
 

 

 

  

Abstract—Clustering samples in gene expression data has 

always been a major challenge because of the high 

dimensionality of the input space (typically in the tens of 

thousands) and the small number of samples (typically less than 

a hundred). Moreover, clusters may hide in subspaces with very 

low dimensionalities. Most existing clustering algorithms 

become substantially inefficient if the required similarity 

measure is computed between data points in the full-

dimensional space. These challenges motivate our effort to 

propose a new and efficient partitional distance-based projected 

clustering algorithm for clustering samples in gene expression 

data. Our algorithm is capable of detecting projected clusters of 

extremely low dimensionality embedded in a high-dimensional 

space and avoids the computation of the distance in the full-

dimensional space. The suitability of our proposal has been 

demonstrated through an empirical study using public 

microarray datasets. 

I. INTRODUCTION 

ata mining is the process of extracting potentially useful 

information from a dataset [1]. Clustering is a popular 

data mining technique which is intended to help the user 

discover and understand the structure or grouping of the data 

in the set according to a certain similarity measure [2]. 

Clustering algorithms usually employ a distance metric (e.g., 

Euclidean) or a similarity measure in order to partition the 

database so that the data points in each partition are more 

similar than points in different partitions. 

The commonly used Euclidean distance, while 

computationally simple, requires similar objects to have 

close values in all dimensions. However, with the high-

dimensional data commonly encountered nowadays, the 

concept of similarity between objects in the full-dimensional 

space is often invalid and generally not helpful. Recent 

theoretical results [3] reveal that in high-dimensional data, 

the distance between any two data points becomes almost the 

same, making it difficult to differentiate similar data points 

from dissimilar ones.  

Feature selection techniques are commonly utilized as a 

preprocessing stage for clustering in order to overcome the 

curse of dimensionality. The most informative dimensions 

are selected by eliminating irrelevant and redundant one. 

Such techniques speed up clustering algorithms and improve 

their performance [4]. Nevertheless, in real-life applications, 

different clusters may exist in different subspaces spanned by 

different dimensions. In such cases, dimension reduction 

using a conventional feature selection technique may lead to 

substantial information loss [5]. Consequently, it can 

generate clusters that may not reflect well the original 

clusters properties [6]. A prominent example is the 

application of cluster analysis to gene expression data. 

Genome expression data reflects the level of activity of 

several genes in parallel under different biochemical 

conditions [7]. Usually, the format of such a dataset 

conforms to the normal data format of machine learning and 

data mining, where a gene can be regarded as a feature or 

attribute and a sample (e.g., different experiments, test 

subjects, etc.) as an object or data point [7]. The challenge in 

dealing with gene expression data lies in the fact that there 

are order of magnitude differences between the number of 

samples (typically less than a hundred) and the number of 

genes (typically tens of thousands) that are studied [8]. In 

addition, it is meaningful to cluster either genes or samples, 

which is a particular characteristic of gene expression data 

analysis [8]. In this paper we will focus exclusively on 

sample clustering 

The aim of sample clustering is to cluster samples into 

homogenous groups that may correspond to particular 

macroscopic phenotypes, such as clinical syndromes or 

cancer types [9]. It is more difficult than gene clustering in a 

sense, because of the curse of dimensionality (small sample 

volume and high feature dimensionality). However, sample 

clustering can be very valuable in clinical and mechanistic 

studies. For example, in cancer diagnosis, the samples may 

represent test subjects. The ultimate goal of the clustering is 

then to distinguish between healthy and ill patients [9]. On 

the other hand, due to the extreme sparsity of the data, 

biologists are faced with the problem of choosing the 

smallest number of genes which potentially contain 

biologically relevant and meaningful information. 

Current research in molecular biology holds that only a 

subset of genes participates in any cellular process of interest 

and that a cellular process takes place only in a subset of the 

samples. Consequently, most of the genes collected may not 

necessarily be of interest. Only a small percentage (less than 

5 percent) of them manifest meaningful sample structures 

[9]. For instance, two genes have similar expression patterns 

only in a subset of samples where certain regulating factors 

are present. In the other samples, the two genes may express 

differently [10]. In other words, clusters of samples may hide 

in certain subspaces of genes. This requires a projected 

PCGEN: A Practical Approach to Projected Clustering and its 

Application to Gene Expression Data 

Mohamed Bouguessa and Shengrui Wang 

Department of Computer Science, University of Sherbrooke 

Quebec, Canada, J1K 2R1 

{mohamed.bouguessa, shengrui.wang}@usherbrooke.ca 

D 

661

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

1-4244-0705-2/07/$20.00 ©2007 IEEE



 

 

 

clustering technique capable of capturing clusters formed by 

a subset of samples across a subset of genes. 

Projected clustering exploits the fact that different groups 

of data points are correlated along different sets of 

dimensions in high dimensional datasets. The clusters 

produced by such algorithms are called “projected clusters”. 

A projected cluster is a subset P of data points, together with 

a subspace of dimensions
1
 D, such that the points in P are 

closely clustered in D [5]. The dimensions in which a cluster 

exists are called relevant dimensions while the others are 

called irrelevant ones. 

For the purpose of illustration, we have generated a 

dataset composed of N data points in 10-dimensional space, 

as shown in Figure 1. The dataset contains four projected 

clusters, each having their own relevant dimensions (e.g., 

cluster 1 is represented by the couple {P1, D1} = {(x1, …, 

xa), (A3, A5, A6, A8, A10)}). For each relevant dimension of a 

cluster, points in the cluster are distributed according to a 

normal distribution, while in the remaining dimensions, the 

points are distributed sparsely. In addition, there are two 

irrelevant dimensions A4 and A7 in which all the data points 

are sparsely distributed, i.e. no cluster structure exist. 

For such an example, projected clustering methods are 

able to capture clusters spanned in different subspaces while 

traditional clustering algorithms fail to do so. Although 

feature selection techniques can reduce the dimensionality of 

the data by eliminating irrelevant attributes such as A4 and 

A7, there is an enormous risk that they will also eliminate 

relevant attributes such as A1. This is due to the presence of 

many sparse data points in A1, where cluster 2 is in fact 

present. 

The remainder of this paper is organized as follows. In 

section 2, we provide a brief overview of recent projected 

clustering algorithms. Section 3 describes our projected 

clustering algorithm in detail. Section 4 presents the 

experiments and the performance results on real datasets. 

Our conclusion is given in Section 5.   

 

 

 

 

 

 

 

 

 

 
 

Fig. 1.  Example of projected clusters in high-dimensional data. 
 

 
1 The terms “dimension” and “attribute” refer to the same concept and 

will be used interchangeably in this paper. 

 

II. RELATED WORK 

The problem of finding projected clusters has been 

addressed in [5]. The partitional algorithm PROCLUS, 

which is a variant of the k-medoid method, iteratively 

computes a good medoid for each cluster. With the set of 

medoids, PROCLUS finds the subspace dimensions for each 

cluster by examining the locality of the space near it. After 

the subspace has been determined, each data point is 

assigned to the cluster of the nearest medoid. The algorithm 

is run until the sum of intracluster distances ceases to 

change. ORCLUS [11] is an extended version of PROCLUS 

that looks for non-axis parallel subspaces. For this purpose, 

ORCLUS makes use of Singular Value Decomposition 

(SVD) to transform the data to a new coordinate system and 

select principal components. PROCLUS and ORCLUS 

successfully introduce a methodology for looking at different 

subspaces for different clusters and continue to inspire novel 

approaches. 

A limitation of these two approaches is that the process of 

forming the locality is based on the full dimensionality of the 

space. However, due to the huge number of attributes (genes) 

in gene expression data, it makes no sense to look for 

neighbors in high-dimensional space [3]. In addition, 

PROCLUS and ORCLUS require the user to provide the 

average dimensionality of the subspace, which also is very 

difficult to do in gene expression data. 

HARP [12] is a hierarchical projected-clustering 

algorithm based on the assumption that if two data points are 

similar in high-dimensional space, they have a high 

probability of belonging to the same cluster in lower-

dimensional space. However, it has been shown in [3] that as 

dimensionality increases, the distance to the nearest data 

point approaches the distance to the farthest data point. This 

is the case when the subspace clusters have few relevant 

dimensions, and the accuracy of HARP thus deteriorates 

severely in this situation. This effect on HARP’s 

performance was also observed by Yip et al. in [13]. In 

addition, the running time of HARP can be expected to be 

very long due to its hierarchical nature [13]. On the other 

hand, HARP has the interesting property of avoiding the use 

of input parameters, whose values are difficult to set. 

A density-based algorithm named EPC is proposed in [14] 

for projected clustering. EPC performs projected clustering 

by histogram construction. By iteratively lowering a 

threshold, dense regions are identified in each histogram. A 

“signature” is generated for each data point corresponding to 

some region in some subspace. Projected clusters are 

uncovered by identifying signatures with a large number of 

data points [14]. While EPC avoids the computation of 

distance between data points in the full-dimensional space, it 

suffers from the curse of dimensionality. In our experiments, 

we have observed that when the dimensionality of the data 

space increases and the number of relevant dimensions of 

clusters decreases, the accuracy of EPC is greatly affected. In 

addition, when we perform sample clustering in gene 
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expression data, it is difficult to detect dense regions based 

on histograms because the number of data points (samples) is 

too small to build a histogram that could faithfully reflect the 

distribution of attribute values (genes). A thorough survey of 

the above algorithms and others proposed for the projected 

clustering problem can be found in [15]. 

A. Contribution 

Clusters in gene expression data contain an extremely low 

percentage of relevant attributes (less than 5% of all the 

genes) [9][10][13]. Yip et al. [13] observed that most of the 

existing projected clustering algorithms are unable to 

identify clusters with such low dimensionality. In addition, 

the presence of a large number of irrelevant attributes 

(genes) and the limited number of data points (samples) 

often prevent accurate grouping of the samples. 

These observations motivate our effort to propose a novel 

projected clustering algorithm, called PCGEN, for clustering 

biological samples using gene expression microarray data. 

Our algorithm is able to detect projected clusters of very low 

dimensionality embedded in high-dimensional space and 

avoids the computation of the distance in the full-

dimensional space. 

III. THE ALGORITHM PCGEN 

Let DB be a data set of d-dimensional points, where the 

set of attributes is denoted by A={A1, A2, …, Ad}. Let X={x1, 

x2, …, xN} be the set of N data points, where xi=(xi1, …, xij, 

…, xid). Each xij (i=1, …, N; j=1, …, d) corresponds to the 

value of data point xi on attribute Aj. In what follows, we will 

call xij a 1-d point. Suppose that nc is the number of clusters 

in DB. A projected cluster CS (S = 1, …, nc) containing NS 

data points is defined in a dS-dimensional subspace formed 

by the set AS (AS⊆A) of its relevant attributes. The 

remaining set A – AS represents the irrelevant attributes of 

CS. In order to identify clusters in different subspaces, 

PCGEN proceeds in two phases. The main focus of the first 

phase is to detect dense regions in each dimension. Starting 

from the results of the first phase, the second phase aims to 

discover clusters in different subspaces. The clustering 

process is based on the K-means algorithm, with the 

computation of distance restricted to subsets of attributes 

where object values are dense. 

A. Dense Regions Detection 

In high-dimensional data, irrelevant attributes contain 

noise and data points with sparse values, while relevant ones 

may exhibit some cluster structure. By cluster structure we 

mean a region that has a higher density of points than its 

surrounding regions. These dense regions represent the 1-d 

projection of some clusters. Our assumption is based on the 

downward closure property of density, which indicates that if 

there are dense regions in k dimensions, there are dense units 

in all (k-1) dimensional projections [1]. Hence, it is clear that 

by detecting dense regions in each attribute we are able to 

discriminate between relevant and irrelevant attributes. Such 

information will be very useful in phase 2 of PCGEN. 

In order to detect densely populated regions in each 

attribute, we compute a sparseness degree λij for each 1-d 

point xij by measuring the variance of its k nearest (1-d point) 

neighbors.  

Definition 1. The sparseness degree of xij is defined as                       

1
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Intuitively, a large value of λij means that xij belongs to a 

sparse region, while a small one indicates that xij belongs to a 

dense region.  

Calculation of the k nearest neighbors is, in general, an 

expensive task, especially when the number of data points N 

is very large. However, since we are searching for the k 

nearest neighbors in a 1-dimensional space, we can perform 

the task in an efficient way by pre-sorting the values in each 

attribute and limiting the number of distance comparisons to 

a maximum of 2k values. 

In order to identify dense regions in each attribute, we are 

interested in all sets of xij having a small sparseness degree, 

determined by a pre-defined threshold ε +ℜ∈ .  

Definition 2. Let ε +ℜ∈ , where ε is a density threshold  

If λij< ε then zij = 1 and xij belong to a dense region; 

             else  zij = 0 and xij belong to a sparse region. 

From definition 2, we obtain a binary matrix Z(N*d) which 

contains the information on whether each data point falls into 

a dense region of an attribute. For example, Figure 2 

illustrates the matrix Z for the data used in the example in 

Section 1. The binary weight zij will play an important role in 

determining the relevancy of each attribute as well as in 

estimating the similarity between samples in phase 2 of 

PCGEN. 

Definitions 1 and 2 suit our purpose of detecting dense 

regions in 1-dimensional space because they are based on the 

fact that the values of the 1-d projection of data points onto 

relevant dimensions will be concentrated in small ranges of 

values. 

It is clear that the computation of the binary weights zij 

depends on the two input parameters ε and k. Although it is 

difficult to formulate and obtain optimal values for these 

parameters, it is easy for us to propose guidelines for their 

estimation. In practice, the values of the sparseness degree 

λij, the indicator for dense regions, vary significantly  
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xN 0 1 1 0 0 1 0 0 1 0 

Fig. 2.  The matrix Z(N*d). 

 

depending on the ranges of values in each attribute. In order 

to have meaningful values of λij, we suggest standardizing 

the values in each attribute with mean 0 and variance 1 

before calculating it. According to our experiments, λij ≤ 0.1 

is a good indication that xij belongs to a dense region. 

Therefore, setting 0<ε ≤ 0.1 is a reasonable choice. 

The choice of k can be made in a more straightforward 

fashion. If k is too small, the sparseness degrees λij are not 

meaningful, since a 1-d point in a dense region might have a 

similar sparseness degree value to a 1-d point in a sparse 

region. If k is too high, the same phenomenon may occur. 

Obviously, the parameter k is related to the expected 

minimum cluster size and should be much smaller than the 

number of objects N in the data. To gain a clear idea of the 

sparseness of the neighborhood of a point, we suggest 

choosing the value of k close to N  as a general guideline. 

Further investigation into the selection of these parameters is 

needed. 

Once dense regions are detected in each attribute, we turn 

to the problem of discovering clusters spanning different 

subspaces. 

B. Discovering Projected Clusters 

The main focus of Phase 2 of PCGEN is to perform 

projected clustering and detect relevant dimensions for each 

cluster. For this purpose we use the K-means algorithm and 

exploit the properties of the matrix Z(N*d). The K-means 

partitions the data into a number of clusters, each of which is 

represented by a center. A data point is assigned to a cluster 

using a distance function, e.g., Euclidean distance, to 

calculate its distance from the center of the cluster. However, 

this is not an effective approach with high-dimensional data, 

because each dimension is equally weighted in computing 

the distance between two points. To solve this problem, we 

associate the binary weights zij (i = 1,…, N; j = 1, …, d) in 

the  matrix Z to the Euclidian distance. This makes the 

distance measure more effective because the computation of 

distance is restricted to subsets where the object values are 

dense. 

Formally, this weighted Euclidean distance between a 

point xi and the cluster center vc (c = 1,…, nc) is defined as: 

     ∑ =
−×=

d

j cjijijci vxzvxdist
1

2)(),(     (1) 

The use of the matrix Z in the K-means algorithm to compute 

1) the distance between cluster centers and data points and 2) 

the centroid coordinates (see steps 3 and 4 in Figure 3) 

avoids the computation of the distance in the full-

dimensional space and clusters the data points in a more 

efficient way. 

Once the data points are clustered, we turn to the problem 

of detecting relevant dimensions for each cluster. For this 

purpose, we make use of the density information stored in 

the matrix Z to determine how well a dimension contributes 

to the formation of the obtained clusters. In fact, the sum of 

the binary weights of the data points belonging to the same 

cluster over each dimension gives us a meaningful measure 

of the relevance of each dimension to the cluster. Based on 

this observation, we propose a relevance index WSj for each 

dimension in cluster CS. The index WSj for the dimension j (j 

= 1, …, d) in cluster CS is defined as follows: 

                

S

Cz ij

Sj
C

z
W Si

∑ ∈=                         (2) 

The value of the index is always between 0 and 1. The 

index gives a large value (close to 1) when the dimension is 

relevant to the cluster. On the other hand, an irrelevant 

dimension receives a very small index value (close to 0). 

Definition 3. Let ] ]1,0∈δ , a dimension Aj is considered 

δ relevant for the projected cluster CS if the following holds: 

δ>SjW  

In definition 3, δ is a user-defined parameter that controls 

the degree of relevancy of the dimension Aj to the cluster CS. 

It is clear that the more relevant the dimension to the cluster, 

the larger the value of the relevance index. Since WSj is a 

relative measure, it is not difficult to choose an appropriate 

value forδ . In order to ensure high degree of relevance, 

setting δ ≥ 0.8, in general several, is a practical choice. The 

PCGEN algorithm is summarized in Figure 3. 

As we can see from Figure 3, our clustering process is 

based on the basic K-means algorithm with two significant 

modifications. The first is the use of the weighted Euclidean 

distance in step 3; the second, the use of the matrix Z in step 

4 for computing the cluster centers. The use of the matrix Z 

restricts the computation of distance and cluster centers to 

those subsets of attributes in which the data points belong to 

dense regions. The efficiency of PCGEN on gene expression 

data is demonstrated in the following section.   

IV. EMPIRICAL EVALUATION 

In this section we experimentally evaluate the suitability 

of our algorithm by comparing it with HARP and PROCLUS 

on three gene expression data sets. 

 

 

664

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



 

 

 

 

 
Fig. 3. The PCGEN Algorithm. 

A. Dataset Illustrations 

Simple illustrations of the datasets used in this paper for 

exploring the performance of our algorithm are given in this 

subsection. All of the datasets were downloaded from:  

http://sdmc.lit.org.sg/GEDatasets/Datasets.  

ALL-AML leukemia: This data set contains 7129 genes 

and 72 samples from acute leukemia patients. The samples 

are grouped into two clusters: 47 of the samples are from 

patients with acute lymphoblastic leukemia (ALL) while 25 

are from patients with acute myeloid leukemia (AML).  

MLL leukemia: This data set contains three clusters 

corresponding to different types of leukemia: ALL, AML 

and mixed lineage leukemia (MLL). The number of genes is 

12582 and the number of samples is 72 (24 ALL, 20 MLL 

and 28 AML). 

Lung cancer: The set contains 181 tissue samples, each 

with 12533 genes. The samples are grouped into two 

clusters: 31 samples for pleural mesothelioma (MPM) and 

150 for adenocarcinoma (ADCA ) of the lung. 

B. Results 

In order to evaluate the quality of the results of PCGEN, 

HARP and PROCLUS, we used the class labels as ground 

truth. The Hubert-Arabie Adjusted Rand Index (ARI) [16], 

which measures the similarity between the generated 

partition (GP) of data points and the real partition (RP), is 

used as performance measure. ARI has been shown to be the 

most desirable index for measuring agreement between two 

partitions [17]. A deeper investigation on the properties of 

ARI can de found in [18]. The Hubert-Arabie Adjusted Rand 

Index is defined as follows: 
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where  N11, N10, N01 and N00 are the number of object pairs 

that are in the same cluster in both RP and GP, in the same 

cluster in RP but not in GP, in the same cluster in GP but not 

RP, and in different clusters in both RP and GP respectively. 

When RP and GP are identical, the index value will be one. 

When GP is only good as a random partition, the index will 

be zero. 

In all our experiments, we set ε = 0.001 and k=10 for 

PCGEN. For fair comparison, multiple values of the  

parameters required for PROCLUS were tried, and the 

results with the best accuracy are reported. HARP requires 

the maximum percentage of outliers as a parameter; this was 

set to 0 because in sample-based clustering of gene 

expression data, no data point (sample) is considered as an 

outlier. The outlier detection mechanism of PROCLUS was 

also disabled. We standardized the expression values for 

each gene in the three datasets to mean 0 and variance 1. 

Table 1 illustrates the ARI values for the three algorithms 

respectively. 

As we can see from Table1, PCGEN is able to achieve 

highly accurate results and maintain the same performance 

on the three datasets. With ALL-AML leukemia and Lung 

cancer, PCGEN misplaced only one sample. In the case of 

MLL leukemia, our algorithm incorrectly classified only 4 of 

the 72 samples. These interesting results can be explained by 

the fact that PCGEN avoids the computation of the distance 

between samples in full-dimensional spaces. The measure of 

similarity between different samples is restricted to subsets 

of attributes where sample values are dense. On the other 

hand, since our clustering process is based on the K-means 

principle, the accuracy of our algorithm is sensitive to the 

initial choice of the cluster centers. In order to avoid 

initialization bias, several initializations are needed. 

 
TABLE 1. ARI  VALUES. 

 PCGEN HARP PROCLUS 

ALL-AML Leukemia 0.943 0.631 0.473 

MLL Leukemia 0.841 0.526 0.306 

Lung cancer 0.978 0.041 0.076 
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The results of HARP illustrated in Table 1 are less 

competitive than those of PCGEN.  This can be attributed to 

the fact that the datasets considered here represent some 

extreme conditions, in which the number of relevant 

attributes is very low and the dimensionality of the data is 

very high, misleading HARP’s dimension selection 

procedures. In such situations, the basic assumption of 

HARP – i.e., that if two data points are similar in high-

dimensional space, they have a high probability of belonging 

to the same cluster in lower-dimensional space – becomes 

non-obvious.   

From Table 1, we remark that the results of PROCLUS 

are also less accurate than those given by PCGEN. This is 

because the dimension selection mechanism in PROCLUS, 

which is based on a distance calculation that involves all 

dimensions by detecting a set of neighboring objects to a 

medoid, severely hampers its performance. PROCLUS 

works best on datasets in which the number of relevant 

dimensions per cluster is not much lower than the dataset 

dimensionality.  

In order to confirm the effectiveness of our algorithm, we 

now investigate the importance of dimension selection in the 

formation of clusters. For this purpose, we calculate the 

distance ratios DR1, DR2 and DR3, as suggested in [10]. The 

distance ratios are defined as follows: 
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In the above equations, xSj is the mean of the projected value 

of cluster CS on dimension Aj. 

DR1 measures the increase in compactness of the cluster 

due to dimension selection, DR2 measures how irrelevant are 

the non-selected dimensions, and DR3 measures the increase 

in separation between the cluster members and other objects 

due to the selection. For a good cluster, DR1 should be 

smaller than 1, DR2 should be greater than 1, and DR3 should 

be larger than DR1. Tables 2, 3 and 4 illustrate the number of 

selected genes and the distance ratios of the clusters 

identified by PCGEN from ALL-AML leukemia, MLL 

leukemia and lung cancer. The sets AS of relevant dimension 

for each cluster are detected according to Definition 3. For 

this purpose we set δ =0.8. 

As illustrated in tables 2, 3 and 4, the number of relevant 

genes detected by PCGEN for each cluster is extremely low. 

These results are consistent with the analysis given by Golub 

et al. [9], in which the authors state that in gene expression 

data the number of genes which manifest meaningful sample 

 

TABLE 2.  THE DISTANCE RATIOS OF THE TWO CLUSTERS FOUND BY 

PCGEN FOR ALL-AML LEUKEMIA. 

Clusters #genes DR1 DR2 DR3 

ALL 40 0.254 1.004 2.055 

AML 20 0.140 1.002 1.421 

 

TABLE 3.  THE DISTANCE RATIOS OF THE THREE CLUSTERS FOUND BY 

PCGEN FOR MLL LEUKEMIA. 

Clusters #genes DR1 DR2 DR3 

ALL 91 0.226 1.005 1.279 

AML 58 0.262 1.003 1.549 

MLL 85 0.293 1.004 1.208 

 

TABLE 4.  THE DISTANCE RATIOS OF THE TWO CLUSTERS FOUND BY 

PCGEN FOR LUNG CANCER. 

Clusters #genes DR1 DR2 DR3 

MPM 197 0.152 1.013 1.384 

ADCA 239 0.860 1.002 1.024 

 

phenotype structure is extremely low. In addition, all the 

values of the distance ratios DR1, DR2 and DR3 of all the 

clusters discovered by PCGEN, depicted in tables 2, 3 and 4, 

satisfy all of the requirements for good clustering. In all three 

datasets, DR3 is larger than DR1; this can be explained by the 

fact that our algorithm searches for compact and disjoint 

projected clusters. 

On the other hand, the values of DR2 are just slightly 

greater than 1; this is because the number of selected genes is 

extremely low (approximately 1% of all genes) compared to 

the total number of genes. In other words, in DR2 we 

compute the ratio of the distance of the data points from the 

cluster center in the non-selected dimensions to the distance 

in the whole data space. In the case where the number of 

relevant dimensions is extremely low, the value of DR2 is 

very close to 1. 

Similar behaviours of the distance ratios DR1, DR2 and 

DR3 were also observed with different values of δ ∈]0.1, 

0.8[. This can be explained by the fact that the values of the 

relevance index described in section 3.2 for irrelevant 

dimensions are close to 0 (equal to 0 in most cases). This is 

an interesting property of PCGEN, because the parameter 

δ gives a powerful tool to fine-tune the degree of relevance 

of an attribute to a cluster. 

V. CONCLUSION 

We have proposed an efficient distance-based projected 

clustering algorithm for the challenging problem of 

clustering samples in gene expression data. Experiments 

show that PCGEN provides meaningful results and 

significantly improves the quality of clustering when the 

dimensionalities of the clusters are much lower than that of 

the dataset. The accuracy achieved by PCGEN results from 

the restriction to subsets of attributes imposed on the 

distance computation, and the initial selection of these 

(4) 

(5) 

(6) 
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subsets. Using this approach, we believe that many distance-

based clustering algorithms could be adapted to cluster high-

dimensional data sets. 

The main focus of our work is to detect projected clusters 

of extremely low dimensionality embedded in high-

dimensional space, so we have not provided a detailed 

analysis of the biological meaning of each gene selected, 

which itself is a very important issue. Our algorithm 

discovers statistically relevant genes, which helps to 

discriminate between clusters. We believe that each gene 

selected by our algorithm may characterize some biological 

phenomenon and can be evaluated using existing biological 

knowledge or suggest new hypotheses.   

Although the results of our algorithm are encouraging, 

there are some limitations that need be overcome in order to 

enhance its performance. We plan to propose a more 

systematic way to set the parameter ε. We also plan to extend 

the scope of Phase 1 of the proposed algorithm from 

attribute relevance analysis to attribute relevance and 

redundancy analysis. This seems to have been ignored by all 

of the existing projected clustering algorithms.    
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