-
mantically secure homomorphic encryption scheme.

2. Pi computes e(ti), for i = 1, 2, · · · , n−2, n, and sends
it to Pn−1.

3. Pn−1 computes e(ti) × e(tj)−1 = e(ti − tj) for all
i, j ∈ [1, n], i < j, and sends the sequence denoted by
ϕ, which is randomly permuted, to Pn.

4. Pn decrypts each element in the sequence ϕ. He as-
signs the element +1 if the result of decryption is not
less than 0, and −1, otherwise. Finally, he obtains a
+1/ − 1 sequence denoted by ϕ′.

5. Pn sends the +1/ − 1 sequence ϕ′ to Pn−1.

t1 t2 t3 · · · tn
t1 +1 +1 -1 · · · -1
t2 -1 +1 -1 · · · -1
t3 +1 +1 +1 · · · +1
· · · · · · · · · · · · · · · · · ·
tn +1 +1 -1 · · · +1

6. Pn−1 sorts the numbers ti, i ∈ [1, n].

The Correctness Analysis of Protocol 3: Pn−1 is able
to remove permutation effects from ϕ′ (the resultant se-
quence is denoted by ϕ′′) since she has the permutation
function that she used to permute ϕ, so that the elements in
ϕ and ϕ′′ have the same order. It means that if the qth posi-
tion in sequence ϕ denotes e(ti − tj), then the qth position
in sequence ϕ′′ denotes the result of ti− tj . We encode it as
+1 if ti ≥ tj , and as -1 otherwise. Pn−1 has two sequences:
one is ϕ, the sequence of e(ti − tj), for i, j ∈ [1, n](i > j),
and the other is ϕ′′, the sequence of +1/ − 1. The two se-
quences have the same number of elements. Pn−1 knows
whether or not ti is larger than tj by checking the corre-
sponding value in the ϕ′′ sequence. For example, if the first
element ϕ′′ is −1, Pn−1 concludes ti < tj . Pn−1 examines
the two sequences and constructs the index table (Table 3.1)
to sort ti, i ∈ [1, n].

In Table 3.1, +1 in entry ij indicates that the value of the
row (e.g., ti of the ith row) is not less than the value of a col-
umn (e.g., tj of the jth column); -1, otherwise. Pn−1 sums
the index values of each row and uses this number as the
weight of that row. She then sorts the sequence according
the weight.

To make it clearer, Let us illustrate it by an example. As-
sume that: (1) there are 4 elements with t1 < t4 < t2 < t3;
(2) the sequence ϕ is [e(t1 − t2), e(t1 − t3), e(t1 −
t4), e(t2 − t3), e(t2 − t4), e(t3 − t4)]. The sequence ϕ′′

will be [−1,−1,−1,−1, +1, +1]. According to ϕ and ϕ′′,
Pn−1 builds the Table 3.2. From the table, Pn−1 knows
t3 > t2 > t4 > t1 since t3 has the largest weight, t2 has
the second largest weight, t4 has the third largest weight, t1
has the smallest weight.

The Complexity Analysis of Protocol 3: The total com-
munication cost is (1) The cost of α(n− 1) from step 2. (2)
The cost of 1

2αn2 from step 3. (3) The cost of 1
2βn2 from

step 4 where β denotes the number of bits for +1 and −1.
Note that normally β � α (4) The cost of 1

2βn2 from step
5. Therefore, the total communication overhead is upper
bounded by 3

2αn2 + α(n − 1).
The following contributes to the computational cost:

(1)The generation of one cryptographic key pair. (2) The
total number of n encryptions. (3)The total number of n2

multiplications. (4) The total number of n2 decryptions.
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t1 t2 t3 t4 Weight
t1 +1 -1 -1 -1 -2
t2 +1 +1 -1 +1 +2
t3 +1 +1 +1 +1 +4
t4 +1 -1 -1 +1 0

(5)The total number of n2 assignments. (6) n2 − n addi-
tions. (7)g3nlog(n) for sorting n numbers.

Therefore, the total computation overhead is g1 + 6n +
n2 + 13n2 + n2 + n2 − n + g3nlong(n) = 16n2 + 5n +
g3nlog(n) + g1.

Theorem 4 Protocol 3 preserves data privacy at a level
equal to ADVPn .

Proof 4 We will identify the value of ε such that

|Pr(T |CP ) − Pr(T )| ≤ ε

holds for T = TPi , i ∈ [1, n], and CP = Protocol 3.
According to our notation,

ADVPn−1 = Pr(TPi |V iewPn−1 , P rotocol3)
−Pr(TPi |V iewPn−1), i �= n − 1,

and

ADVPn = Pr(TPj |V iewPn , P rotocol3)
−Pr(TPj |V iewPn), j �= n.

All the information that Pn−1 obtains from other parties
is e(ti) for 1 ≤ i ≤ n, i �= n − 1, and the sequence ϕ′.

Since e is semantic secure,

ADVPn−1 = ADVS ,

which is negligible.
In order to show that privacy is preserved according to

Definition 2, we need to know the value of the privacy level
ε. We set

ε = max(ADVPn , ADVPn−1)
= max(ADVPn , ADVS) = ADVPn .

Then

Pr(TPi |V iewPn−1 , P rotocol3)
−Pr(TPi |V iewPn−1) ≤ ADVPn , i �= n − 1,

and

Pr(TPj |V iewPn , P rotocol3) − Pr(TPj |V iewPn)
≤ ADVPn , j �= n.

which completes the proof.

8. Discussion

To protect actual data from being disclosed, one ap-
proach is to alter the data in a way that actual individual
data values cannot be recovered, while certain computations
can still be applied to the data. Due to the fact that the
actual data are not provided for the mining, the privacy of
data is preserved. This is the core idea of randomization-
based techniques. Randomization approaches were first
proposed by Agrawal and Srikant [1] to solve the privacy-
preserving data mining problem. Evfimievski et. al. [5]
presented a framework for mining association rules from
transactions consisting of categorical items where the data
has been randomized to preserve privacy of individual trans-
actions. While it is feasible to recover association rules
and preserve privacy using a straightforward uniform ran-
domization, the discovered rules can unfortunately be ex-
ploited to find privacy breaches. They analyzed the nature
of privacy breaches and proposed a class of randomization
operators that are much more effective than uniform ran-
domization in limiting the breaches. Du and Zhan [4] pro-
posed a technique for building decision trees using random-
ized response techniques [17] which were developed in the
statistics community for the purpose of protecting surveyees
privacy. The randomization-based methods have the bene-
fits of efficiency. However, the drawbacks are that post-
randomization data mining results are only an approxima-
tion of pre-randomization results. There are some random-
ization level control parameters.

Following the idea of secure multiparty computation,
people designed privacy-oriented protocols for the problem
of the privacy-preserving collaborative data mining. Lindell
and Pinkas [9] first introduced a secure multi-party compu-
tation technique for classification using the ID3 algorithm,
over horizontally partitioned data. Specifically, they con-
sider a scenario in which two parties owning confidential
databases wish to run a data mining algorithm on the union
of their databases, without revealing any unnecessary infor-
mation. Du and Zhan [3] proposed a protocol for making
the ID3 algorithm privacy-preserving over vertically parti-
tioned data. Lin and Clifton [8] proposed a secure way for
clustering using the EM algorithm over horizontally parti-
tioned data. Kantarcioglu and Clifton [7] described proto-
cols for the privacy-preserving distributed data mining of
association rules on horizontally partitioned data. Vaidya
and Clifton presented protocols for privacy-preserving as-
sociation rule mining over vertically partitioned data [15]
and provided a solution for building a decision tree without
compromising data privacy [16].

Encryption is a well-known technique for preserving the
confidentiality of sensitive information. Comparing with
other techniques described, a strong encryption scheme can
be more effective in protecting the data privacy. An encryp-
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tion system normally requires that the encrypted data should
be decrypted before making any operations on it. For exam-
ple, if the value is hidden by a randomization-based tech-
nique, the original value will be disclosed with certain prob-
ability. If the value is encrypted using a semantic secure en-
cryption scheme [10], the encrypted value provide no help
for attacker to find the original value. One of the schemes
is the homomorphic encryption which was originally pro-
posed in [14] with the aim of allowing certain computa-
tions performed on encrypted data without preliminary de-
cryption operations. To date, there are many such systems.
Homomorphic encryption is a very powerful cryptographic
tool and has been applied in several research areas such as
electronic voting, on-line auction, etc. [18] is mainly based
on homomorphic encryption where Wright and Yang ap-
plied homomorphic encryption to the Bayesian networks
induction for the case of two parties. Zhan et. al. [21]
proposed a cryptographic approach to tackle collaborative
association rule mining among multiple parties. In this pa-
per, we will apply homomorphic encryption [10] and digital
envelope techniques [2] to the privacy-preserving data min-
ing and use them to design privacy-oriented protocols for
privacy-preserving k-nearest neighbor classification prob-
lem.

In this paper, we have proposed to use homomorphic en-
cryption and digital envelope technique to achieve collab-
orative decision tree classification without sharing the pri-
vate data among the collaborative parties. Specifically, we
provide a solution for decision tree classification with ver-
tical collaboration in this paper. We show that our solution
preserves data privacy under our definition. We provide ef-
ficient analysis for our solution. In the future, we would
like to examine other privacy-preserving collaborative data
mining tasks. Some, e.g., the horizontal collaboration for
the decision tree classification, are discussed in [19].
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