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Abstract—Accurate classification of biomedical spectra is often 
difficult due to the large number of features, which tends to have 
a confounding effect. We present a strategy where the original 
spectral feature space is transformed using a fuzzy set theoretic 
method, which analyzes the features’ interquartile ranges, 
coupled with a stochastic feature selection mechanism, which 
identifies highly discriminatory feature subsets. We demonstrate 
the effectiveness of this strategy using biofluid data acquired 
from a magnetic resonance spectrometer. 

I. INTRODUCTION

The selection of a classifier is only one aspect of the 
problem of data classification. Equally important (if not, more 
so) is the preprocessing strategy to be employed. Many 
classification problems, particularly those involving the 
analysis of voluminous biomedical spectra, involve features 
whose specificity demand some form of feature transformation 
to construct effective decision boundaries between different 
classes. We present a strategy that uses fuzzy interquartile 
encoding to transform the original feature space using 
membership functions constructed using the interquartile 
ranges of the respective features. This transformation has a 
normalizing effect on the feature space and is more robust to 
feature outliers. We couple this preprocessing strategy with 
stochastic feature selection, which assesses the discriminatory 
performance of feature subsets that are sampled using an ad 
hoc cumulative distribution function of a frequency histogram 
of features that contributed to prior “successful” 
classifications. The motivation behind this selection process is 
that often only a subset of features possesses discriminatory 
power while the remainder has a tendency to confound the 
effectiveness of the underlying classifier. 

Fig. 1 illustrates the strategy that is used. The original 
feature space is transformed using fuzzy interquartile 
encoding. Subsets of features are selected from the 
transformed space using the stochastic selection mechanism. 
The subsets, which may undergo a quadratic transformation, 
are presented to a set of corresponding classifiers. The design 
(training) phase is substantiated using n-fold validation. 
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Fig. 1. Schema of fuzzy encoded feature selection strategy. 

To empirically validate this strategy, we study a 
classification problem coming from the area of biomedical 
data analysis, specifically the assignment of magnetic 
resonance spectra of a biofluid into either a normal or 
abnormal class. We demonstrate that the classification 
accuracy using the fuzzy interquartile encoding strategy is 
superior to using the original spectral features. 

II. CLASSIFICATION

Formally, consider a c-class classification problem in which 
X={(xk,ωk), k=1,2,…,N} is a set of class labeled patterns. 
Here, xk∈ℜn and ωk∈Ω, where Ω={1,2,…,c}. In essence, a 
classifier is a mapping g:X→Ω. Let ωip be the class label 
predicted by classifier p for pattern, xi. If ωip=ωi we say that p
generated a correct classification result for xi, otherwise it is a 
misclassification. Many classifier architectures exist 
(supervised artificial neural networks, multivariate statistical 
methods, evolutionary computation approaches, hybrid 
strategies, and so on). The classifier used in this investigation 
is the radial basis function neural network. 

Data preprocessing is of paramount importance for 
problems of classification. Advanced technologies contribute 
ever more sophisticated models upon which to build ever more 
sophisticated classifiers. Herein lies a major problem: if these 
models are highly non-linear, they may be unstable, if they are 
iterative, they may not converge, if they are probabilistic, they 
may be based on underlying statistical assumptions that are 
often not true in real-world scenarios. Preprocessing may 
address these concerns: data may be transformed such that a 
non-linear model may be replaced by a linear one, the 
dimensionality of the data may be reduced so that an iterative 
method may converge or may be substituted for an analytic 
one, or the data may be “normalized”, in some sense, such that 
the underlying statistical assumptions of a probabilistic model 
are realized. The preprocessing strategy used in this study is a 
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combination of fuzzy interquartile encoding (“normalization”) 
and stochastic feature selection (dimensionality reduction). 

Finally, successful classification demands a reliable and 
conservative measure of performance. To satisfy this 
requirement, we employ the following approach. The dataset 
is divided into a design set and a test set. Interquartile 
parameters for the encoding method are computed using only 
the design set and subsequently applied to the test set. We use 
n-fold validation; data resubstitution is performed n times and 
average (test set) classification accuracies with standard 
deviations are accumulated. 

Classification accuracy is measured using the C×C
confusion matrix of desired versus predicted class labels. 
Rather than using the standard performance (fitness) measure, 
Po (the ratio of correctly classified test patterns to the total 
number of test patterns) 

1
( 1, , )o iii
i cP N C−

==  (1) 

we use the -score [1], a chance-corrected measure of 
agreement [2], 

( ) (1 )o L LP P P= − −  (2) 

where PL is the agreement due to chance 
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i j cP N C C− ==  (3) 

We also use the corresponding  measures for sensitivity, 
(1,0), and specificity, (0,0) [3][4][5] 
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A. Radial Basis Function Neural Network 
A radial basis function neural network (RBF) [6][7][8] has 

an internal representation of hidden processing elements (PEs) 
with a topology as shown in Fig. 2. A PE output possesses 
radial symmetry 

( )( )f = ϕ −x x μ  (5) 

where: μ is its center represented by a vector in the input 
space (and stored in its input layer weights); ||·|| is a distance 
metric (usually Euclidean) that determines how far an input 
pattern is from μ; and, the transfer function,  (usually a 
Gaussian), must output high values when the distance from a 
pattern to μ is small, and low values otherwise. RBFs are a 
class of universal function approximators [9] that are often 
used as classifiers. That is, given an RBF with enough hidden 
layer PEs, it can approximate any continuous function with 
arbitrary accuracy [10]. RBFs typically train more quickly 
than conventional multilayer perceptrons [11]. Also, the PEs 
represent density functions for the input space and may be 
used as a probability measure for new patterns. However, 
there are two problems with RBFs: since the receptive fields 
are localized they do not perform well if discriminatory 
features are globally distributed throughout the input space; 
and, selecting the number of receptive fields is strictly ad hoc. 

Fig. 2. The topology of a radial basis function neural network. 

Fig. 3 illustrates the structure of a pattern layer PE. If μi is a 
column vector representing the center of pattern layer PE, i,
and σi is the diameter of its receptive region, then the output, 
zi, of i for a given pattern, x, is 

T 2( ) exp[ ( ) ( ) (2 )]i i i iz = − − − σx x xμ μ  (6) 

PE j in the output layer generates the normalized sum, yj, of 
the zi product and their respective weights; 

j i ij ii i
y z w z=  (7) 

The values μ and σ may analogously be viewed as the mean 
and standard deviation of the response curve, respectively. 
The response function of an RBF PE diminishes rapidly as a 
pattern deviates from the PE’s mean. The set of pattern layer 
PEs is designed so that their responses cover all significant 
regions of the input vector space. In the simplest case, both the 
pattern layer and output layer weights remain fixed; there is no 
training at all. Further, there is one pattern layer PE for every 
design vector. In a slightly more complex extension, only the 
output layer weights are trained; this is a straightforward, and 
rapid, training of a single layer linear system. A further 
extension includes training the pattern layer weights as well as 
the location and shape of the response curves, which is done in 
this study. 

There are several alternatives for determining the location 
of the centers of the receptive fields of the pattern layer PEs. 
The simplest alternative is to have one PE for every pattern in 
the design set. However, this may become completely 
impractical if there are a large number of design patterns; the 
amount of time required to train such a network as well as to 
test it would be inordinately great. A more robust strategy is to 
take advantage of the fact that design pattern typically tend to 
occur in clusters, and use an unsupervised clustering algorithm 
to reduce the number of pattern layer PEs. 

Fig. 3: The structure of an RBF pattern layer processing element. 
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Used in this investigation, standard k-means clustering is 
one possible approach to compute a μ set. This algorithm 
assumes that all of the design input patterns are available and 
that there are a pre-determined fixed number, k, of clusters 
(centers). The standard k-means algorithm will ensure that the 
sum of the squares of the (Euclidean) distances between each 
design input pattern and its closest (receptive field) center is a 
local minimum. 

The algorithm begins with a set of k random centers. Each 
design input pattern is examined to determine the closest 
center to it. A new set of centers is computed by taking the 
average of all design input patterns, for each center, and using 
those averages as the new centers. This step is repeated for a 
fixed number of iterations or until the membership function no 
longer changes. 

The radius of the receptive region of yi is determined by σi.
If the μi set is widely separated then the σi should be large to 
cover the gaps. If they are tightly packed then the σi should be 
small enough to accurately retain the distinctiveness of each 
receptive field. A conventional technique that may be used to 
determine the σi is to use the P-nearest neighbor heuristic. 
Given a receptive region’s center, μi, let i1,i2,…,ip be the 
indices of the P centers nearest to μi. Then the corresponding 
σi is 

21

1 p

P

i i ip
P−

=
σ = −μ μ  (8) 

In this study, P=1. 
Once the μi and σi have been selected, the output layer 

weight matrix may then be optimized. A standard technique is 
to use a supervised training strategy such as gradient descent 
learning. Most of the yi will be close to zero for a given input 
pattern since that pattern will be near only one receptive field. 
As a consequence, the corresponding weight changes will be 
small. To improve training time, this fact can be exploited by 
ignoring the receptive fields with small activations. 

An ill-advised strategy to determine the values of the 
weights is to treat the problem as a solution of the matrix 
equation, W=Y-1D; where W is the weight matrix, D is a 
matrix whose rows are the desired classification outcomes, 
and Y is a matrix whose rows are the outputs from the output 
layer for each design set pattern. The matrix Y is generally not 
invertible because it is typically not square. Further even if a 
pseudoinverse exists it may not be easily determined [12]. The 
matrix may be ill-conditioned because it is singular or nearly 
singular. Even techniques such as singular value 
decomposition may fail because of the possible limited 
accuracy of the results. 

B. Fuzzy Interquartile Encoding 
Fuzzy interquartile encoding (FIQ) [13] is a preprocessing 

strategy that has been successfully applied to a number of 
different classification problems [14][15]. It involves taking a 
feature value and intervalizing it across a collection of fuzzy 
sets, thereby producing a list of degrees of membership for 
each of the fuzzy sets [16]. Selecting intervals for the fuzzy 
sets is usually an experimental or heuristic process and is 

similar to the techniques used in standard 1–of–k
intervalization encoding. In this study, we use a dimension-
preserving version of fuzzy interquartile encoding. Instead of 
constructing four triangular fuzzy sets around the quartiles of 
each feature, a single piece-wise linear fuzzy set is constructed 
whose vertices are the lower quartile, QL, median, m, and 
upper quartile, QU.

Fig. 4 illustrates an example of a single membership 
function, fi, constructed from the quartiles of feature, xi (where 

 and  are the respective minimum and maximum design set 
values for the feature). Given a feature value, x, and the 
membership threshold h∈(0,1) 
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(9)

FIQ exhibits the useful property that the transformed feature 
space is “normalized” in that for any given feature, x, its 
corresponding membership function maps feature values onto 
the unit interval. This is particularly useful in the classification 
process since scaled data tend to stabilize the effects of 
extreme variance disparities across features [17]. Without 
scaled data, features with large variances will predominate, 
during the design phase, over features with small variances 
even though the latter features may be highly discriminatory. 
Another useful property is that, when h=0.5, there exists a 
strict 1–1 correspondence between the fuzzy encoding and the 
original feature value. 

C. Stochastic Feature Selection 
The motivation for classification preprocessing strategies 

exploiting feature subset selection is to simplify the 
determination and construction of optimal decision boundaries 
separating input patterns from different classes. Feature subset 
selection involves finding a mapping g′:X→X′, where X′⊆ℜl

(l<<n) is the reduced feature space. Pattern classification 
involves the subsequent determination of a mapping from the 
reduced feature space to the space of pattern class labels, 
g:X′→Ω. An example of such a preprocessing strategy is 
stochastic feature selection (SFS) [18]. 

Fig. 4: The membership function, fi, using the lower- (QL), mid- (m), and 
upper-quartiles (QU) of feature xi (  and  are the respective minimum and 

maximum design set values). 
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SFS is a dimensionality reduction technique, which begins 
with the random assignment of the original dataset patterns 
into design and test sets. Once the design phase is complete, 
the test set is used to externally substantiate the classification 
performance. Coupled with n-fold internal validation, this 
provides a reliable measure of the effectiveness of the 
underlying classification system. The number of regions and 
the feature region length to be selected are bounded by the 
user. Feature regions may be specified to be either disjoint or 
overlapping. Transformations may also be performed on 
regions such as computing their mean, variance, or other 
statistical moment. 

SFS exploits the quadratic combination of feature regions. 
The intent is that if the original feature space had non-linear 
decision boundaries between classes, the new (quadratic) 
parameter space may have decision boundaries that are more 
linear. SFS has three categories of quadratic combinations: 
using the original feature region; squaring the feature values 
for the region; and using all pair-wise cross-products of 
features from two regions. The probabilities of selecting one 
of these quadratic feature combination categories must sum to 
1. 

The stochastic nature of SFS is normally controlled by a 
feature frequency histogram whereby the performance of each 
classification task is assessed using the selected fitness 
function. If the fitness exceeds the histogram fitness threshold, 
the histogram is incremented at those feature indices 
corresponding to the regions used by the classification task. 
This histogram is used to generate an ad hoc cumulative 
distribution function, which is used when randomly sampling 
new feature regions. So, rather than each feature having an 
equal likelihood of being selected for a new classification task, 
those features that were used in previous “successful” 
classification tasks have a greater likelihood of being chosen. 
A temperature term, 0 t  1, provides additional control over 
this process. If t=0, the ad hoc cumulative distribution function 
is used but, as t 1, the randomness becomes increasingly 
uniform (when t=1 a strict uniform distribution is used). 

SFS was implemented using Scopira [19], an algorithm 
development framework, which allows the interconnection of 
multiple algorithm “modules” (for example, classifiers and 
data preprocessing techniques) [20]. SFS takes advantage of 
parallel computations using the MPI message-passing library 
specification [21]. Given a computing cluster, classification 
tasks are distributed to slave nodes for computation. A master 
node coordinates the distribution of tasks, records intermediate 
performance results, and updates the feature frequency 
histogram and cumulative distribution function. To minimize 
inter-process communication and maximize CPU loads, SFS 
“bundles” sets of classification tasks. Furthermore, while SFS 
exploits parallelism, it remains (optionally) strictly 
deterministic. That is, experimental results are perfectly 
reproducible regardless of computational load. 

The classification tasks were executed on a homogeneous 
14 node dual Opteron Linux Beowulf cluster system 
interconnected via TCP with 9GB of RAM per node. To 
conclude this section we now summarize the SFS algorithm. 

SFS algorithm 
1. Select values for relevant parameters. 
2. Select classifier and fitness function. 
3. Divide dataset into design and test sets. 
4. Repeat: Randomly divide design set into training and 

monitoring components. 
5. Randomly select a feature subset using feature frequency 

histogram. 
6. Perform quadratic transformation of feature subset. 
7. Train a classifier using the design set training component. 
8. Use fitness function and the monitor set to assess 

performance. 
9. If performance exceeds histogram threshold, update 

frequency histogram. 
10. If performance exceeds current best classifier, update list. 
11. If maximum number of iterations or fitness threshold is 

exceeded, stop.
12. Using the test set, compare the predictions against the 

actual class labels. 

III. MATERIAL

A. Magnetic Resonance Spectroscopy 
Magnetic resonance (MR) spectroscopy [22][23], used in 

many biomedical applications, exploits the interaction 
between an external homogeneous magnetic field and a 
nucleus that possesses spin in order to produce signals of 
tissues or biofluids under investigation. Certain nuclei, for 
example, those of hydrogen (1H), carbon (13C), and 
phosphorus (31P) resonate when exposed to electromagnetic 
radiation at a particular frequency, which depends on the type 
of nucleus, the molecular environment, and the intensity of the 
surrounding magnetic field. This reliable and versatile 
spectroscopic modality is routinely used in the classification 
of biomedical spectra for many types of tissues and biofluids. 
However, the analysis of MR spectra is also problematic due 
to the presence of artifacts and a low signal-to-noise ratio. The 
presence of signals from a large number of metabolites makes 
the extraction of relevant discriminatory information difficult. 
Finally, it is not uncommon that one is faced with the curse of 
dimensionality where the ratio of sample size to feature 
dimensionality is extremely small. 

B. Dataset 
A set of N=191 spectra of a biological fluid were acquired 

from an MR spectrometer with n=3381 spectral features. The 
spectra were divided into 116 normal patterns and 75 
abnormal patterns. The design set comprised 55 normal and 
abnormal patterns for a total of 110 design patterns. The 
remaining 81 patterns were used in the test set (61 normal and 
20 abnormal patterns). 

IV. EXPERIMENT RESULTS

We now describe the parameter values used for the 
experiment discussed below. A total of 10 basis functions 
were used for each RBF and h=0.5 for the fuzzy interquartile 
encoding. The fitness threshold was set at 0.999 and the 
maximum number of iterations was 106 (note that the fitness 
threshold was not exceeded in either run). The -score with 

671

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



sensitivity and specificity adjustments was used as the fitness 
function (see Section II) and 10-fold internal validation was 
used. For SFS, 2–20 disjoint feature regions were selected. 
These regions were the average of 10–100 features. The 
feature frequency histogram threshold was set to 0.8 and 
t=0.25. With respect to the selection of quadratic feature 
combinations: 60% of the features were unaltered, 20% were 
squared, and 20% involved the pair-wise cross-product of 
another feature region. 

TABLE 1 lists the classification accuracy, based on the test 
set, for the SFS runs using the original MR spectral features 
and the same features preprocessed using FIQ. An 8% 
decrease in the number of classification errors was achieved 
when FIQ was used, clearly demonstrating the effectiveness of 
FIQ as a preprocessing strategy. The false positive error rate 
was about the same (~24%) using both the FIQ and original 
MR spectral features. TABLE 1 shows that the improvement 
was achieved through a 10% reduction in the false negative 
error rate. 

Fig. 5 shows the feature frequency histograms for the MR 
spectra using the original features (Fig. 5(i)) and the FIQ 
encoded spectral features (Fig. 5(ii)). Note that far fewer (two 
orders of magnitude) RBF classifiers exceeded the SFS 
frequency histogram fitness threshold (0.8) using the original 
features compared to the SFS run using the FIQ encoded 
features. In other words, significantly more RBF classifiers 
produced “successful” classification results using FIQ features 
compared to the original spectral features. This is likely also 
reflected in the smaller standard deviations for the FIQ 
encoded features in TABLE 1. 

TABLE 2 lists the spectral feature regions used with the 
best performing RBFs for the original features and the FIQ 
encoded features. In both cases, five averaged feature regions 
were used and roughly the same total number of spectral 
features were also used (286 original features and 275 FIQ 
encoded features). It is interesting to note that with the original 
features only one of the feature regions involved a quadratic 
combination (pair-wise product), while three feature regions 
involved quadratic combinations using the FIQ encoded 
features (squared terms). This demonstrates the effectiveness 
of using quadratic combinations of features in the new 
parameter space compared to using the original input feature 
space, regardless of whether or not that input space was 
transformed using FIQ. 

For completeness, we also performed conventional moving 
averages of the spectral features using window sizes of 23, 49, 
and 69, yielding feature dimensionalities of 147, 69, and 49, 
respectively. RBF was used on these averaged datasets. 
Classification results for all three datasets were significantly 
poorer than the results listed in TABLE 1 with the best result 
of only 61.1% using 147 averaged features. 

TABLE 1
TEST SET CLASSIFICATION ACCURACY

 Accuracy (%) 
Features Normal Abnormal Overall 
Original 71.8±3.8 76.0±4.1 72.8 
FIQ 80.0±2.9 75.5±3.0 78.9 

Fig. 5. SFS feature frequency histograms using RBF for (i) the original MR 
spectral features and (ii) the FIQ encoded features. 

TABLE 2
FEATURE REGIONS SELECTED

 Feature Region 
 Start Index Length Quadratic 

Original 93 69 Pair-wisea

 434 78 None 
 2313 61 None 
 2560 40 None 
 3307 38 None 
FIQ 1510 70 Square 
 1582 38 None 
 2516 62 Square 
 2787 14 Square 
 3192 91 None 
across-product with region 2560–2599. 

V. CONCLUSION

We empirically demonstrated the effectiveness of a 
classification preprocessing strategy, a combination of fuzzy 
set theoretic interquartile encoding of the original feature 
space and the stochastic selection of highly discriminatory 
feature subsets, which was employed with a voluminous 
biomedical dataset of normal and abnormal patterns acquired 
from a magnetic resonance spectrometer. Using this 
preprocessing strategy with a radial basis function classifier, 
an 8% reduction in the overall error rate was achieved 
compared to using the original spectral features. Moreover, 
this was achieved using only a small fraction of the original 
features. 
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