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Abstract— In this paper, we consider burst detection within
the context of privacy. In our scenario, multiple parties want
to detect a burst in aggregated time series data, but none of
the parties want to disclose their individual data. Our approach
calculates bursts directly from linear transform coefficients using
a cumulative sum calculation. In order to reduce the chance of a
privacy breech, we present multiple data perturbation strategies
and compare the varying degrees of privacy preserved. Our
strategies do not share raw time series data and still detect
significant bursts. We empirically demonstrate this using both
real and synthetic distributed data sets. When evaluating both
privacy guarantees and burst detection accuracy, we find that
our percentage thresholding heuristic maintains a high degree of
privacy while accurately identifying bursts of varying widths.

I. MOTIVATION

In this paper we consider privacy preservation issues in
distributed time series data sets. Sensor data, individual store
branch (location) purchase data, and network data are ex-
amples of distributed time series data sets. In each of these
cases, data is partitioned across servers, potentially at different
physical locations. The distributed data can be horizontally
or vertically partitioned. This paper focuses on a horizontal
partitioning of the data where each company or agency has
the same time series variable for a disjoint set of the data.
For example, suppose VISA and DISCOVER have purchase
transaction data. While the transaction purchase data is the
same attribute or variable during a given time period, the actual
transactions recorded are non-overlapping.

One problem that has received attention in time series data
sets is burst detection [1] [2] [3] [4]. Our focus is identifying
aggregate bursts in an environment where detection of burst is
useful, but raw time series data cannot be shared. Privacy of
the individual time series is paramount. Within the aggregate
series, we want to identify time intervals containing signif-
icantly high aggregate values or bursts. For example, given
store purchase data, a store may be interested in identifying
products with unusually large sales across store locations.
Because each store location maintains its data independently,
the data must be merged to detect bursts across all locations.
In this example, the store, e.g. Walmart, owns all the data.
However, if the data aggregation involved is across indepen-
dent companies, privacy preservation becomes a large concern.
Examples include multiple credit card companies looking for

bursts in purchases across an integrated data set, multiple state
government agencies interested in detecting bursts in voting
anomalies across a region, or multiple hospitals interested in
identifying spikes in emergency room care or doctor-patient
mortality ratios.

II. RELATED LITERATURE

Much new research in the area of privacy preservation is
surfacing. The work cited here is a representative sample
of topics and is not meant to be an exhaustive list. Some
work has investigated privacy preservation within the context
of traditional data mining problems, e.g. classi�cation [5]
[6], association rule mining [7] [8], clustering [9] [10], and
regression analysis [11]. For a survey of current approaches
and tools for privacy preservation in data mining, we refer
you to [12] [13]. Our work differs from this literature since
it focuses on detection of aggregate bursts in distributed time
series data. To our knowledge, burst detection has not been
studied in this context.

As previously mentioned, some privacy preservation work
exists on horizontally partitioned data sets [8] [14]. Similar
to other work, we employ secure multi-party computation
during aggregation. However, this is not the only privacy
preserving method we use. Our work differs from traditional
burst detection approaches since we make adjustments for
maintaining privacy during data aggregation within a dis-
tributed environment. Similar to some burst detection work,
we use mathematical transforms, speci�cally wavelets [1].
However, in the work we have seen, the bursts are computed
locally and are not aggregated from distributed sites. Also,
privacy of local data in this context has not been investigated.

III. HIGH LEVEL APPROACH

This section begins by formally de�ning our notation related
to time series data and bursts. We then highlight our approach
for addressing the distributed burst detection problem outlined
in Section I. In Section IV, we go through this approach in
detail, investigating privacy and burst detection accuracy issues
as they arise. We begin with two de�nitions related to time
series data and bursts within the data.

DEFINITION 1: A time series data set D is described by
a sequence of n events E at different times, where E =
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{e1 . . . en} and ei is an event at time i. Suppose data is
distributed across x sites, then the sequence of events at site
j is described as Ej = {ej1 . . . ejn} and the complete time
series of interest is the sum of the events at the different sites,

E =
t∑

j=1

Ej (1)

DEFINITION 2: A burst, B, is a set of events E′ having a
magnitude signi�cantly greater than or less than the average
magnitude of the events, B ≥ μE + cσE or B ≤ μE − cσE ,
where μ is the mean, c is a small constant, and σ is the standard
deviation. Typically, a burst is characterized by a small set of
events relative to the entire set of events, but since different
parties may be interested in different granularities of bursts,
the ability to detect bursts at multiple resolutions or varying
widths is necessary.

Because data is distributed across sites, we are concerned
about external parties that are trying to discover local site data.
In this paper, we consider two external groups, uninformed
network intruders and informed network intruders.

DEFINITION 3: We de�ne an uninformed network intruder
as a person with no background knowledge trying to determine
time series data from any local site that participates in this
aggregate burst detection process. This person has no insight
into the aggregation procedure and is not collaborating with a
participant. In contrast, an informed network intruder under-
stands the aggregation procedure. Similar to the uninformed
network intruder, he is not collaborating with a participant.
Therefore, while he has a sense of the process, he does not
have access to any actual data.

We also assume that all participants are semi-honest, i.e. do
not exhibit malicious behavior but will ’cheat’ if suf�cient
information is given to them. All privacy statements and
assertions will be described in terms of either uninformed
network intruders, informed network intruders, or semi-honest
participants.

Our high level approach for burst detection in a privacy
constrained distributed environment is shown in Table I. In our
distributed environment, one of the participants is designated
as the master location or the leader. All of the processes begin
and end at that location. The leader begins by sending the
participants parameters determined apriori: date range and the
minimum and maximum burst width of interest. The date range
identi�es the period of the analysis. This is used to ensure
that the time series are aligned along the time dimension. The
minimum and maximum burst widths are necessary to identify
the number of events necessary for a burst to exist and the
number of events in a window of the time series.

DEFINITION 4: Traditionally, window length, win len,
is a constant value that de�nes the number of events in
equally partitioned subsequences. We extend this and de�ne
the win len as the width of the largest burst of interest. If the
largest burst of interest is equal to the number of events in
the time series, then there is one window and win len = n.
However, for large time series, smaller windows and shorter
maximum burst widths will generally be of interest.

TABLE I

GENERAL APPROACH

Step I Determine process parameters
Step II Calculate local transform
Step III Perturb transform coef�cients (optional)
Step IV Aggregate local coef�cients
Step V Determine aggregate bursts

At this stage (Step II), each participant uses a linear trans-
form to generate the coef�cients for a time series during a
speci�ed date range and win len. The linear transforms we
will evaluate in this paper are the Haar wavelet, the Daubechies
wavelet, and the discrete Fourier transform [15]. Although
we con�ne ourselves to these three, any linear transform
can be selected. Once the local transform coef�cients have
been determined, a coef�cient perturbation heuristic can be
employed to increase the level of privacy (Step III).

During Step IV, we need to aggregate the data across sites
before attempting to detect a burst. This is important because
in a distributed environment, a burst may not be detectable by
looking at the time series data at a single site. The converse
is also true. A burst at a single site may be insigni�cant when
considering the entire aggregated time series, E. We accom-
plish aggregation by using the secure-multiparty computation
(SMC) protocol, where participants sum coef�cient values
to generate an aggregate set of linear transform coef�cients
[16]. Bursts are then detected directly from the coef�cients by
calculating cumulative sums and identifying bursts based on
the sums (Step V).

Given the context of the problem, we have two competing
goals - accurate burst detection and strong privacy preserva-
tion. We will now discuss the approach in more detail within
the context of the competing goals. Our aim is to quantify and
better understand the trade-off between accuracy and privacy
for our general approach. We begin by describing the burst
detection algorithm and seeing its accuracy using different
linear transforms. We will show experiments throughout to
clarify the discussion.

IV. DETAILED DISCUSSION OF BURST DETECTION USING

LINEAR TRANSFORMATION COEFFICIENTS

A. Burst Detection Algorithm

Burst detection is a speci�c case of anomaly detection that
incorporates change detection. In control theory, Statistical
Process Control (SPC) methods are used to detect changes
or out-of control conditions in single resolution data. Methods
proposed include: Shewhart, moving averages (MA), exponen-
tially weighed moving averages (EWMA), and cumulative sum
(CUSUM) control charts [17] [18]. Because our focus is burst
detection, Shewhart and CUSUM are the two candidates we
will consider.

A Shewhart chart uses a threshold to identify when an
observation or an event falls outside a desired control limit
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TABLE II

BURST DETECTION ALGORITHM

Step I Calculate the mean and standard deviation
of the aggregate transformation coef�cients.

Step II Use this information to determine the cumulative
sum values for the coef�cients.

Step III At a given point, if the cumulative sum is more
than c standard deviations away from zero (the
ideal difference between the actual value and the
mean), then a change point, cp1, has been detected.

Step IV Identify each consecutive change point, cpi.
Mark the �rst and last change points as the start
and end of one burst.

Step V Repeat steps III and IV for all the coef�cients.

[19]. The idea is to identify a meaningful threshold, e.g. μ+cσ.
If a value is above the threshold, it is considered a potential
change point. The popularity of this approach results from
its simplicity. However, the Shewhart method can only detect
sharp change points, not gradually accumulating change.

CUSUM is more robust with respect to slight departures
from a desired model. It uses sequentially accumulated infor-
mation to detect out-of-control conditions [20]. As shown in
Equation 2, the sequence of cumulative sums is computed by
adding the difference between the current event value, ei and
a suitable reference value, e.g. the mean μ, to a cumulating
sum.

CUSUM = Σn
i=1ei − μ (2)

The CUSUM is useful in picking out general trend changes
from random noise as noise will tend to cancel out in the long-
run (there are just as many positive and negative values of
true noise), but a consistent change will show up as a gradual
departure from zero in the CUSUM. Therefore, CUSUM can
be used for detecting not only sharp changes, but also gradual,
changes. Our algorithm for burst detection using CUSUM on
coef�cients is presented in Table II.

While CUSUM is effective for detecting bursts on raw
time series data, one question we are attempting to answer is
whether or not CUSUM is a good approach for detecting bursts
from transform coef�cients. Do the linear transformations we
consider result in coef�cient values that obscure the burst?

B. Linear Transformations for Time Series Data

A linear transformation uses a function to translate a vector
into a new vector that is a linear combination of the original
vector. When we use a linear transformation of an n length
time series, we are projecting the coordinates of the time
series T original into a new n dimensional space, T coef ,
using n orthogonal basis vectors. The new representation
of the data gives us an opportunity to highlight different
aspects of the time series that may be bene�cial for certain
applications. Further, because the transforms are linear with
orthogonal basis vectors, addition and scalar multiplication
are preserved. The original time series vector T original can
be reconstructed without introducing error by multiplying the

coef�cients with the basis vectors and summing them up. As
previously mentioned, we will consider the Discrete Fourier
Transform (DFT) and Discrete Wavelet Transforms (DWT),
both Haar and Daubechies, in this paper.

A Fourier transform uses basis vectors that are de�ned by
the trigonometric functions sine and cosine to generate Fourier
coef�cients for an arbitrary vector. One of the disadvantages
of the DFT is that the transformation produced is a single
resolution. In other words, time localization is only captured
at the window level. Wavelets allow time series to be viewed
in multiple resolutions. At each resolution, the size of the input
data is halved. A time series of length 16 has 4 resolutions.
Level 4 maintains the highest frequency coef�cients and is
represented using eight coef�cients. Level 3 has four coef�-
cients. The second level has two coef�cients. Level 1 has one
coef�cient. Finally, level 0, which is sometimes referred to as
the ’remainder’, is also a single coef�cient. From this we see
that wavelet transforms give gradually re�ned representations
of a time series at different scales. There are many different
families of wavelet functions. The difference between the Haar
and Daubechies wavelets is the function used to generate the
coef�cients. Due to space limitations, we refer you to [21] [15]
[22] for more details on the Fourier and wavelet transforms.

Referring back to the question posed at the end of the
last subsection, we pause to show that CUSUM can be used
directly on coef�cients to identify bursts. Table III presents
burst detection results for each of the linear transforms on
different data sets using a window size of 128. 1 We use
approximately 20 different time series data sets ranging from
ticker to sensor to synthetic in six aggregation experiments to
show that our approach calculates bursts at multiple resolutions
with the same accuracy as CUSUM applied to the time series
directly. While none of these data sets require privacy preser-
vation as described in Section 1, they serve as a representative
set of time series from different domains with different burst
and signal energy characteristics. Due to space limitations we
only show examples of two of the aggregated data sets in Fig.
1, aggregated sensor data collected from 3 different sensors
in a room housing a server cluster (Fig. 1(a)) and random
walk (Fig. 1(b)) data. Most of the non-synthetic data sets were
obtained from the UCR time series data repository [23]. We
generated the different synthetic data sets. More details about
their parameters and links to the other data sets can be found
at [24].

The results show that while DFT is reasonable, the burst
detection results using wavelets misses only 1% of the bursts
when using all the coef�cients except the remainder. We
surmise that this results from the multi-resolution property of
wavelets. Therefore, as we continue our analysis, we will focus
the discussion on wavelets.

Each site calculates the local linear transform for the time
series data. The �rst privacy step here is that the raw time

1One disadvantage to our approach compared to applying CUSUM directly
on the time series is that our results return the window and resolution the burst
is detected in. This gives a bound on the width of the burst, but not the actual
width. In contrast, the CUSUM result gives the endpoints of the burst.
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Fig. 1. Example Aggregate Time Series (Left: Sensor Data) (Right:Random Walk Data)

TABLE III

BURST DETECTION RESULTS

Data Set Id Actual Haar Daubechies Fourier
Stock 160 159 160 156
Sensor 243 242 242 242

Synthetic 133 132 132 132
Mix1 235 234 234 104
Walk 128 128 128 128
Mix2 133 132 132 132
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Fig. 2. Comparison of Time Series Values and Transformation Values

series data is not being sent over the network. Suppose an
uninformed network intruder was able to capture the values
being transmitted. The uninformed network intruder would not
realize that the data being transmitted are coef�cients. Fig.
2 shows a simple example of raw time series data and its
coef�cients. We see that there is a difference between the two
time series.

DEFINITION 5: We de�ne ts norm error to be the nor-
malized error rate between two time series. The simple

approach to measuring error is using the Euclidean distance
between the data points in the two time series. This is a reason-
able choice since our comparison involves linear transforms
and it has been shown in Parsavals theorem that Euclidean
distance is preserved for orthonormal transforms [25]. Because
the length of time series varies, we need to standardize the
Euclidean distance in order to compare across sets. Therefore,
as shown in equation 3, we measure the normalized error by
summing up the Euclidean distances at each data point and
dividing the sum of the Euclidean distances by n, the number
of values in the time series:

ts norm error{T 1, T 2} =

√∑win len
i=1 (T 1i − T 2i)2

n
(3)

T 1i is the data point in time series T 1 and T 2i is the data
point in time series T 2. This result is the average error per
data point.
The ts norm error for the time series in Fig. 2 is 0.61.

Privacy Statement 1: No raw time series data is sent over
the network. Without knowledge of the linear transform used,
actual data cannot be calculated. The amount of error intro-
duced is the ts norm error between E datai and E coefi.

Even though the uninformed network intruder will not
capture or see actual data values, if the informed network
intruder captures the values being transmitted, he can recon-
struct the original local time series. Therefore, we need to
consider additional privacy measures. The �rst approach is
to set win len smaller than the length of the time series.
If win len = n, then the entire time series is represented
using one set of coef�cients. Time series reconstruction is
straightforward for the network intruder. If there are multiple
windows, the intruder will need to determine the length of
the window in order to reconstruct the original signal. So we
must ask the question, with what probability can the intruder
discover the window length?

Because wavelets are being considered, one may assume
that the informed network intruder would predict the win-

649

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



dow size to be a power of two. Therefore, the probability
of discovering or guessing the length of the window is
P (win len) = 1 ÷ log(n). To ensure that bursts of desired
width are searched for, win len must be at least the width
of the maximum burst size determined in step one of the
general algorithm. Therefore, if the informed network intruder
has some knowledge about the mapping between window size
and maximum burst size, the probability may be reduced by
some constant factor.

Privacy Statement 2: Privacy is increased if the time series
is divided into multiple windows of pre-determined length.

While partitioning the data into windows may be a suf�cient
level of privacy against the uninformed network intruder, the
informed network intruder can still detect the original local
time series with a fairly high probability. Therefore, we need
to consider different approaches for introducing error into the
linear transform coef�cients. Some options include: removing
subsets of coef�cients, perturbing smaller coef�cient values by
zeroing them, and adding random noise.

Our �rst option is the removal of coef�cients. Suppose
that we remove the Level 0 coef�cient. Doing so adjusts the
location of the time series along the y-axis. Fig. 3 shows an
example for the reconstructed time series where the Level 0
coef�cient is adjusted and all the other coef�cients remain
the same. We see a minimal impact on the shape of the time
series based on adjusting the Level 0 coef�cient for the Haar
transform (Fig. 3(a)). A much greater impact is seen in Fig.
3(b). As the value of the remainder increases, it also has more
of an impact on the overall shape of the series because the
value represents the difference (deviation) between the actual
time series and the mother wavelet function. In the worst case,
if the Level 0 coef�cient is not transmitted and the other
coef�cients are determined, the envelope of the time series
can be determined.

To quantify the chance of an informed network intruder
determining this coef�cient, we will assume that the real-
valued coef�cients are bucketed into integer bins. If there are
x equally likely bins for the Level 0 (L0) coef�cient, then
the probability of guessing the Level 0 coef�cient right is
P (L0) = 1÷x. (Note that without binning P (L0) decreases.)
Therefore, if we have multiple windows each with a different
Level 0 coef�cient, we reduce the probably of reconstructing
the original time series to

P{E data} = P (win len) × (nbr of windows × P (L0))
(4)

We also recall that the burst detection algorithm did not use
the Level 0 coef�cient. Therefore, we are increasing the level
of privacy and not affecting the burst detection accuracy, a
rare win, win situation.

Building on the Level 0 result, we consider removing differ-
ent resolutions of coef�cients. Fig. 4 shows an example of this
and the resulting time series after reconstruction. It is clear that
the speci�c amount of error introduced is highly dependent
upon the time series itself. If the coef�cients removed are
large values, the impact on the shape of the original time

TABLE IV

COEFFICIENT REMOVAL BURST DETECTION RESULTS

Data Set Id Actual Haar Daubechies Mean
Stock 160 87 160 160
Sensor 243 242 242 238

Synthetic 132 132 132 122
Mix1 235 234 234 233
Walk 128 128 128 127
Mix2 133 132 132 132

series is much more signi�cant than if the magnitude of the
coef�cients is smaller. Therefore, we propose a coefficient
removal heuristic that always removes the Level 0 coef�cient
and then removes additional levels of coef�cients based on
the minimum and maximum burst widths speci�ed. Recall
our example with 16 coef�cients. If the minimum burst width
speci�ed is 4 and the maximum is 8, then we can remove
the Level 0, 1 and 4 coef�cients. Only the Level 2 and 3
coef�cients for each window are transmitted.

Privacy Statement 3: Removing coef�cients introduces er-
ror throughout the series. However, in the worst case, the
time series envelope can still be determined if the number of
windows is one and the magnitude of the coef�cients removed
is small compared to the ones being maintained. In other
words, if replacing the removed coef�cients with zero is a
reasonable approximation, the shape of the time series can
still be discovered.

One may conjecture that calculating a set of means for
each window equal to the number of coef�cients maintained
for each window may be a reasonable approach for burst
detection. Table IV compares the burst detection results for
our coef�cient removal heuristic and mean binning. In this set
of experiments, we maintained the same number of coef�cients
as means. For win len = 128, we maintained 8 coef�cients
or 8 means for each window. We see that the burst detection
accuracy results are very similar with the exception of the
stock data. Daubechies performed well throughout, but Haar
did not do as well on the slow changing stock ticker time series
as coef�cients were removed. The problem was that some
large coef�cients were removed and since a good percentage of
the coef�cients for that time series were smaller, the impact
on burst detection was an issue. For time series with more
variation, the impact is less. It was our hypothesis that when
using means, shorter bursts would not be detected and the
longer ones would. In reality, the longer bursts were detected,
but most of the shorter ones were also. However, the privacy
guarantees for the mean binning approach are weaker because
an uninformed network intruder can identify the envelope of
the time series directly from the values transmitted. All the
approaches we have proposed have a higher level of privacy
than the mean binning heuristic.

We consider one other perturbation strategy we refer to as
our percentage thresholding heuristic. This strategy has two
parts. First, the Level 0 coef�cient is removed. Second, we
set a certain percentage of the smallest coef�cients in each
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Fig. 3. Adjustment of Level 0 Coef�cient (Left: Haar) (Right: Daubechies)
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window to 0. By doing so, we further obscure the original
data and in many cases, enhance the burst detection results as
illustrated in Table V. In this table, each column represents the
percentage of coef�cients removed and each cell has the num-
ber of bursts detected using Haar coef�cients and the number
of bursts detected using Daubechies coef�cients, respectively.
We see that the burst accuracy remains extremely high until
95% of the coef�cients are removed. Fig. 5 illustrates an
example of network packet data from the UCR Repository.
In this example, the smallest 50% of the coef�cients at each
level were set to zero. Fig. 5(a) is the actual time series and
Fig. 5(b) is the time series reconstructed after using percentage
thresholding on Daubechies coef�cients. We see that the bursts
are �attened to some extent, but in general are still visible
when compared to the rest of the time series. Because the
Level 0 coef�cient is missing and a large percentage of
actual coef�cient values are set to 0, the amount of error
introduced is very large in most cases. In the worst case,
the Level 0 coef�cient is zero and all the coef�cients set to

TABLE V

PERCENTAGE THRESHOLDING BURST DETECTION RESULTS

Data Set Id Actual 50% 80% 95%
Stock 160 159, 160 160,159 158, 81
Sensor 243 242, 242 241, 242 240, 197

Synthetic 132 132, 132 132, 132 132, 132
Mix1 235 234,234 234, 234 234, 234
Walk 128 128,128 128, 128 114, 77
Mix2 133 132, 132 132, 132 132, 108

zero were already zero. However, in that case, the informed
network intruder would have no way of knowing that the signal
reconstructed from those values is the actual signal.

Privacy Statement 4: The amount of privacy is highest us-
ing the percentage threshold heuristic and bursts continue to be
accurately detected for thresholding percentages above 50%.

The last strategy for coef�cient perturbation is the addition
of random noise. We address this idea in the next section.
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C. Secure Aggregation of Distributed Time Series

Secure Multi-party Computation (SMC) was introduced in
[16]. SMC is a cryptography based technique that enables three
or more parties to securely compute a function. A computation
is considered secure if each party knows only its input and
the �nal result. We will now go through the details of the
SMC based on discussions presented in [12] [13]. For proof
of correctness and a more detailed discussion refer to [26].

Without a trusted third party, pieces of the computation
must take place at each site. During communication, raw data
values cannot be sent since knowledge of this can lead to
determining the original time series. The data values must
be encrypted with a random key. For our problem, we are
interested in aggregating the linear transform coef�cients. We
can accomplish this by using SMC for calculating the sum of
the coef�cients - this operation is referred to as secure sum
[16] [26]. Notice that by aggregating perturbed coef�cients
instead of the original time series, we add an additional
layer of privacy protection. The lossy linear transformation
and the secure sum computation are two different privacy
preservation operations. If the privacy attained from the lossy
linear transformation is suf�cient, SMC can be removed from
the algorithm and the lossy signals can be sent directly to the
leader site. We choose to maintain this step to ensure that the
local bursts cannot be detected by semi-honest participants.

A sum is computed securely using the following method for
vectors. First, the leader, designated site 1, generates a vector
of random numbers, R. R is chosen uniformly from the range
[0 . . . x] such that each element in the aggregate coef�cient
vector c

c =
t∑

k=1

ck (5)

is known to lie in the range from [0 . . . x] and ck is a vector of
transformation coef�cients for site k. Site 1 adds each element
of R to each coef�cient and sends vector (R + c1modx) to
participant 2. Because the values in R are randomly chosen

from the range [0 . . . x], participant 2 does not learn the actual
coef�cients, c1. The remaining sites add their coef�cients to
the received set of values. Once the �nal site completes its
computation, the leader receives the following result:

c = R +
t∑

j=1

cjmodx (6)

Since the leader knows R, it can subtract the vector R from
c, the vector of aggregated coef�cients, to get the actual sum.
Using secure sum is our approach for adding random noise to
the aggregation process. The secure sum algorithm has been
extended to consider malicious participants. We refer you to
[27] for those details.

A nice feature of linear transforms with orthogonal basis
vectors is that the operations of sum and scalar product are
preserved and translate directly across different basis vectors.
Therefore, if we sum the coef�cients of two Haar wavelets and
construct a time series from the vector of summed coef�cients,
the �nal time series is the same as if the summation occurred
on the original time series. This is one of the main properties
that enables our aggregate time series bursts to be detected
with such high accuracy.

Because this secure computation is not the �nal burst
detection, but rather an intermediate calculation needed for
determining the bursts, we must verify that sharing an aggre-
gate sum does not violate privacy. Can one participant derive
another participant’s time series from this aggregate sum or
from intermediate pieces of the aggregate sum calculation?

As previously shown, if the coef�cient removal heuristic
or the percentage thresholding heuristic are applied, then the
probability of the original time series being determined is low
even if the coef�cients are recovered. If not, then we consider
the scenario with the highest probability of privacy violation
by a semi-honest participant.

As an example of the worst case scenario, suppose we have
3 parties participating in the computation. Let us also suppose
that the coef�cients are all positive integers. If each site is
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given c, the aggregate sum, then each site can remove its
coef�cients and have the aggregate sum of the remaining two
sites. Suppose site 1 does this and also divides the aggregate
sum by two to obtain an average value for each coef�cient in
the vector. Let us also assume that the coef�cients of site 1
are higher than the average coef�cients of the other two sites
and the Level 0 coef�cient is close to 0. The probability of
determining the coef�cients (no privacy) is then

P (np) =
1∏n

i=1((t − 1)!) × μ(t − 1)i
(7)

The above probability equation has three factors: the number
of coef�cients (n), the number of sites minus the site attempt-
ing to breech the privacy (t − 1), and the average coef�cient
value of the other sites (μ(t − 1)) assuming site 1 is doing
the computation. We can see that even with a relatively small
number of coef�cients and sites, the probability of determining
the coef�cients is very small. Also, if the coef�cients were
discovered for the other sites involved in the computation,
without external information, one could not be certain of which
site the coef�cients belong to.

Privacy Statement 5: Using secure sum adds a layer of
random noise to the aggregation process. It can be used in
conjunction with any of the heuristics presented.

V. CONCLUSIONS

This paper discusses a new area of privacy preserving data
mining, burst detection. We have provided an explanation
for different levels of privacy that can be attained using
linear transforms. Our �rst contribution was to show that the
coef�cients from linear transformations could be used directly
for burst detection; regeneration of time series values was
not necessary. For our data sets, we found multiresolution
wavelets were better than Fourier for burst detection from the
coef�cients themeselves. While the burst detection accuracy
was extremely high, the privacy guarantees were not suf�cient
for informed network intruders and semi-honest participants.

Our next contribution was introducing two heuristics that
perturbed the local coef�cients: coef�cient removal and per-
centage thresholding. In both cases, we were able to maintain a
high burst accuracy rate. We showed, however, that the privacy
guarantee was better for the percentage thresholding heuristic.
Using this algorithm, small data values are perturbed, but
large ones that may be involved with bursts are maintained.
In general, Daubechies detected the largest number of bursts
consistently across resolutions. As the number of coef�cients
decreases, Daubechies continues to detect bursts well. As a
�nal layer of privacy for semi-honest participants, we add
random noise via a secure sum operation on coef�cients during
data aggregation.

Overall, CUSUM was an effective choice and bursts were
accurately detected directly from the perturbed transformation
coef�cients. Also, because we used wavelets, both wide and
narrow bursts could be detected by searching for bursts at
the appropriate resolutions. In the future we want to consider
incorporating an aging function or a CUSUM restart function
for time series with frequent bursts.
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