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Abstract— We consider the problem of mining multivariate
time series data for discovering (i) frequently occurring substring
patterns in a dimension, (ii) temporal associations among these
substring patterns within or across different dimensions, and (iii)
large intervals that sustain a particular mode of operation. These
represent patterns at three different levels of abstraction for a
dataset having very fine granularity. Discovery of such temporal
associations in a multivariate setting provides useful insights
which results in a prediction and diagnostic capability for the
domain. In this paper we present a methodology for efficiently
discovering all frequent patterns in each dimension of the data
using Suffix Trees; then clustering these substring patterns to
construct equivalence classes of similar (approximately matching)
patterns; and then searching for temporal dependencies among
these equivalence classes using an efficient search algorithm.
Modes of operation are then inferred as summarization of these
temporal dependencies. Our method is generalizable, scalable,
and can be adapted to provide robustness against noise, shifting,
and scaling factors.

I. INTRODUCTION

Multi-attribute time series data occurs in various domains
such as finance, science and engineering applications, weather
and network traffic monitoring. These datasets may contain
repeated occurrences of some patterns with minor variability
among different occurrences. Discovery of such repeating pat-
terns provides insights into the domain’s underlying processes.
Important tasks in mining time series data address the issues of
similarity search among different substring and subsequence
patterns, discovery of frequently occurring patterns and the
task of finding temporal associations among groups of fre-
quently occurring patterns. Consider the following simple
example. Weather monitoring data for a year may contain a
intermittent but repeating pattern of temperature going up for
three continuous days. It may also contain another repeating
pattern of temperature falling for three continuous days. There
may be other repeating patterns for buildup in pressure for
a few days in a row or some particular variation pattern
for humidity for a few days in a row. Our first objective
is to discover these repeating patterns in each dimension
(such as pressure, temperature, humidity). The second major
objective is to discover temporal dependencies among the
patterns occurring either within the same dimension, or across
dimensions. Patterns are more meaningful, when they are as-
sociated with each other.For example,it is more informative to
know: ”If temperature constantly rises for 4 days overlapped
by a period of constant pressure for 5 days then after 3
days rainfall occurs and temperature, pressure drop”. than

just knowing that: temperature, pressure and rainfall follow
particular patterns. The first helps to establish correlations
between patterns of underlying phenomena and enables us to
develop predictive and diagnostic tools for the domain. As final
summarization, we may want to identify say, the two 45-day
long periods in a year during which this temporal association
is observed. In this paper we present our methodology and
demonstrate achieving all of these objectives.

II. RELATED WORK

Much work has been done in finding similar patterns in
time series data, indexing the time series and mining them
for repeating trends or patterns. Most such methods apply
techniques [16] such as the Fourier and Wavelet Transforms,
Dynamic Time Warping, Piecewise Approximation, Shape and
Structural Grammars [14]. Various similarity measures [4]
have been proposed to compare patterns in time series from
different perspectives.

The problem of finding recurring substring patterns [7],
[3], [8] has been solved using a number of approaches for
periodic, non periodic and partially periodic patterns. The
work described in [3] efficiently uses suffix trees to mine
frequent patterns. The number of patterns invariably becomes
very large. The approach in [7] formalizes a repeating pattern
as a motif and presents EMMA algorithm to find k-motifs.
Later a probabilistic algorithm was presented in [17] for the
same. The work in [1] extends temporal association rule
mining to interval based events and gives an algorithm for
finding temporal dependencies. We consider more general
types of temporal rules which include a subset of Allen’s [5] all
possible temporal relationships among events. [8] addresses a
similar problem for multivariate time series by considering the
qualitative characteristics. Our work is significantly different
from the work presented in [8] as we identify temporal
dependencies between similar patterns/shapes in time series
while the work presented in [8] discovers only temporal
dependencies between qualitative features of time series such
as increasing or decreasing.

Contribution: Our primary contribution is an efficient
methodology to discover temporal associations among patterns
in a multi-dimensional time series dataset. It can tolerate
significant noise levels in data, supports patterns of different
lengths within one equivalence class, finds temporal associ-
ation rules among the equivalence classes of string patterns
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multivariate time series sequences

dimensionality reduction, discretization
and symbolic representation

aaaeffdaaaaaaaaacccaaaaaaaaaaedefggcbabaacfgfc…
dccbbccdccdeedcdcdeecccdddeeecdeccccddegedbcdc…
dddcbbcfffeeegffcbcdeeefffffecbbaaaaaacffecbbb…

frequent patterns

aaaaaaaa, bbbaaa, bbaaa, eeef, aaac, eaaa ...}
{cdee, dccde, deed, ddeeec, eeec, ccccc,edddd …}
fff,fffe,aaaaa,fecbb,ddcb,bbbbc,bbbbc,cbbb…}

clusteringFrequent pattern enumeration

clusters

aaaaaaaa} {bbba,bba,..} {eeef…} {aaac,eaaa …}…
cdee}{dccde…}{deed,ddeeec,eeec…}{ccccc…}{edddd…}…
fff,fffe…}{fecbb…}{ddcb…}{bbbbc,bbbbc,cbbb…} …

Temporal association rule discovery

1.{aaaa,aaac,aaae,abaa…}followed by{cbb,ccbb,cccbb…}
2.{bbbbb,cbbbbbc,…}followed by{baaaa,aaaaaaa,aaaaaa

…} overlaps {aaaa,aaac,aaae…}
.{dccccdd,ccccdd} contains {aaaaa,aaaa }
. …
. …
.

Summarization and visualization

Temporal rules Summarized rule

Fig. 1. Overview of temporal association rule discovery process

and summarizes. Our methodology goes beyond the ideas pre-
sented in [2] and [7] in different ways: (i)it efficiently identifies
patterns of various lengths in a time series in the presence of
noise (ii) it can find temporal associations between patterns
of different lengths without the requirement of knowing the
window-size of the pattern, (iii) it explores multiple temporal
relations among patterns, and (iv) the temporal dependencies
are summarized to identify stretches where the dependencies
hold. figure 1 presents an overview of our methodology.

Paper Organization: The rest of this paper is organized
as follows. In Section III we define the problem. In Section
IV we discuss the process of normalization, dimensionality
reduction, and quantization of the time series data to convert
it to symbol strings. Section V describes our space efficient
suffix-tree based search for frequent patterns in each dimension
of the time series data and pruning techniques. Section VI
presents clustering of frequently occurring substrings into
a much smaller number of equivalent classes. Section VII
presents the algorithm for discovering temporal dependencies
between the equivalence classes of substrings. Section VIII
presents the higher level summarization of temporal depen-
dencies discovered in section VII. Section IX discusses the
experimental results. Finally, we do a robustness analysis in
Section IX for our methodology, and conclude in Section X.

III. PROBLEM DEFINITION

In this section we introduce the basic notions required to
define and formulate the problem.

Definition 1: A time series X is a finite sequence of real
values (x1, x2, x3...xn). A multi-dimensional time series in an
m-dimensional space, with n observations in each dimensions,
is represented by m sequences:
X0 = (x00, x01, x02...x0n−1)
X1 = (x10, x11, x12...x1n−1)
...
Xm−1 = (x(m−1)0, x(m−1)1, x(m−1)2...x(m−1)n−1).
(x0j , x1j , x2j , x3j ...x(m−1)j), where j = 0 ...n-1, is called the
observation column and all the values in the column have the

(Xs, Xe)Xs < Ys
Xe > Ye

Contains(X,Y)contains

(Xs, Ye)Xe = Ys
Xs = Ys
Xe = Ye

Overlaps(X,Y)overlaps

(Xs,Ye)Xe < Ys
Ys – Xe = WIN

followedby( X ,Y)followedby

resultant
position

pair

end point
constraints

pictorial
example

functionrelation

X

X

X

Y

Y

Y

(X followedby Y)

(X overlaps Y)

(X contains Y)

X (Xs,Xe), Y (Ys,Ye) are two position pairs such that Xs = Ys

Fig. 2. Constraints for Temporal Relation between two position pairs X,Y

same time stamp.
Definition 2: Symbolic representation of a time series Xi

is a mapping of real values of Xi into a symbolic string Si =
si0si1si2...sin such that sij = ail where l = Quant(Xi, xij , |
Σi |) i.e ail is the lth alphabet of Σi.Quant(Xi, xij , | Σi |
is a discretization function which maps real value xij into
positive integer value l, 0 ≤ l ≤| Σi | −1.| Σi | is the size of
the alphabet set Σi.

Definition 3: A pattern p of length w<n is a contiguous
substring (sji, sji+1...sji+w−1) of string Sj where i+w−1 ≤
n − 1 and 1 ≤ i ≤ n − w + 1.

A pattern p is called frequent pattern if the number of
occurrences of p in Si ≥ MIN SUPPORT . In the following
discussion we use the term Pattern to refer to a frequently
occurring substring.

Definition 4: Let C = {p0, p1, p2...pmax} be the non
empty set of all the patterns(substrings) from a sequence S.
Clustering is partitioning of C into subsets C0, C1, ...Cm′−1

such that :
1. Cz �= ∅, z = 0...m′ − 1
2.

⋃m′−1
z=0 Cz = C

3. Cy

⋂
Cz = ∅; y �= z; y, z = 0, 1...m′ − 1

Partitioning of the set C is done by a clustering algorithm
(VI) .

Definition 5: A Position pair is an ordered pair (ps, pe)
where ps ≤ pe and ps, pe are both positive integers. A position
pair is used to represent the location and duration of a single
occurrence of a pattern in a given sequence. The number ps,
called the starting position denotes the starting time of the
pattern p in Si, and pe, called the ending position, denotes
the ending time of the pattern p in Si. For example, pattern
’abc’ has a position pair (2,4) in the sequence ’efabcdef’. Two
position pairs A,B such that A = (as, ae), B = (bs, be) and
as ≤ bs overlap each other iff bs ≤ ae. Two overlapping
positions pairs A,B are said to be merged to form a single
position B

′
such that B

′
= (as, max(ae, be)). For example,

in the sequence ”ababa” the position pairs for ”aba” (0,2) and
(2,4) overlap and the merged position pair for (0,2), (2,4) is
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a (1,12) b(15,24)

(a followedby b) = (1,24)
a (1,12) b(10,22)

(a overlaps b) = (1,22)
a(1,12)

(a contains b) = (1,12)
b(3,10)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 30 31 33 35 37 39 41 43 45 47 49

A = { (1,8),(23,30),(41,47)}
B = {(7,11),(15,19),(22,25),(29,31),(44,48)}
(A overlaps B) = {(1,11),(23,31),(41,48)}

A

B

(A overlaps B)

(1,8) (23,30) (41,47)

(44,48)(29,31)(22,25)(15,19)(7,11)

(1,11)
(23,31) (41,48)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 30 31 33 35 37 39 41 43 45 47 49

Fig. 3. Temporal Relation between two position pairs a,b and Position Lists
A,B

given by (0,4).
We now define a list of positions at which different occur-

rences of a pattern appear in a sequence Si. A cluster position
list is then created by merging the position lists of all the
patterns that belong to the same equivalence class.

Definition 6: A Position List L = {(as1, ae1), (as2, ae2),
...(ask, aek)} is an ordered list of position pairs sorted by
starting positions such that any two overlapping position pairs
are merged until no overlapping positions are left. A Position
list has two important properties

1. All the position pairs are sorted by their starting position.
i.e as1 < as2... < ask

2. No two position pairs overlap. i.e ae1 < as2, ae2 <
as3, ..., aek−1 < ask

A Position list for a pattern p in a sequence Si is the ordered
list of position pairs for all occurrences of p. This is obtained
by merging all overlapping occurrences (position pairs) of p in
Si until no overlapping position pairs are found. For example,
position list for pattern ’aba’ in sequence ’ababacdaaba’ is
given by {(0,4),(8,10)}, here the position pairs (0,2),(2,4)
are merged to (0,4). The idea of position list is extended
to equivalence classes also. Since each equivalence class is
a set of patterns, a position list for an equivalence class is
defined as the union of all position lists corresponding to
the patterns contained in the equivalence class, such that
overlapping positions are repeatedly merged to form a non
overlapping sorted position-pair list. We call the position list
for an equivalence class as a cluster position list.

Definition 7: A Temporal Relation Function Rel ∈
{overlaps, followedby, contains} is a binary function de-
fined for position pairs and position lists as follows.

Let A (as, ae), B (bs, be) where as ≤ bs be two position
pairs and WIN be a user defined window size, then relation
Rel(A,B), Rel ∈ { overlaps, followedby, contains } is defined
as

followedby(A,B) is true ⇐⇒ (ae < bs) ∧ (bs − ae ≤
WIN). Consequently, ( A followedby B) is a new position
pair given by ( as, be).

contains(A,B) is true ⇐⇒ (as < bs) ∧ (be < ae).
Consequently, ( A contains B) is a new position pair given
by ( as, ae).

overlaps(A,B) is true ⇐⇒ (bs ≤ ae) ∧ (ae ≤ be).
Consequently, ( A overlaps B) is a new position pair given
by ( as, be). This definition of overlap contains Allen’s [5]
definition of meets, starts, equals and overlaps. By combining
the meaning of meets, starts, equals and overlaps into a single
definition of overlap, significantly reduces the number of
temporal association rules in the search space. See figure 3 for
examples of temporal relations overlap, contains, followedby
between two position pair A and B. For example,with position
pairs A(1,12) and B(15,24) and window WIN=5, we can
see that Followedby(A,B) is true and new position pair (A
followedby B) = (1,24) is created. Similar position pairs are
created for other relations overlaps and contains.

The concept of temporal relations is extended to position
lists from position pairs. Temporal relations between position
pairs is defined in terms of position pairs, i.e if certain
percentage(this is also called support threshold min support)
of time points in the time series hold the temporal dependency
then the position lists are said to hold the temporal dependency.

Let L1, L2 be two position lists and Rel ∈
{overlaps, followedby, contains} be a binary function
on L1, L2. A new position list (L1 Rel L2) is created as
(L1 Rel L2) =

⋃
(a Rel b), a ∈ �,b ∈ L2,

� = {a ∈ L1 | Rel(a, b) is true}.
Rel(L1,L2) is defined as true iff |(L1 Rel L2)|

pmax
≥

min support else Rel(L1, L2) is false.
The position list (L1Rel L2) is constructed by union (with

repeated merging of overlapping position pairs) of all the
position pairs (aRelb),a ∈ Ł1,b ∈ L2 which satisfy Rel(a, b).
And for the Relation Rel(L1, L2) to be true, the length of
position list (L1RelL2) be at least min support times the
length of the time series.

Definition 8: A Temporal Association Rule between two
Position lists is recursively defined as follows. This definition
is based on [1].

1. if X is a Position list then it is a temporal association
rule. It is also called an Atomic Temporal Association Rule

2. if Rel(X, Y ) is true and X,Y are temporal association
rules then (X Rel Y ) is also a temporal association rule.

The size of a temporal association rule is the number of
atomic temporal association rules present in it. A rule of size
k is called k-rule.

Problem Definition: The problem is to find large k - rules
given the parameters min support, WIN,min confidence and
the symbolic representation Si for each feature/dimension in
the multivariate time series.

IV. SYMBOLIC REPRESENTATION

Most of the times, it is necessary for the time series to
be preprocessed before we could arrive at the symbolic rep-
resentation. The sequence of tasks generally required, but not
limited to, are 1. smoothing 2. normalization 3. dimensionality
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TABLE I

EXAMPLE FOR TERMINOLOGY

Time Series X1 = 1,2,4.1,3.2,5.4,2.2,
4.6,1.2,2.4,4.3,5.3
3,5.1,1.2,2,6,3,5

time series sequence S1 = abdcebdabdeceabfce
frequent patterns C = { bd,abd,ce,ab }
position pairs (0,1),(7,8),(13,14)
for ’ab’
position list pab={(0, 1), (7, 8), (13, 14)}

pabd={(0, 2), (7, 9)}
pce={(3, 4), (11, 12), (16, 17)}

clusters C1 = {ab,abd }
C2 = { bd} C3 = { ce }

cluster position list Pc1={(0, 2), (7, 9), (13, 14)}
Pc2={(1, 2), (5, 6), (8, 9)}
Pc3={(3, 4), (11, 12), (16, 17)}

temporal association C1followedby C3

rule; min support=2;WIN=3;
position List {(0, 4), (7, 12), (13, 17)}
(C1followedbyC3)

reduction 4. discretization 5. symbolic representation. The
choice of algorithms in the tasks 1-5 are generally dependent
upon the user requirements and the set of features which the
pattern needs to capture. [11] provides an extensive survey of
discretization methods. For example, should we wish to mine
the trends instead of patterns in Time Series we can choose
a method similar to [3]. Sometimes the time series is first
differentiated with respect to time and then frequent patterns
are found. Such time series identify the similar patterns
occurring at different offset values. Discretization causes some
loss of original information but a later step in our process
clusters similar strings together and considers them as one
equivalence class. This latter step significantly neutralizes the
loss of information.

For our experiments smoothing was done using moving av-
erage smoothing and mean shift algorithm. Normalization was
done using zscore and Min-max normalization. Dimensionality
reduction and symbolic conversion can be achieved through
PAA and SAX [15]. For discretization we have tried multi-
ple algorithms such as equal-frequency discretization, equal-
interval discretization and domain-expert directed discretiza-
tion using a histogram. Our methodology is not dependent on
any particular algorithmic implementation of the above 1-5
tasks.

V. FINDING FREQUENT PATTERNS

After the time series is converted into a string our subprob-
lem is to find the frequent substrings in the string using suffix
trees. In a suffix tree for the given string, the number of times
a particular substring/pattern occurs equals the total number
of leaf nodes it has under it. The locations of each of these
occurrences are traced back by following the pointers to the
string from each of the leaf node. For example in figure 4 the
pattern ce repeats 3 times and it has 3 leaf nodes. One of the
challenges involved in such enumeration is the huge amount
of data produced for keeping track of every pattern and all the
locations at which the pattern occurs. A naive enumeration of
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0
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5
1

8 14

11
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6 2
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7
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18

[ 0 7 13 5 1 8 14 11 3 16 6 2 9 12 4 10 7 15 18 ]
abd

ab
bd
b

ce d e fce $

Leaf Array

abdcebdabdeceabfce$

Fig. 4. Enhanced Suffix Tree for abdcebdabdeceabfce$

patterns and all their locations takes a lot of space to store all
the locations of all the frequent patterns. To solve this, we use
an efficient encoding scheme for storing all the locations for all
the patterns. This encoding scheme preserves the linear time
computational complexity of the algorithm while enumerating
all the patterns and corresponding locations of each pattern.
It is space efficient and takes space equivalent to the total
number of leaf nodes in the tree to store all the locations of
all the frequent patterns.

In a enhanced suffix tree, for each repeating pattern, all the
corresponding locations are specified by only two parameters,
the index to leaf node and offset i.e. no of occurrences in the
Leaf Array L. We can store and enumerate all the locations of
all the patterns by storing only Leaf Array and two parameters
for each pattern. As an example, let us consider the pattern
bd in Figure 4 . bd occurs at 3 locations (since node bd has
3 children) starting at positions 7,3,10. These occurrences can
be represented just by specifying an index=3 and offset=3 on
leaf array. The locations are given by L(3),L(4),L(5) which are
5,1,8. Now let us consider pattern b,the index of b is 3 and
child count is 4. So b occurs at L(3),L(4),L(5),L(6) which
happens to be 5,1,8,14. We have implemented a modified
ukkonen’s algorithm [13] for suffix tree construction. The
details of enhanced suffix tree construction, leaf array are
omitted here for brevity.

This compact representation also enables pruning of re-
dundant patterns. With the information stored in the suffix
tree we can prune patterns based on 1. support, i.e. no of
occurrences of the pattern (MIN SUPPORT) 2. length of the
pattern (MIN LENGTH and MAX LENGTH). 3. Removing
redundant patterns.

Two patterns p1, p2 are redundant if p1 has a position list
= {(a0, b0), (a1, b1), ...(ak, bk)} ( where a0 ≥ 1, bk ≤ n − 1)
and p2 has a position list {(a0 + 1, b0 + 1), (a1 + 1, b1 + 1),
...(ak + 1, bk + 1)} or {(a0 − 1, b0 − 1), (a1 − 1, b1 − 1),
...(ak − 1, bk − 1)}. As an example, in figure 5 consider three
frequent patterns in a sine wave p1 , p2 and p3, these patterns
are redundant because they always occur next to each other,
and knowing the position list of one pattern we can calculate
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Pattern P1 Pattern P1 Pattern P1

Pattern P3 Pattern P3 Pattern P3

Pattern P2 Pattern P2
Pattern P2

Fig. 5. Example of redundant patterns

the occurrences of other patterns. We reduce the number of
candidate patterns by selecting only one representative pattern
instead of the 3 redundant patterns. There can be many ways (
or multiple bias ) for choosing a representative pattern among
the redundant patterns. We have experimented with various
methods and finally implemented a method, which chooses the
pattern with highest entropy as the representative and prunes
out the rest of the redundant patterns. Thus we are keeping
only those patterns which have high information and pruning
out the redundant patterns with low information. Pruning of
redundant patterns also avoids the problems which is common
to subsequence clustering [12]. We have tested with multiple
datasets and observed that when we do redundant pattern
pruning, and pruning with frequency the mean of all the
resulting subsequences is not a constant or a straight line.
So our methodology does not have the drawbacks mentioned
in [12], which normal subsequence clustering seems to have.
Pruning also helps in drastically reducing the number of
candidate patterns for the clustering step. The leaf array (see
figure 4) contains the location information for each pattern
and any two patterns can be checked for redundancy by
looking at their respective index and offset on leaf array. The
complete details of redundant pattern pruning algorithm has
been omitted due to lack of space. Finally, the computational
complexity of the algorithm to find frequent patterns and all
their locations is linear in the length of time series since suffix
tree construction [13] has linear time complexity (linear in the
length of time series).However, redundant pattern pruning is
not linear in the length of time series.

VI. CLUSTERING

After obtaining all the frequent patterns our next goal is to
find the classes of similar frequent patterns. This is accom-
plished by the clustering algorithm which outputs equivalence
classes for the given set of frequent patterns and similarity
measure. The similarity measure captures and quantifies the
noise in the data. There are many symbolic similarity measures
[4] which capture this kind of noise such as edit distance,
longest common subsequence(LCS). The similarity measure
which we have implemented for clustering the strings into
equivalence classes, is based upon longest common subse-
quence. The advantage of such measure is that it allows for
gaps in between the symbols of a pattern while matching them
for similarity. Formally if s1 , s2 are two strings then similarity

measure:
Sim( s1, s2) = 2∗LCS(s1,s2)

(|s1|+|s2 |) and
Dist(s1, s2) = 1 - Sim( s1,s2), is the distance measure.

LCS(s1, s2) is the length of longest common subsequence
i.e. common subsequence in s1, s2 of maximal length. | s |
is the length of string s. The advantage of choosing such a
non-metric similarity measure over the metric such as edit
distance or Levenshtein Distance is that this similarity measure
scales with the length of the strings unlike LCS which is an
absolute measureand will not work for strings of which have
a large variance in their lengths. Instead of string similarity
measure, we also tried a numerical similarity measure (LCSS)
among the numerical subsequences in original time series
which correspond string subsequences found. LCCS was used
by Vlachos et. al) [19] for clustering multi-dimensional trajec-
tories. We have found that LCSS produces more meaningful
clusters than LCS. Details of LCSS can be found in [19].
Using one of the above similarity measures we cluster the
patterns in equivalence classes, However, for large datasets the
number of patterns for each dimension can be very large, doing
a hierarchical clustering is computationally expensive. So for
large datasets, we use two-threshold Sequential Algorithmic
Scheme [18] which has lower computational complexity. For
smaller datasets we have implemented hierarchical clustering
(Average Linkage Clustering) so that the user can can control
the number of clusters based on the dendrogram visualization.

The details of the two-threshold Sequential Algorithmic
Scheme can be found in [18]. Although any kind of clustering
algorithm can be used in step 4, the choice of TTSAS for large
datasets is justified by lower complexity and lesser dependence
upon the order in which the values are input. Similarly,
Hierarchical clustering for smaller datasets is justified by user
interaction and control over the clustering.

VII. TEMPORAL ASSOCIATION RULES

The clustering phase groups all similar patterns into an
equivalence class. Now the objective is to find temporal
relations between the clusters which we call as Temporal
Association Rules. The Position List for each of the clusters
is constructed as follows
for each Cluster Ci

for each position pj ∈ Ci {
Create a Position List Lpj from Leaf Array
LCi = Lpj ∨ LCi

}
The relationship between two Cluster Position List can be of
any one of the {followed by, Overlaps, Contains} shown in
figure 3. Moreover the three relationships mentioned above
conceptually captures most of the temporal relationships pos-
sible and the commonly mined relationships. The first step is,
start with atomic rules and then incrementally mine for higher
order rules in a level wise algorithm. This means discovery of
level 2 rules, followed by level 3, followed by level 4 until
the maximum level specified is reached.

Mining for level 2-rules is done by doing all-to-all compar-
ison of all the cluster position lists. Let C be the set of all
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the cluster position lists, min support be minimum value of
support and min confidence be minimum value of confidence.
C2 be the set of 2-rules initialized to ∅

1: level = 1
2: Clevel = C
3: while level + 1 < max level do
4: for each cluster ci in Clevel do
5: for each cluster in cj in C do
6: for each relation rel ∈{followed by, Overlaps,

Contains} do
7: if ( Card(ci)

Card(ci Rel cj)
> min confidence) then

8: Clevel+1 = Clevel+1

⋃
(ci rel cj){Add the

newly generated position list to candidates for
next level}

9: Compute the Position List for ci rel cj

10: end if
11: end for
12: end for
13: end for
14: level = level + 1
15: end while

The confidence of (ci Rel cj) is defined as
|
⋃

ai|
|ci| where

ai is a position pair, (ai ∈ ci)
∧

(Rel(ai, cj) is true) i.e the
number of position pairs in ci for which Rel(ci, cj) is true
divided by the total number number of position pairs in ci .
This kind of rules are similar to A-1 type of mentioned in [1].
After finding all the frequent k-rules rules are pruned out for
high confidence rules. We can also modify the algorithm to
output any level-rule if the confidence is greater than some
threshold. While confidence is one way to find relevant and
important rules Summarization is another way to accomplish
this task.

VIII. SUMMARIZATION

Summarization is the process which generalizes the
temporal association rules by identifying the time windows
in which the rule is applicable. Summarization creates a
new position list by combining all the position pairs of
rule, which are closer than window SUMWIN. The output
is a new position list containing each stretch of temporal
dependency as position pair. The measures for summarization
are coverage, average length of coverage and maximum length
coverage. Coverage measures the total span of a summarized
rule in the time series. Average length of coverage measures
the average length of the stretch of the summarized rule. It
tells whether the dependency holds contiguously as a long
stretches ( for example seasonal patterns, modes of operation,
events ) or whether it holds in discrete short stretches.
Maximum length Coverage measures the longest stretch of
occurrence of the temporal dependency, sometimes indicating
an important event or condition. The exact interpretation of
the average length of coverage and maximum length coverage
are domain dependent. For example, figure 6(a) shows a
temporal dependency in a single dimension where high
energy consumption in day is followed by low consumption

at evenings and nights. We can see that this dependency holds
during weekdays only and not on weekends. Summarized rule
in figure 6(b) identifies the stretches or the weeks where the
dependency holds. So by looking at the summarized rule we
can figure out that the rule is applicable only on weekdays
and not on weekends and holidays.

Definition 9:Let Pij be position list corresponding to
ci rel cj then Summ(Pij , SUMWIN) is a summarized
position list corresponding to ci rel cj and window length
SUMWIN such that for any two position pairs a,b in Pij where
a < b and bs - ae ≤ SUMWIN are merged to form a single
position list c = ( as, be) until there are no further position
pairs a,b with bs - ae ≤ SUMWIN. Below is the algorithm to
compute the Summarized position list from the position list of
a rule and summarization window.

{ This algorithm takes a position list p corresponding
to a rule, summarization window SUMWIN and outputs
summarized position list s}
i = 0, j = 0, sj .start = pi.start
while i <| p | do

if pi+1.start - pi.end > SUMWIN then
sj .end = pi.end
if i <| p | then

j = j + 1
sj .start = pi+1.start

end if
end if
i = i + 1

end while
sj .end = pi.end

Summarization finds the regions where a rule is applicable
and measuring the temporal extent of these regions would
indicates how important a particular rule is. Coverage is one
such measure which calculates the extent of the regions where
the rule is applicable. Coverage is defined as,

Definition 10: Coverage measures percentage of the time
points in the time series for which the summarized tem-
poral rule applies. Let SPij be summarized position list
corresponding to ci rel cj and window SUMWIN, then
coverage(ci rel cj) is defined as

∑
p∈SPij

| p |
| pmax |

where pmax is the position pair (0,n) and | pmax | = n and | p |
for position pair p = pe−ps +1. The average coverage length
measures average length of the position pair in the summarized
position list. Average coverage is given by

∑
p∈SPij

| p |
| SPij |

. The maximum coverage is defined as the length of the longest
position pair in the summarized position list SPij and it is
given by max(| p |) where p ∈ SPij .

For an example of summarization, we take the energy data
set of industry having two variables, pressure and current of a
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(a) Example of daily energy usage rule
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(b) Example of Summarized daily energy usage rule

Fig. 6. Summarization

compressor. Each temporal rule maps to mode of operation
of the compressor and the coverage tells us how long the
compressor runs in a particular mode and when does the
modes of operation change and this information is valuable
to optimize the current consumption.

IX. EXPERIMENTAL RESULTS

Experiments were ran on real data sets from various do-
mains. We discuss the results from some of the datasets below.

Energy Dataset:

The experiments were done with a real large data set which
recorded production parameters of an industrial compressor
system. The attributes measured were current, pressure inside
the compressor and discharge pressure at intervals of 10
seconds for 1 month, this constitutes 259200 observations.A
sample rule denoting operating mode between current and
pressure,(pattern #46 contains pattern #87) is shown in 7(a).
A domain expert can use the values of average coverage and
maximum coverage to identify the long operating modes and
reduce the breaks in operating modes and thus cut energy
consumption costs. After a review it has been found by
domain expert that our methodology does identifies the actual
operating modes.

Other Datasets:

A sample of EEG data set from [9] has been tested to
see the scalability of our methodology. The dataset contains
1 million points each containing a single electrode voltage
value. In a sample run there were 4935 frequent patterns and
120 clusters from the frequent patterns. The association rules
searched were of ”followed by” type since there was only
one dimension. figure 7(f) shows the scalability of the mining
process with the size of dataset. The algorithm has been run
with a minimum pattern length of 4 characters and maximum
length of rule of 4( 4-rules). This shows that the algorithm

can be run in reasonable time for time series lengths up to 1
million, after which the physical memory limitations seem to
affect the performance.

We have also tested on the Great lakes dataset [9]which
contains 5 dimensions with 984 data points, the 5 dimensions
correspond to historical water levels of the following lakes:
Erie, Huron, Ontario, St Clair and Superior. The records
consist of data from 1918 - present recorded monthly. A
sample rule found between the lakes Ontario, St Clair and
Huron is shown in figure 7(d). The rules shows the seasonal
variation of water level between the three lakes and the order
in which the variation happens.

ROBUSTNESS ANALYSIS

A number of tests were conducted to observe the effect of
clustering on the number of rules produced and the content of
the rules themselves. Since we used the sequential clustering
algorithm [18], we could control the clustering process by
changing just one parameter called the Clustering distance
threshold distance threshold, Θ, which is between 0 and 1.
Θ = 0 means that each pattern is an individual cluster, Θ = 1
means that all the patterns are grouped into one single cluster
forming a single equivalence class. As the value of Θ increases
from 0 to 1 , the compactness of resultant clusters decreases.

The tests were ran with the energy dataset with three
dimensions (current, pressure and discharge pressure of a
compressor) containing 20,000 points in the time series. Fig-
ure 7(e) shows the relation between the clustering distance
threshold θ and the number of equivalence classes produced.
We can observe that as Θ gets closer to 0, the number of
clusters increases almost exponentially. As Θ is increased the
number of clusters, and the number of rules produced are
exponentially reduced demonstrating that clustering does con-
trol the exponential explosion of frequent patterns. Also, the
number of clusters do not change for various neighborhoods of
θ values. We believe this is due to string similarity measures in
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clustering, resulting in multiple bands of stable regions where
changing the Θ does not drastically change the number rules
and equivalence classes.

We have tested the extent of similarity among the rules
produced with different values of clustering threshold Θ. That
is, if a rule is produced with a particular value of Θ, say Θ1,
then the same rule should be preserved in a different set of
rules produced with a different value of different value of Θ.
To compute the match, we take a particular rule r1 produced
with Θ1 and look for the best rule r2, which matches r1 among
the set of rules produced with a different value of Θ say Θ2

. The quantitative measure of match between two rules r1, r2

is
Match(r1, r2) = BitV ec(r1).BitV ec(r2)

BitV ec(r1).BitV ec(r1)
.

The BitVec(r) of a rule is r, is a vector of length n (n=total
length of time series) containing 0’s and 1’s. A value of 1 is
assigned for the locations where the rule r holds and 0 where
the rule r does not hold in the time series. Match(r1, r2) is is
the dot product of corresponding bit vectors of r1 and r2 nor-
malized by dividing with number of 1’s in r1. Match(r1, r2)
is a score between 0 and 1, 0 being there is no match and 1
being a complete match. We have picked a few rules randomly
produced with different values of Θ and checked how they are
preserved in the sets of rules produced with varying Θ. Figure
7(b) shows the results of this comparison. We can see that the
rules, match decreases as the Θ decreases. This is expected due
to the fact that as Θ decreases the number of clusters increases,
compactness of each cluster increases, and the chance of
clusters matching across the rules decreases. We can see that
the rules are preserved across the whole range of Θ except
for very low values of Θ (unstable region). More importantly,
The rules do not change drastically with a variation in Θ and
there are stable regions where clustering does not effect the
number of rules produced and also the content of the rules.
So we can say that our methodology does produce meaningful
rules and stable rules and these rules are robust against small
variations in clustering parameters. Furthermore, as shown in
figure 7(e), we control the exponential explosion of frequent
patterns through clustering to produce equivalence classes and
thus meaningful and relevant rules.

X. CONCLUSION

We have presented a methodology for mining temporal
associations among frequent patterns occurring in multi-variate
time series data. This methodology seeks to control the expo-
nential explosion of strings by clustering similar strings into
equivalence classes. We also seek to discover temporal asso-
ciations among these classes from a richer set of possibilities.
We have shown that this algorithm yields meaningful relation-
ships in real-life data sets. The algorithm is also scalable and
can be applied to large datasets. The summarization aspect
of our methodology identifies time periods during which a
particular temporal dependency holds. This is equivalent to
identifying modes of operation of a system. We have shown
that we can discover patterns at various levels of abstraction,
starting from a very fine granularity data and in a scalable

manner. These capabilities give a user more power than any
other framework presented in the literature.
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