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Abstract— A major challenge in text mining for biology and
biomedicine is automatically extracting protein-protein interac-
tions from the vast amount of biological literature since most
knowledge about them still hides in biological publications.
Existing approaches can be broadly categorized as rule-based or
statistical-based. Rule-based approaches require heavy manual
efforts. On the other hand, statistical-based approaches require
large-scale, richly annotated corpora in order to reliably estimate
model parameters. This is normally difficult to obtain in practical
applications. The hidden vector state (HVS) model, an extension
of the basic discrete Markov model, has been successfully applied
to extract protein-protein interactions. In this paper, we propose
a novel approach to train the HVS model on both annotated and
un-annotated corpus. Sentences selection algorithm is designed to
utilize the semantic parsing results of the un-annotated corpus
generated by the HVS model. Experimental results show that
the performance of the initial HVS model trained on a small
amount of the annotated data can be improved by employing
this approach.

Keywords—semi-supervised learning, information extraction,
hidden vector state model, protein-protein interactions extraction.

I. INTRODUCTION

Protein-protein interactions referring to the associations of
protein molecules are crucial for many biological function.
Understanding protein functions and how they interact with
each other give biologists a deeper insight into the under-
standing of living cell, disease process and provide targets
for effective drug designs. Although many database such as
BIND [1], IntAct [2] and STRING [3], have been built to store
protein-protein interactions, most knowledge about protein-
protein interactions are so far still locked in the full-text
journals. As a result, automatically extracting protein-protein
interactions is crucial to meet the demand of the researchers.

Most existing approaches are either based on simple pattern
matching, or by employing parsing methods. Approaches
using pattern matching [4], [5] rely on a set of predefined
patterns or rules to extract protein-protein interactions. Parsing
based methods employ either shallow or deep parsing. Shallow
parsers [6], [7] break sentences into none overlapping phases
and extract local dependencies among phases without recon-
structing the structure of an entire sentence. Systems based
on deep parsing [8], [9] deal with the structure of an entire
sentence and therefore are potentially more accurate. The

major drawback of the aforementioned methods is that they
may require complete manual redesign of grammars or rules in
order to be tuned to different domains. On the contrary, statisti-
cal models can perform protein-protein interactions extraction
without human intervention once they have been trained from
annotated corpora. Many empiricist methods [10], [11] have
been proposed to automatically generate the language model
to mimic the features of un-structured sentences. For example,
Seymore [12] used Hidden Markov Model (HMM) for the task
of extracting important fields from the headers of computer
science research papers. In [13], a statistical method based
on the hidden vector state (HVS) model to extract protein-
protein interactions has been proposed. However, methods of
this categories do not perform well partially due to the lack
of large-scale, richly annotated corpora.

How to learn from both annotated and un-annotated data,
i.e. semi-supervised learning, have attracted much attention in
recent years. The proposed methods include EM (expectation-
maximization) with generative mixture models [14], self-
training [15], co-training [16], transductive support vector
machines [17], graph-based methods [18] and so on. Nigam
et al. [14] applied the EM algorithm on the mixtures of
polynomials for the task of text classification. They showed
that the classifiers trained from both the labeled and unla-
beled data perform better than those trained solely from the
labeled data. Yarowsky [19] used self-training for word sense
disambiguation. Rosenberg et al. [15] applied self-training to
object detection from images. Jones [16] used co-training, co-
EM and other related methods for information extraction from
text. Blum et al. [18] proposed an algorithm based on finding
minimum cuts in graphs to propagate labels from the labeled
data to the unlabeled data. For a detailed survey on semi-
supervised learning, please refer to [20].

In this paper, we present a novel method to train the HVS
model on both un-annotated and annotated corpus. Utilizing
the semantic parsing results of the un-annotated corpus gen-
erated by the HVS model trained on the annotated corpus,
sentences with high confidence of being parsed correctly in
un-annotated corpus are added into the annotated corpus for
iteratively training the HVS model. The rest of the paper is
organized as follows. Section II briefly describes the HVS
model and how it can be applied to extract protein-protein
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interactions. Section III presents the proposed approach of
training the HVS model on both un-annotated and annotated
corpus. Experimental results are discussed in section IV.
Finally, section V concludes the paper.

II. THE HIDDEN VECTOR STATE MODEL

The Hidden Vector State (HVS) model [21] is a discrete
Hidden Markov Model (HMM) in which each HMM state
represents the state of a push-down automaton with a finite
stack size. This is illustrated in Figure 1 which shows the
sequence of HVS stack states corresponding to the given parse
tree.

Each vector state in the HVS model is in fact equivalent
to a snapshot of the stack in a push-down automaton and
state transitions may be factored into a stack shift by n
positions followed by a push of one or more new preterminal
semantic concepts relating to the next input word. Such stack
operations are constrained in order to reduce the state space
to a manageable size. Natural constraints to introduce are
limiting the maximum stack depth and only allowing one new
preterminal semantic concept to be pushed onto the stack for
each new input word. Such constraints effectively limit the
class of supported languages to be right branching. The joint
probability P (N,C,W ) of a series of stack shift operations
N , concept vector sequence C, and word sequence W can be
approximated as follows

P (N,C,W ) ≈
T∏

t=1

P (nt|ct−1) · P (ct[1]|ct[2..Dt])

· P (wt|ct) (1)

where:

• ct denotes the vector state at word position t, which
consists of Dt semantic concept labels (tags), i.e. ct =
[ct[1], ct[2], .., ct[Dt]] where ct[1] is the preterminal con-
cept and ct[Dt] is the root concept (SS in Figure 1);

• nt is the vector stack shift operation and takes values in
the range of 0, ..,Dt−1 where Dt−1 is the stack size at
word position t − 1;

• ct[1] = cwt
is the new preterminal semantic tag assigned

to word wt at word position t.

The result is a model which is complex enough to capture
hierarchical structure but which can be trained automatically
from only lightly annotated data.

To train the HVS model, an abstract annotation needs to be
provided for each sentence. For example, for the sentence,
CUL-1 was found to interact with SKR-1, SKR-2, SKR-3,
SKR-7, SKR-8 and SKR-10 in yeast two-hybrid system.
The Annotation is:
PROTEIN NAME(ACTIVATE(PROTEIN NAME)).
Such abstract annotations serve as constraints on limiting the
forward-backward search during the model training to only
include the states which are consistent with these constraints.

III. METHODOLOGIES

The HVS model uses a set of annotated sentences to learn
class descriptions for protein-protein interactions. In practice,
annotating the training sentences is a tedious, time consuming,
error prone process. In order to reduce the effort of annotating
sentences, a semi-supervised learning method is proposed,
which is presented in this section.

As mentioned in section II, the HVS model does not require
explicit semantic tag/word pairs to be given in the annotated
corpus. All it needs are abstract semantic annotations for
training. This means that many sentences might share the same
semantic annotation and they therefore could possibly exhibit
the similar syntactic structures which can be revealed through
part-of-speech (POS) tagging. Figure 2 gives an example of
several sentences sharing the same semantic annotation and
their corresponding abbreviated POS tag sequences which
were generated by removing unimportant POS tags from the
original POS tag sequences. Here the symbol ACKEY denotes
a protein-protein interaction keyword, PTN denotes a protein
name, TO denotes the word “to”, CC denotes a conjunction
and IN denotes some prepositions such as “of”, “between” etc.

A. Rationale

Suppose EL = {〈a1, c(a1)〉, 〈a2, c(a2)〉, · · · , 〈an, c(an)〉}
is a set of labeled sentences with ai being a sentence
and c(ai) being its corresponding annotation and EU =
{〈b1, b2, · · · , bm〉} is a set of unlabeled sentences, we can use
some classic clustering algorithm to group sentences in EL

and EU into several clusters which is illustrated in Figure 3.
The distance between two sentences is defined as the distance
between their corresponding simplified POS tag sequences and
its calculation will be described in detail in section III-B.
The HVS model M is initially trained on the data set EL.
Since some sentences in EU might be in the same cluster
with those in EL, their semantic structures are very likely to
be identified correctly by M . Adding these sentences and their
corresponding annotations which are automatically generated
from semantic parsing results should improve the performance
of the original model M . Based on this rationale, we can see
that it is crucial to select the sentences from EU to make
ensure that their semantic parsing results are correct with high
confidence. If adding examples with incorrect annotations,
obviously the performance of M will be degraded.

The procedure of the proposed semi-supervised learning
method is described in Figure 4, where it starts with a (small)
set of annotated sentences EL and a (large) set of un-annotated
sentences EU . A baseline HVS model M is constructed on
the data set EL. A hypothesis h (a semantic parsing result)
is induced for each sentence in EU using M . Then the un-
annotated sentence q ∈ EU is selected to maximize the
precision of its h, which is described in detail in section III-
C. The annotation of q, c(q) can then be deduced from its
hypothesis h. After adding 〈q, c(q)〉 to EL, the model M
is refined with the enlarged annotated corpus and the whole
procedure repeats until it converges.
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Fig. 1. Example of a parse tree and its vector state equivalent.

SS(KEY(PROTEIN NAME(PROTEIN NAME)) SE)
Sentence Abbreviated POS tag sequence
WW domain 3 (but not the other WW domains) was both necessary
and sufficient for the binding of hNedd4 to alphaENaC.

ACKEY IN PTN TO PTN

The structural prediction was confirmed by site-directed muta-
genesis of these electronegative residues , resulting in loss of
binding of Siah1 to SIP in vitro and in cells.

ACKEY IN PTN TO PTN

The physical interaction of cdc34 and ICP0 leads to its degrada-
tion.

ACKEY IN PTN CC PTN

Finally , an in vivo interaction between pVHL and hnRNP A2 was
demonstrated in both the nucleus and the cytoplasm.

ACKEY IN PTN CC NN PTN

The in vivo interaction between DAP-1 and TNF-R1 was further
confirmed in mammalian cells.

ACKEY IN PTN CC PTN

Fig. 2. An example of multiple sentences sharing the same annotation.

Annotated
Corpus EL

Un-annotated
Corpus EU

Training

Adding

HVS
model

Parsing

Automatically
Annotating

Selecting
Data with

labels

Parsing Results

Parsing Information IP
Structure Information IS
Complexity Information IC
...

Fig. 4. Flowchart of training procedure employing semi-supervised learning.

B. Distance Calculation

The distance between two sentences is defined as the
distance between their corresponding simplified POS tag se-
quence, which is calculated based on sequence alignment.
Suppose a = a1a2 · · · an and b = b1b2 · · · bm be the two
POS tag sequences of length of n and m, define S(i, j) as the
score of the optimal alignment between the initial segment

from a1 to ai of a and the initial segment from b1 to bj of b,
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Fig. 3. Sketch map of clustering examples in EL and EU , where red circle
denotes ai(i = 1 · · ·n) and blue diamond denotes bj(j = 1 · · ·m).

where S(i, j) is recursively calculated as follows:

S(i, 0) = 0, i = 1, 2, ...n (2)

S(0, j) = 0, j = 1, 2, ...m (3)

S(i, j) = max




0,

S(i − 1, j − 1) + s(ai, bj),
S(i − 1, j) + s(ai,

′ −′),
S(i, j − 1) + s(′−′, bj)

(4)

Here s(ai, bj) is the score of aligning ai with bj and is
defined as:

s(ai, bj) = log
[ p(ai, bj)
p(ai) × p(bj)

]
(5)

where, p(ai) denotes the occurrence probability of tag ai and
p(ai, bj) denotes the probability that ai and bj appear at the
same position in two aligned sequences.

A score matrix can then be built and dynamic programming
is used to find the largest score between the two sequences.

Based on the aforementioned method for distance measure-
ment, sentences in EL and EU can be clustered into various
groups. Such clustering results are then fed into the stage of
sentence selection.

C. Sentences selection

To select the best semantic parsing results and their cor-
responding sentences from EU , we need to define a variable
DGp to describe the degree of their fitness. First of all, we
need to define some parameters which will be employed to
express the variable DGp.

Suppose sentence Si ∈ EU has its correspondent parsing
path Pi, parsing information IP , structure information IS ,
complexity information IC are defined as follows:

• Parsing Information IP , describing the information in
the parsing result Pi, is defined as follows:

IP = 1 −
∑N

j=1 KeyITD(Sij)∑N
j=1 Key(Sij)

. (6)

Here, N denotes the length of the sentence Si, Sij

denotes the jth word of the sentence Si and function
KeyITD, Key are defined as:

Key(Sij) =




1, if Sij is a protein name or a pro-

tein interaction keyword

0, otherwise

(7)

KeyITD(Sij) =




1, if Key(Sij) is 1 and the se-

mantic tag of Sij is DUMMY

0, otherwise

(8)

• Structure Information IS , describes the similarity be-
tween the structure information of the sentence Si and
those of all the sentences in EL, which is defined as
follows:

IS = 1 − min(Dist(Si, Sj)|Sj ∈ EL)
max(Dist(Sk, Sj)|Sk ∈ EU , Sj ∈ EL)

+
Num(C(Si))

‖EL‖ , (9)

where C(Si) denotes the cluster where Si locates and
Num(C(Si)) denotes the number of sentences of EL in
the cluster C(Si).

• Complexity Information IC , describing the complexity
of the sentence Si, is defined as follows:

IC = 1 − Length(Si)
Max(Length(Sj)|Sj ∈ EU

⋃
EL)

(10)

Overall, it can be observed that the higher the value of IP ,
IS , and IC , the higher confidence of the correctness of the
semantic parsing path Pi.

After defining the above parameters, DGp is defined as

DGp = βpIP + βsIS + βcIC + β0, (11)

which is a combination of the above defined three parameters.
To estimate the coefficients β = (βp, βs, βc, β0), the method
of least squares is applied and the coefficients β are selected
to minimize the residual sum of squares,

RSS(β) =
N∑

i=1

(DGpi −βpIPi −βsISi −βcICi −β0)2 (12)

where N is the number of training data.
The sentence selection algorithm is described in Figure 5.

An example is given in Figure 6 to illustrate how to automat-
ically generate annotations from the semantic parsing results.

IV. EXPERIMENTS

A. Setup

To evaluate the efficiency of the proposed method, a
corpus is constructed, which consists of sentences retrieved
from the GENIA corpus [22]. GENIA is a collection of
research abstracts selected from the search results of Medline
database with keywords (MESH terms) human, blood cells
and transcription factors . These abstracts were then split into
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Preprocessing
Result

Sentence
Activation of NF-kappa B by interleukin 2 in human blood monocytes.

Sent_start Activate of protein_name by protein_name in human blood monocytes sent_end

Parsing Result
SS(sent_start) SS+ACTIVATE(activate) SS+ACTIVATE+OF(of)
SS+ACTIVATE+OF+PROTEIN_NAME(protein_name) SS+ACTIVATE+OF+PROTEIN_NAME+BY(by)
SS+ACTIVATE+OF+PROTEIN_NAME+BY+PROTEIN_NAME(protein_name)
SS+ACTIVATE+OF+PROTEIN_NAME+BY+DUMMY(in) ...
SS+SE(sent_end)

Parsing Tree
SS

ACTIVAT E

O F

B Y

SE

sen t_ s tart activ ate    o f p ro tein _ n ame     b y p ro tein _ n ame in  h u man  b lo o d  mo n o cy tes

P RO T EIN_NAM E

DUMMYP RO T E IN_NAM E

sen t_ en d

SS AC T IVAT E
SS

OF
AC T IVAT E

SS

PR OT E IN
OF

AC T IVAT E
SS

B Y
PR OT E IN

OF
AC T IVAT E

SS

PR OT E IN
B Y

PR OT E IN
OF

AC T IVAT E
SS

DUM M Y
B Y

PR OT E IN
OF

AC T IVAT E
SS

SE
SS

Annotation
SS(ACTIVATE(OF(PROTEIN_NAME(BY(PROTEIN_NAME)))) SE)

Fig. 6. An example illustrated the process of automatically generating annotations from semantic parsing results.

sentences and those containing more than two protein names
were kept. Altogether 2500 sentences were left. The corpus
was split into two parts; part I contains 1500 sentences which
can be further split into two data sets: EL consisting of 500
sentences and EU consisting of the remaining 1000 sentences,
part II consists of 1000 sentences which was used as the test
data set.

We have preformed 10-fold cross-validation on the model
performance. 250 sentences were randomly sampled from Part
II in the corpus , which is done ten times. To ensure the
justness of sampling, sentences in the test data set are grouped
into four subsets based on their complexity IC . Sentences were
then drawn fairly from each of subsets so that the coverage
over the whole test set (1000 sentences) in term of sentence
complexity was ensured for each of the sampled test data
(250 sentences). Figure 7 illustrates the distribution of sentence
length in the whole test data set.

The results reported here are based on the values of TP
(true positive), FN (false negative), and FP (false positive).
TP is the number of correctly extracted interactions. (TP+FN)
is the number of all interactions in the test set and (TP+FP) is
the number of all extracted interactions. F-score is computed
using the formula below:

F-score =
2 · Recall · Precision
Recall + Precision

(13)

where Recall is defined as TP/(TP + FN) and Precision is
defined as TP/(TP + FP ).

B. Results

The baseline HVS model was trained on the data set
EL which consists of 500 sentences. Sentences from the
data set EU were then selected and automatically assigned
with semantic annotations based on the method described in
section III. The HVS model were incrementally trained with

678

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



Input: The sets EL and EU of labeled and unlabeled
sentences
D̂Gp, the threshold of DGp

Clusters constructed on EL and EU

Procedure:
1: Train the HVS model from EL

2: Generate parsing result for each sentence Si ∈
EU

3: Set Q to null
4: Loop for each sentence Si

Calculate the DGp for Si

If ( DGp > D̂Gp)
Generate annotation c(Si) for Si

Add 〈Si, c(Si)〉 into Q
EndIf

EndLoop
5: If Q equals to null, procedure stops

Else remove sentences in Q from EU , add Q
to EL and goto 1
EndIf

Fig. 5. Procedure of sentence selection.
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Fig. 7. Histogram of sentence length in test set.

those newly added training data. The process is repeated until
no more sentences can be selected. Total 200 sentences from
the un-annotated data set EU were selected and assigned with
the semantic annotations after ten iterations. Table I lists the
evaluation results. The “baseline” results were obtained using
the initial HVS model trained on EL (500 sentences). The
“improved” results were obtained using the final HVS model
trained on the combined data which include the initial 500
sentences and the later added 200 sentences. The “Best” row
shows the performance of the HVS model trained on the whole
data Part I.

Overall, we found that by adding the sentences selected
from unlabeled data, the relative improvement on F-measure

Experiment Recall Precision F-Score
(%) (%) (%)

Baseline 55.8 55.6 55.7
Improved 57.5 58.7 58.1

Best 64.2 59.5 61.7

TABLE I

TEXT MINING RESULTS USING THE HVS MODEL.

is around 2.4%. It gives positive support on the efficiency of
our method.

Figure 8 shows the protein-protein interactions extraction
performance versus the training iterations where the number
of sentences added in each iteration is listed in Table II. The
best performance was obtained in the second iteration where
F-score reaches 58.4%.
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Iteration 

 

 

F−score
Precision
Recall

Fig. 8. F-measure vs training iterations.

Iteraction Number of sentences
1 19
2 21
3 31
4 30
5 20
6 19
7 18
8 13
9 10
10 19

TABLE II

NUMBER OF SENTENCES ADDED IN EACH ITERATION.

It can be observed that F-score value in general as the
semi-supervised learning procedure repeats. The performance
however degrades in iteration 3 and 4, possibly due to un-
correctness of annotations of added sentences.
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V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel semi-supervised learn-
ing method to train the HVS model on both un-annotated
and annotated data. Based on sentence selection algorithm,
semantic annotations can be automatically generated from the
semantic parsing results for the un-annotated sentences. The
HVS model can then be refined with the increasingly added
un-annotated data and this eventually leads to the increase
on the F-measure when used for protein-protein interactions
extraction. In future work, we will investigate the combination
of semi-supervised learning with active learning to further
improve the performance of the HVS model.
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