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Abstract- Estimating the depth of anesthesia (DOA) is still a 

challenging area in anesthesia research. The objective of this 

study was to design a fuzzy rule based system which integrates 

electroencephalogram (EEG) features to quantitatively 

estimate the DOA.  

The proposed method is based on the analysis of single-channel 

EEG using frequency and time domain features as well as 

Shannon entropy measure. The fuzzy classifier is trained with 

features obtained from four subsets of data comprising well-

defined anesthesia states: awake, moderate, general anesthesia, 

and isoelectric. The classifier extracts efficient fuzzy if-then 

rules and the DOA index is derived between 100 (full awake) to 

0 (isoelectric) using fuzzy inference engine. 

To validate the proposed method, a clinical study has 

conducted on 22 patients to construct 4 subsets of reference 

states and also to compare the results with CSM monitor 

(Danmeter, Denmark), which has revealed satisfactory 

correlation with clinical assessments. 

 

I. Introduction 

Depth of anesthesia assessment has remained a challenging 

problem for several decades. It is because none of the 

parameters used to this aim has satisfactorily described the 

complexity of the system. Patient hemodynamics like blood 

pressure, heart rate, tearing and sweating can not avoid 

awareness and movements during surgery. Neither plasma 

nor the effect site concentration of the drug can measure 

clinical effects directly. Solving this problem the Central 

Nervous System, the main target for anesthetic agents, has 

received a great deal of attention and EEG-based methods 

have been widely used for estimating the anesthetic depth. 
Various types of features have been extracted from the 

electroencephalogram to predict depth of anesthesia. Early 

studies have used spectral edge frequency, median 

frequency and the relative and total power in the classical 

frequency bands [1]-[3]. Using parameters based on 

bispectrum made a progress in EEG-based anesthesia 

monitoring. The bispectrum power is said to indicate the 

presence of quadratic phase-coupling between different 

frequencies within the signal. Recently some researchers 

have used EEG entropy measures as an indicator of depth of 

anesthesia [4]-[7]. The concept behind this is that EEG 

becomes more regular as the anesthetic depth increases. 

Also Lempel-Ziv complexity of EEG has shown good 

correlation with increasing the anesthetic depth [8]. 

Although these parameters can distinguish well between 

awake and anesthetized states, they don’t behave 

monotonically during transition from wakefulness to deep 

isoelectric states [2]. So we can’t utilize them individually 

to continuously monitor anesthetic state changes during 

different phases of anesthesia. Concerning this, some efforts 

have been made to combine these features using 

computational intelligence techniques such as neural 

networks and neuro-fuzzy inference systems [5], [9-10]. 

In the present study we have proposed a rule-based fuzzy 

logic system merging different EEG derived measures to 

obtain an index for the depth of anesthesia. Several studies 

have introduced adaptive neuro-fuzzy inference system 

(ANFIS) as a powerful tool for classifying DOA. Although 

it led to good compatibility with clinical assessments, but 

the black box nature of neural learning makes these systems 

rigid to importing knowledge from human expert that may 

improve the performance of the system. Moreover, it is 

difficult to drive knowledge from artificially made rules of 

these systems. Considering the above mentioned problem 

we decided to use a fuzzy inference system (FIS) that was 

initially established by human expert and then optimized by 

machine learning procedures. 

Two trends can be observed in development of anesthesia 

monitors. Some algorithms put more emphasis on some 

advanced parameters like bispectrum or entropy, while the 

others (like CSM, Cerebral State Monitor) combine some 

well-known spectral ratios and time domain characteristic of 

EEG applying them to a classification algorithm. CSM 

(Danmeter, Denmark) is a recently developed depth of 

anesthesia monitor having good correlation with clinical 

assessments. It uses 3 later defined spectral ratios: alpha-

ratio, beta-ratio and difference between them, which is 

called theta ratio in this paper, accompany with burst-

suppression, a time domain feature relating to deep iso-

electric states. Each of these components is affecting in a 

specific range of anesthetic level where they perform best. 

Adaptive Neural Fuzzy Inference System (ANFIS) is used 

to calculate the CSI which is a scalar index changing 

between 0 and 100. In this study we utilized features used in 

calculating CSI and also SEF and Shannon entropy in 
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conjunction with a FIS. We applied different combinations 

of features and also different methods of defining 

membership functions and eventually compared the results. 

We compared our index resulting from a FIS with CSI, 

ANFIS derived index, in steady state and transient phases of 

anesthesia. 

II. Materials and Methods 

A. Protocol Design and Data Collection 

22 patients, having ASA grade I and II and undergoing 

elective urologic surgery entered the study. Patient ranged 

in age from 15 to 75 years (mean=44.36, SD=19.93), and in 

weight from 50 to 96 kg (mean=68.64, SD=12.99). Written 

informed consent was obtained from all the study patients. 

All the patients were premedicated with 0.03 mg/kg 

midazolam and 2 µg/kg fentanyl. The Anesthesia was 

induced with 5mg/kg (4 mg/kg at the first and 1 mg/kg 

before intubation) tiopanthal. The muscle relaxant used in 

this study was cisatracurium (0.1 mg/kg in the induction 

phase). After orotracheal intubation, patients were 

ventilated using a mixture of N20 and O2. Anesthesia was 

maintained with 75µg/kg/h propofol by means of an 

infusion pump. 

One channel EEG recording was made using CSM with 

the sampling rate of 100 Hz. The EEG electrodes were 

placed at Fz (positive at middle forehead), T5 (negative at 

left mastoid) and reference electrode at Fp1 (left forehead). 

Data was transferred to a portable computer by RF interface 

using CSM link and software (CSM link software v.3.01). 

All the EEG data and the CSM calculated indices were 

stored for later analysis. Hemodynamic parameters i.e. 

blood pressure, heart rate, blood O2 saturation and also the 

time occurrence of movement or gagging of the patient were 

manually recorded. The exact time of all drug infusions 

were also noted. 

For later described comparison of discriminating power of 

each EEG feature, 4 EEG observation sets each containing 

15 minutes have been recorded: 

- Awake reference: recorded from 3 healthy adult 

subjects. 

- Moderate reference: extracted from 14 patients during 

induction or recovery from anesthesia. 

- Anesthetized reference: extracted from 10 patients 

during steady state anesthesia. 

- Isoelectric reference: recorded from a brain death 

subject in ICU. 

 

B. Spectral features 

As mentioned above, in this study we have used 4 spectral 

features including: spectral edge frequency (SEF), alpha-

ratio, beta-ratio and theta-ratio. SEF is the frequency below 

which a defined percent of total power is located. SEF 95, 

90 and median frequency (SEF 50) are the most common 

definition of this measure. D. Schwender et al have shown 

that SEF decreases during general anesthesia with isoflurane 

or propofol compared with the awake state. 

We performed power spectral analysis using fast Fourier 

transformation (FFT). Epoch length of EEG acquisition was 

4s and the window shifting was 1 s. Spectral Edge 

frequency 90 (SEF 90) was calculated. The SEF value was 

determined by averaging the data from 10 consecutive 

epochs. 

Alpha, beta and theta ratios show logarithmic relative 

power of two distinct frequency bands. Alpha-ratio 

decreases as anesthesia deepens 
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It is the part that identifies surgical anesthesia in CSI 

algorithm. Beta-ratio which relates to identifying awake 

state is defined as follows 

 

 

 

We named the difference between alpha and beta ratios as 

theta ratio. It can well distinguish between moderate 

anesthesia and other states 

 

 

 

C. Burst suppression ratio 

During deep anesthesia, the EEG may develop a peculiar 

pattern of activity, which is evident in the time domain trend 

of signal. This pattern, known as burst suppression, is 

characterized by alternating periods of normal to high 

voltage activity changing to low voltage or even 

isoelectricity rendering the EEG inactive in appearance. The 

burst suppression ratio (BSR) is a time domain EEG 

parameter developed to quantify this phenomenon. To 

calculate this parameter, suppression is recognized as those 

periods longer than 0.50 s, during which the EEG voltage 

does not exceed approximately +/- 3.5 µV. The time in a 

suppressed state is measured, and the BSR is reported as the 

fraction of the epoch length where the EEG is suppressed 

[11]. 

 For comparison of results with CSI we used these values 

that are the same with burst suppression calculation in CSI. 

 

D. Shannon Entropy 

The concept of entropy in the literature of information 

theory was first introduced by Shannon, and it can be 

interpreted as a measure of order in the signal. In other 

words entropy rates are measures designed to quantify the 

regularity of a time series or the predictability of new values 

based on previous observations.  

Shannon entropy, ShEn, quantifies the probability density 

function of the signal and it can be calculated as: 

 

  

  

where i goes over all amplitude values of the signal and pi 

is the probability that amplitude value ai occurs anywhere in 

the signal. 
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Figure l. Histogram analysis of alpha ratio, beta ratio, theta ratio, burst suppression, SEF and Shannon Entropy. 

 

 

However, in the case of measured signals the PDF is not 

known and should be estimated. Also, it is generally not 

reasonable to take into account all amplitude values ai . The 

easiest way to estimate the PDF is to use the histogram 

method where the amplitude range of the signal is linearly 

divided into k bins so that the ratio k/N is constant ( N is the 

number of signal samples). The ratio k/N characterizes the 

average filling of the histogram. In order to get normalized 

values, ShEn should be divided by log k 

 

 

 

E. Statistical analysis of features 

All of the six mentioned features which have shown good 

results in previous studies were calculated for each epoch of 

4 data sets. 

 In order to see distribution of features over different 

classes (awake, moderate, general anesthesia, isoelectric), 

we compared PDF of the features over each subset. In this 

way we performed histogram analysis as a powerful tool 

that can help us to shape membership functions used in our 

fuzzy system (Fig. 1). 

In alpha ratio histogram (fig. 1-A) general anesthesia state 

values are well apart from other states. Fig. 1.B shows that 

although moderate and anesthetized states result in nearly 

similar beta values but awake values of beta is well 

distinguishable. Theta histogram (fig. 1-C) indicates 

acceptable discrimination of moderate state. Although it has 

a biphasic fashion in changing from awake to isoelectricity 

but we can extract periods of moderate anesthesia with the 

use of this feature. It is not so important what are isoelectric 

subset values for the first 5 features, because the last feature 

named burst suppression can detect periods of isoelectricity 

clearly. Fig. 1-D illustrates this fact well. Fig. 1-E shows 

that SEF decreases from awake to general anesthesia, and 

then increases till deep isoelectric EEG. It is equivalent to 

previous results which have used SEF for discriminating 

between awake and anesthetized state. We can see that all of 

4 subsets overlap in SEF in some regions. But it seems that 

it is capable to distinguish between general anesthesia and 

other states. 

A B 

C D 

E

A 
F 
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Figure 2. Initial membership functions of four selected features. 
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Histogram analysis of ShEn did not show good 

discrimination ability between different classes (fig. 1-F). 

Statistical analyzing of features declared our first hypothesis 

that none of the features can individually estimate the depth 

of anesthesia in all states. 

 

F. Designing Membership Functions for Fuzzy Classifier 

Designing membership functions (MFs) is the 

fundamental stage in constructing a fuzzy classifier. MFs 

should partition the input space efficiently such that the 

different subsets of training patterns can be well learned by 

the classifier. If this stage is not well done the classification 

will be corrupted despite the kind of classifier. Here, we 

designed input membership functions with respect to data 

distribution pattern over each dimension (histogram analysis 

of data in fig. 1). Fig. 2 illustrates the designed membership 

functions of four features that have led to the best 

performance in later mentioned results. The putative 

features are alpha ratio, beta ratio, theta ratio and burst 

suppression which have 2, 2, 3, and 2 MFs respectively. 

 For training purpose, we utilized combinations of features 

derived from 4 sets of 15 minutes EEG signal belonged to 

the predefined reference states. 

In order to have concise and interpretable rules we based 

our method on combination of four features for designing 

membership functions and constructing rules. Considering 4 

features as inputs, we have 4 dimensions in input space.  

 

G. Constructing Fuzzy If-Then Rules 

Ishibuchi et al. [12] proposed an intuitive method for 

constructing fuzzy if-then rules in fuzzy classification 

problems. We also developed our fuzzy rule base according 

to their approach. Here is the summary of the rule building 

procedure: 

As we mentioned before, our input space has 4 

dimensions corresponding to 4 selected features. As a result, 

we have 2×3×2×2=24 fuzzy subspaces. Our goal is to derive 

a suitable rule for each of these subspaces. 

Suppose that we have 900 training epochs x1, x2, …, x900, 

each of which is described by 4 features as xp = (xp1, xp2, xp3, 

xp4), p = 1, 2, …, 900, are given as training pattern. We 

assume that all 900 epochs already have one of the labels of 

the 4 classes (m>>4): class 1 (awake), class 2 (moderate), 

class 3 (anesthesia) and class 4 (isoelectric). Our rule 

template is as follows: 

 

Rule Rijkl: If xp1 is A
1
i and xp2 is A

2
j and xp3 is A

3
k and xp4 is 

A
4
l, then xp belong to class Cijkl with CF=CFijkl. 

i=1,2; j=1,2; k=1,2,3; l=1,2 (6) 
 

where Rijkl is the label of the fuzzy if-then rule, A1
i , A

2
j, 

A3
k and A4

l are fuzzy subsets on the first, second, third and 

forth dimensions respectively. The subscripted indices i, j, k 

and l corresponds to the membership functions. Cijkl is the 

consequent of the rule which is one of the 4 classes, and 

CFijkl is the grade of certainty of the fuzzy if-then rule. 

 

The consequent Cijkl and certainty factor CFijkl of the if-

then rules are determined in following steps: 

 

Step 1: Calculate �CT for each of four classes (T=1, 2, 3, 

4) as:     
 

 

 

where �CT  is the sum of the compatibility of xp’s in class T 

to the fuzzy if-then rule Rijkl in (6). 

 

Step 2: Find Class X(CX) such that 

 

 

 

If two or more classes take the maximum value or all the 

�CT’s are zero, the consequent Cijkl of the fuzzy if-then rule 

corresponding to the fuzzy subspace A1
i×A2

j×A3
k×A4

l can 

not be determined uniquely. In this case, let Cijkl be null. If a 

single class takes the maximum value, Cijkl is determined as 

CX in (8). 

 

Step 3: If a single class takes the maximum value in step 

2, Then CFijkl   is determined as: 

 

 

 

Where 

 

 

 

 

where M is the number of classes which is 4 in this case. 

In this procedure, the consequent Cijkl is determined as class 

X that has the largest sum of �i(xp1).�j(xp2).�k(xp3).�l(xp4) 

over the all classes. 

 The certainty CFijkl has the following intuitively 

acceptable two properties: 

1) if all the patterns in the fuzzy subspace A1
i×A2

j×A3
k×A4

l  

belong to the same class, then CFijkl  = 1 (the maximum  
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Figure 3. The Block diagram of the fuzzy system 

 

certainty). In this case, it is certain that any patterns in 

A1
i×A2

j×A3
k×A4

l belongs to the consequent class of the 

generated fuzzy if-then rule. 

2) If all the values of �CX’s are not so different from each 

other, then  CFijkl�0 (the minimum certainty) .In this case, it 

is uncertain that any pattern in A1
i×A2

j×A3
k×A4

l belongs to 

the consequent class of the generated fuzzy if-then rule. 

 

H. Classifying a new pattern 

Let us assume that we have 2×2×3×2=24 fuzzy if-then 

rules generated for all input partitions. An input vector 

xp=(xp1, xp2, xp3, xp4) is classified by the single winner rule 

Rw  that has the maximum product of the compatibility and 

the certainty grade among the whole rules:  

 

 

Where �w(xp) is the compatibility of the input vector 

xp=(xp1, xp2, xp3, xp4) with the fuzzy if-then rule Rw, which is 

defined as follows: 

 

 

    

We refer to the fuzzy if-then rule Rw as the single winner 

rule in our fuzzy reasoning procedure. The input pattern xp 

is classified as the class label Cw of the single winner rule, 

Rw, [13].      
If  two or more classes take the maximum value in, or all 

the �CT's are zero, then the classification of xp is rejected 

(i.e., xp is left as an unclassifiable pattern), else assign xp to 

Class X determined by step 2. 

 

I. Fuzzy Inference System 

In addition to four-class classification, we intend to derive 

an index in [0 100] that reflects the level of anesthesia and 

furthermore can be compared with clinically accepted 

indices like CSI and BIS. Consequently, we decided to use 

the whole rule set instead of only considered one winner 

rule in this stage. In order to infer a result from a set of 

rules, we must add a fuzzy inference engine to our system. 

We chose the product inference engine with following 

properties [14]: individual-rule base inference, union 

combination of results, Mamdani’s product implication, 

algebraic product for all T-norm operations, and maximum 

for all the S-norm operations.  

 In the other hand, to derive a crisp number representing 

the depth of anesthesia, it is essential to design an 

appropriate membership function for output space and 

choose a defuzzification method as well. In this way, we put 

4 membership functions corresponding to 4 class of 

isoelectric, anesthesia, moderate and awake in output and 

assign values of 0, 40, 75 and 100 as their membership 

function centers respectively. We also used the defuzzifier 

with respect to average of centers. Block diagram of 

complete system is described in fig. 3. 

 

III. Results 

 

We pursued two different goals in this study. Firstly to 

find out how can a single feature or different combinations 

of features discriminate between distinct stages of 

anesthesia. Another purpose of this paper was to define a 

unitless index, witch can measure DOA continuously. 

 

A. Classification performance of fuzzy classifier 

For classifying anesthesia states to 4 classes we trained the 

proposed fuzzy classifier with 4 train sets (2400 epochs of 

whole 3600) each of which containing 600 epochs from 

reference data sets. The classifier performance was tested 

with 1200 remaining epochs of data. The classification was 

performed with finding the winner rule based on method 

)12()().().().()( 4321 pwlpwkpwjpwipw xxxx µµµµµ =x
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mentioned in section II-H. The accuracy for each group was 

defined as the ratio of truly classified patterns of the class to 

the total number of epochs belonging to it (300). 

We used different combinations of features to design 

fuzzy classifier. The best results were aimed using the same 

combination with CSI which is alpha ratio, beta ratio, theta 

ratio, and burst suppression as input features. In this case 

the accuracies of all groups were 100% except for moderate 

state group which was 87%. So, the total accuracy was 

96.75 for whole data test (1200 epochs). The results show 

excellence of our proposed approach compared with other 

methods classifying just two classes of awake and 

anesthetized. 

 

B. Deriving a continuous index for DOA 

As described in fuzzy inference section we intended to 

derive an index that can continuously measure the 

anesthetic changes. We used 4 selected features which led 

to best results in classification and applied them to the fuzzy 

system. The shape of input membership functions was 

designed with respect to histograms of features over 

reference data sets. Fig. 4 shows the initial membership 

functions. We constructed fuzzy if-then rules and fuzzy 

inference system to drive DOA index. In order to test the 

performance of system we used a typical data obtaining 

from a complete session of one patient under anesthesia. We 

calculated 4 selected features for each epoch (1s) of data 

and used them to calculate the DOA index for that epoch. 

Fig. 5 shows CSI and DOA index and also the error 

between them every second. 

We used the Pearson correlation coefficient (r) as a 

measure of association between CSI and the index derived 

from fuzzy system. The value r was 89.87% for initial 

membership function design. With optimizing some 

parameters of the system like standard deviation of input 

membership functions and also number of rules we succeed 

to enhance the correlation coefficient [12]. 

 

 
 

Figure 4. Derived fuzzy system index compared with CSITM index (for 19th 

patient). Error is the absolute difference between CSI and proposed index. 
 

 
 

Figure 5. Derived fuzzy system index optimized with genetic algorithm, 

compared with CSITM index (for 19th patient). Error is the absolute 

difference between CSI and proposed index. 

 
We used genetic algorithm for this purpose. Fitness 

function was defined as the difference between the derived 

index and CSI values of a typical patient (19th patient). We 

used genetic algorithm in two steps, to tune input 

membership functions and also to eliminate the redundant 

rules. By optimizing sigma values and selecting only 7 rules 

the correlation improved up to 95.88%. In fig. 5 fuzzy 

derived index and CSI for the same patient are plotted. 

Considering that genetic algorithm made optimizations 

based on minimizing the defined error for patient 19, we 

tested the resulted parameters with a randomly selected 

patient (4th patient) data to test the subject-independency of 

system performance (fig. 6). The correlation value was 

94.67% which is so similar to the first result. 

 

 

 

 
 

Figure 6. Derived fuzzy system index optimized with genetic algorithm, 

compared with CSITM index (for 4th patient). Error is the absolute 

difference between CSI and proposed index. 
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IV. Discussion 

 

The proposed fuzzy rule based system has following 

advantages: 1) Classification results are so improved in 

comparison with other methods using single features. We 

could completely discriminate between awake and general 

anesthesia (accuracy=100%), and also we could well 

classify the moderate state; 2) Continuous monitoring of 

anesthesia changes from full awake 100 to deep anesthesia 0 

which is easy to understand for anesthesia providers; 3) It is 

easy to fuse and extract knowledge to and from the system. 

Because it was first initialized by the human expert and 

final rules are just 7 rules. 4) Independence from subject to 

test; 5) predictive for the appearance of clinical signs of 

inadequate anesthesia like movement. 

The performance of proposed fuzzy rule based system for 

assessment of DOA varies with input features selection. As 

we demonstrated combination of three spectral features 

accompanied with BS will yield best results. The most 

useful parameters which are derived from the EEG are 

dependent upon the signal processing technique used. 

Although the results with Shannon entropy and SEF were 

not so desirable, they may result better in combination with 

other relevant features. Researchers have used combination 

of different entropy and complexity measures to estimate 

DOA [5]. To extract more robust features further works 

must be done on the signal artifact rejection and denoising 

of the raw EEG. For future we intend to add some other 

features and examine different combination of them as an 

input to the fuzzy system. 

Although EEG has sufficient information of DOA but it 

can’t monitor the whole complexity of the anesthesia. So 

combining EEG features with hemodynamics information 

and also measurements of muscle relaxation may result to 

more confident indices of depth of anesthesia.  
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