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Abstract – Data mining is more effective on noisy time 
series with appropriate data pre-processing. Singular 
Spectrum Analysis (SSA) is explored as the noise reduction 
approach for a decision tree classifier for noisy data. SSA 
provides groups of additive components, from low to high 
frequency, by decomposing the noisy time series. In this 
study, the noisy climate data is decomposed by SSA and is 
used to construct decision trees to predict the carbon 
monoxide (CO) air pollution levels. Analysis shows that 
separating out seasons from the annual data helps the 
algorithm; the classification accuracy improvements vary 
by season, with the maximum improvement (from 60.7% 
to 77.3%) found in summer by removing 6.42% of the high 
frequency signals, while autumn showed no improvement. 
Examining decision tree structures provides threshold 
climate values that impact on different CO levels, e.g., a 
light wind speed of ≤ 2.5 m/s and any level of temperature 
inversion formation is found to associate with the high CO 
level (> 0.70 mg/m3). Overall, data pre-processing using 
SSA is encouraging to improve the results of any time 
series data mining approach. Examining decision trees of 
the climate and air pollution helps increase knowledge 
about the data, and the studied approaches can be 
adaptable for various future environmental studies. 

Index Terms – Air pollution; climate; decision trees; 
Singular Spectrum Analysis. 

I. INTRODUCTION

The causal effect of air pollution on human and 
environment health is a worldwide problem. Air pollutant 
levels even below standard concentrations are known to affect 
human health, with increases in respiratory symptoms, chronic 
cough, bronchitis and chest illness, and deterioration in 
pulmonary function [1].  

The study area, Christchurch, in New Zealand (with a 
population of about 334,000 and an area of 452 km2) suffers 
from a serious winter air pollution problem due to domestic 
heating, e.g., burning wood and coal, and poor air dispersion 
due to a combination of winter weather and its topographic 
factors, primarily a medium sized hill located adjacent to the 

city, which traps air pollutants in a temperature inversion 
layer; see details in [2]. The main winter air pollutants are CO 
from domestic heating and motor vehicles, PM from domestic 
heating, SO2 from industry and NO2 (a product of the 
oxidation reaction of NO) from motor vehicles [3]. Recent 
investigation of particulate matter of diameter below 10 μg/m3

(PM10) and the acute respiratory morbidity rate in the study 
area reports that low PM10 levels (less than 10 μg/m3) can even 
impact on different age ranges, in particular, very young 
(under five years) and older ages (55 years and over), and its 
association varies between female and male and by season [4]. 
Short and long-term air pollution levels are affected by 
changes in local climate and global climate [5].  

In recent years, data mining, a process of knowledge 
discovery in databases (KDD), is also found to be a useful tool 
among environmental scientists [6, 7], due to its flexibility to 
handle problems in environmental systems, which are often 
ill-structured and non-linear domains [7], and involve 
multidisciplinary factors, e.g., global and local ecological, 
social and economical factors. To investigate the air pollution 
and climate data set that is generally noisy and skewed, a 
primary step is to reduce the noise, although determining the 
noise component of such a noisy and skewed structure can be 
difficult. Attribute selection can be used to remove the outliers 
as a data pre-processing step, but it may lose the time 
sequence, as the air pollution and climate time series are 
associated, day-to-day. Hence, smoothing methods are ideal. 
Generally, Generalized Additive Models (GAMs) [8], a 
statistical method for smoothing non-linear time series, is 
commonly applied to identify response-predictor relationships. 
Recently, reference [9] used the wavelet transform as a data 
pre-processing step to extract the trends of air pollution levels 
in order to apply further neural network models, since data 
mining algorithms with pre-processed data sets generally work 
efficiently to provide improved results [9, 10].  

In this paper, two investigations are carried out. Firstly, 
Singular Spectrum Analysis (SSA) is introduced as the noise 
reduction approach for the data pre-processing method to 
apply a data mining technique, a decision classifier (J4.8 from 
WEKA [11]). The noisy climate time series is decomposed 
and separated out from noise by SSA to form several additive 
components, which are used to construct decision trees to 
predict the different air pollution levels of carbon monoxide 
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(CO). Decision tree classification accuracy is then examined 
to see how SSA helped the algorithm. Secondly, the decision 
trees obtained are examined in detail to provide threshold 
climate values that impact on different CO levels. The 
investigation helps support knowledge on the cause and effect 
relationship of climate and air pollution profile. 

A. Singular Spectrum Analysis in data mining 

Singular Spectrum Analysis (SSA) is an innovative model-
free nonparametric method of time series analysis, a mixture 
of mathematical and statistical analyses: namely classical time 
series analysis, multivariate statistics, multivariate geometry, 
dynamical systems and signal processing [12]. For example, 
SSA has been applied to digital signal processing [13], 
oceanographic research [14].  Recently it has been applied to 
an air pollution study [15], and SSA decomposed structures 
have been applied to data mining techniques for image 
segmentation [6, 16]. However, in this study, SSA is used, for 
the first time, for data pre-processing to help the data mining 
algorithm by removing noisy structures from the data set. 

Using SSA provides two benefits. Firstly, the decomposed 
structures help improve the results of the tree construction 
algorithm. Secondly, SSA helps identify noise in the 
structures, as it decomposes the noisy time series into several 
additive components – separating out several high and low 
frequency signals from the original time series – that can be 
grouped and are reconstructed to form the new time series. 
Note that the signals obtained by SSA decomposition differ 
from those obtained by filtering out frequency bands with the 
Fourier transform, as they are generated from eigenvectors and 
as such are not purely related to frequency. This allows 
exploring by adding or removing such additive components
(low to high frequencies) to construct the decision tree. During 
this process, it identifies which components can potentially be 
noise, and the improvement can be examined by the 
classification accuracy. For example, adding insignificant 
components (generally high frequency) to the main structures 
(low frequency) can lower or have no influence on the 
classification accuracy. On the other hand, removing 
significant components (including some high frequencies) 
may lower the classification accuracy, which suggests that 
these components are unlikely to be noise. 

B. Knowledge discovery for climate and air pollution 

Extracted decision trees with high classification accuracies 
are investigated to understand the cause and effect relationship 
between climate and air pollution levels. This is carried out by 
examining how the decision pathway of climate attributes 
contributes for changes in air pollution levels, such as which
climate variables influence air pollution levels, to what degree. 
Note that this study aims to provide knowledge from 
examining the decision trees via a data mining tool rather than 
providing prediction rules, to be used to predict air pollution 
levels in an unknown data set. This is because the studied data 
set is not large enough to demonstrate accurate prediction 
rules, but it can be at least used as a knowledge discovery tool.  

To enhance the relationship between climate and air 
pollution level, decision trees are generated from the training 

data sets of SSA components that are each made up of a single 
season (dividing the annual data set into four seasons) and the 
annual data set (all seasons), to compare how the decision 
pathways of climate influence air pollution levels differently 
as well as differences in the classification accuracy among 
different seasons.  

II. METHODS

A. Singular Spectrum Analysis  

SSA decomposes six climate time series to provide input 
data sets (several additive components) for further data mining 
application. The SSA procedure has four steps [12, 15]. The 
first step is embedding, which transforms the original one 
dimensional time series, 
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into an L-dimensional series, 
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Note that the matrix X is a Hankel matrix, which has equal 
elements on the diagonals (i+j = const.).  

The second step of SSA is to decompose the obtained 
trajectory matrix by the singular value decomposition (SVD). 
Let U1, …, UL represent the corresponding orthogonal 
eigenvectors of the matrix S=XXT. Then denote Vi as the 
eigenvector of S, which corresponds to the eigenvalue  λi for i
= 1, ..., d, where d is the number of nonzero eigenvalues (d < L
and 1≤ i ≤ d),  
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then the result of the SVD of the trajectory matrix, X, becomes 
,1 dXXX ++= (6)

where  

.T
iiii VUX λ= (7)

The ith eigentriple (ET) is constructed from the three 
variables in (7) that make up Xi: the singular value (the square 
root of the ith eigenvalue) and two orthogonal vectors, the ith

right (Vi) and left (Ui) singular vector of the trajectory matrix. 
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Note that each ET has a different variance, and the sum of the 
variances for all ETs is 1. These are the additive components.  

In the third step, similar ETs are grouped together. It is 
important to combine appropriate ETs, or in other words, keep 
the components as similar as possible, rather than mixing 
dissimilar components, e.g., mixing low and high frequencies, 
as it decreases the quality of the results in reconstructing the 
new time series (step 4). In this study, the ET grouping 
procedure is performed computationally using FastGrouping, a 
separately developed program that uses Fourier expansion to 
determine ET similarity [15]. The Fourier expansion [12, 15] 
provides a correlation coefficient, ρ1,2, which is calculated 
from the cross power of the two series, F = F(1)+F(2), obtained 
from different ETs in (8);  

The normalized form of equation (8) is 

and the magnitude of ρR1,2 indicates the similarity of the 
spectra of the relevant two signals [15, 16]. Each eigentriple is 
successively paired with every other eigentriple, and for each 
pair of eigentriples, the value of ρR1,2 is computed in (9) using 
the pair of eigenfunctions (eigenvalues and eigenvectors) as 
F(1) and F(2). It is then computed again using the pair of 
principal components. Averaging the resulting two ρR1,2
values provides a single metric, which improves the 
fsensitivity. This provides more reliable results than when the 
eigenfunctions and the principal components are considered 
separately. Next, the ρR1,2 value is compared with a threshold 
(between 0.50 and 0.90) and the two eigentriples are placed in 
the same group if the metric is greater than the threshold. 
Lowering the threshold provides fewer ET groups, grouping 
ETs less accurately, and raising the threshold gives the 
opposite. Generally, a threshold between 0.70 and 0.85 is 
recommended. 

The fourth and final step is called diagonal averaging. It is a 
linear operation for reconstructing time series from the 
additive components and ET groups that are chosen in step 3,  

,1 mFFF +=      1 ≤ i ≤ m. (10)

Each of the six climate time series is decomposed by SSA 
into a number of additive components (each constructed from 
a single ET or a group of ETs, and of the same length as the 
original time series, F), which are used to generate decision 
trees as follows. 

B. Noise reduction using SSA for data mining 

Investigating the effectiveness of using SSA for data pre-
processing for data mining, a decision tree classifier is applied 
on climate attributes to predict three CO levels (high, H; 
medium, M; and low, L), and the classification accuracy is 

used to assess the improvement. Results are compared for the 
original time series (without the SSA data processing) and the 
SSA additive component time series. From each time series, 
the full length of the time series is divided into four seasons to 
compare the annual data set (full data set) and seasonal data 
sets. Hence, the following procedure, generating a decision 
tree, is repeated for a total of five data sets (one covering the 
whole year, and one for each of spring, summer, autumn and 
winter), for the original and each of the additive component 
time series. 

Each data set is divided into three parts, and three training 
and three test data sets are created. For example, the first 
training data set will consist of the first two thirds of the data 
set, and the first test set will consist of the remaining third. 
Thus, three distinct training and test data sets are created. A 
decision tree classifier, J4.8 from WEKA [11], based on the 
C.4.5 algorithm [17], is used to generate a decision tree from 
each training data set, and is tested on the test data set to 
provide a classification accuracy. The average and standard 
deviation (SD) of the three classification accuracies obtained 
from three test data sets are used for the results. 

The specific procedure (repeated for each training set) for 
generating decision trees for experimenting with the noise 
reduction method via additive components is as follows. 
Firstly, a decision tree is generated from a single data set, 
which covers a full year or a single season. Secondly, decision 
trees are generated from a data set for each additive 
component, first removing the structures for ET151-180 from 
the rest (ET1-150), and increasing the range of eigentriples 
removed until reaching ET3-180, leaving only ET1 and ET2 
(ET1 is kept to provide a base for the components). Hence, six 
experiments are repeated to generate six single decision trees 
for each of the five data sets (the full and seasonally divided 
data set). Note that the experiment starts from removing the 8th

additive component (ET151-180 in Fig. 3-H), and the 1st

additive component (ET1 in Fig. 3-A) is not removed. 

C. Knowledge discovery from decision trees 

To introduce the outcome of applying the data mining 
technique on climate and air pollution, the decision trees are 
examined in detail to increase knowledge about the cause and 
effect relationship of climate and CO levels by investigating 
the decision pathways, such as which climate attribute is most 
responsible for the high CO level. Note that investigations in 
this paper are carried out by examining the decision tree with 
the best classification accuracy out of each group of three 
training data sets. Also to simplify results, the decision 
pathway is focused and summarised on only the high CO 
level, while the decision trees classify CO into three levels (H, 
M and L); results on M and L are not described here. To 
contrast seasonal climate impacts on the high CO level, 
examination of decision trees is focused on seasonally divided 
data sets, thus the full data set is not interpreted.  
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III. DATA SETS 

Four years (October 1998 – September 2002) of air 
pollution and climate daily measurements were provided by an 
Environment Canterbury (ECan) air pollution monitoring 
station, located in a residential area, Coles Place, in 
Christchurch. Six climate measurements are used as input 
attributes to predict the CO levels: relative humidity (RH in 
%), temperature measured at 1m above the ground (TG in C°)
and at 10m above the ground (TT), the temperature difference 
(TD = TG-TT), wind speed (WS in m/s), and wind direction 
(measured in degrees: 0° and 360° for north, 90° for east, 180°
for south, 270° for west). Negative values of TD (Fig. 2) 
indicate the formation of a temperature inversion, which traps 
air pollutants under a layer of warmer air. The CO levels are 
categorised into three levels based on the lower and upper 
quartile (LQ and UQ), since its distribution is rightward 
skewed; low (L) ≤ 0.14 mg/m3 at LQ, medium (M) ≤ 0.70 
mg/m3, and high (H) > 0.70 mg/m3. Fig.1 and Fig. 2 show the 
original CO and climate time series respectively. Fig. 2 shows 
six climate attributes from left to right, RH to Wdir along the 
x-axis, where each climate attribute time series covers, from 
left to right, October 1998 to September 2002. Generally, all 
time series are noisy, except CO, TG, TT and TD, which show 
reasonably strong seasonal structures with some high 
frequencies (Fig. 1 and 2). Note that all data were scaled by 
dividing each value by the maximum in order to improve the 
ease of comparison between the SSA results of the climate and 
air pollution data. 

IV. RESULTS AND DISCUSSIONS

A. Extraction of additive components  

In this study, a window length, L, of 30 (~one month) was 
selected, as it was one of the dominant frequencies of the air 
pollution time series. FastGrouping with a threshold of 0.85 
provided a number of ET groups. Eight heterogeneous ET 
groups (and variances, shown as percentages, in brackets) 
were extracted as input data sets for the data mining 
application, shown in Fig. 3-A to H respectively: ET1 
(90.2%), ET2 (2.72%), ET3 (0.68%), ET4-40 (4.14%), ET41-
80 (1.46%), ET81-126 (0.70%), ET127-150 (0.11%), and 
ET151-180 (< 0.01%). Fig. 3 shows six climate attribute ETs 
of RH to Wdir in the same manner as Fig. 2. Generally, the 
first three additive components (ET1 to ET3) hold important 

structures. The first eigentriple, ET1, which is made by the 
lowest frequency, has a large variance, describes the general 
trends, and provides the base structure, so it is always added to 
the other ETs. ET2 and ET3 generally describe the seasonal 
structure and change points, or structural changes respectively 
[5, 15]. The ETs after ET4 are made by high frequencies with 
reasonably small variances, thus they are grouped with similar 
components to form larger components. Note that these 
structures are generally not used, if the purpose of the study 
was to extract the smooth time series (see details in [5, 15]). 

B. Comparison of classification accuracies 

Table 1 shows summary results of decision tree 
classification accuracy (in %) using the original climate time 
series and different grouped additive components (ETs) based 
on the full and seasonally divided data sets. Successively 
larger numbers of ET groups are removed from Case 1 
(removing < 0.01% of the entire structure) to Case 6 
(removing 7.10% of the entire structure) in Table 1. Table 1 
also shows the proportion (in %) of each CO level; H, M, and 
L, as a brief indicator. Generally, application of the decision 
tree classifier is better than simply guessing the CO levels, if 
its score is better than this number. Table 3 shows the 
confusion matrix for the best classification accuracy within the 
full data set and each seasonally divided set. Note that the 
number of instances is the sum of three test data sets. 

Dividing the full data set (annual) into each season shows 
the different classification accuracies among seasons. The 
mean and standard deviation (SD) of the original and all cases 
in Table 1 show that the highest classification accuracy is 
found from winter (76.4±5.7%), which is higher than applying 
the full length of the data (66.7±2.7%). In fact, the average 
classification accuracy of the seasonally divided data 
(67.8±2.7%) is found to be slightly higher than simply 
applying the full data set. This suggests that even though the 
sample size has became one fourth of the full length of the 
data, separating out seasons in environmental data sets that 
have seasonality successfully helps the algorithm by 
highlighting relevant characteristics. On the other hand, the 
lowest classification accuracies compared with the full data set 
are found from spring (61.7±3.1%) and summer (63.5±8.0). 
This may due to the low proportion of high CO levels (9.3% 
and 0.6%) in the spring and summer data, although the reason 
for the higher classification accuracy in summer compared to 
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spring may be that the summer data set consists of almost half 
M (44.9%) and half L (54.6%), as it only predicts either M or 
L, which may confuse the algorithm less, compared with the 
spring data set.  

For generating decision trees, removing some structures (up 
to 7.10%) from the original time series has shown some 
improvement over the original time series, although it varies 
by seasons and different additive ETs (Table 1). For each 
series, the classification accuracy peaks after a certain number 
of high frequencies have been removed. This point can be 
used to identify which structures are significant to capture the 
best decision trees.  

The original times series and Table 1-Case 1 shows the 
same classification accuracy for all data sets. Removing such 
small and high frequency structures, ET151-180 (< 0.01% in 
Fig. 3-H), would not influence the classification accuracy, and 
may not help the algorithm. This suggests that ET151-180 
structures can be noise or insignificant. 

Table 1-Case 5, the summer data, shows that the most 
significant classification accuracy improvement. Removing 
ET4-180, a total of 6.42% of the structure (in Fig. 3-C to H) 
shows the accuracy is 77.3%, up to a 16.6% improvement 
compared with the original time series classification accuracy 
(60.7% in Table 1). As previously mentioned, the average 
summer classification accuracy was the lowest. However, the 
summer data set is made up almost completely of two CO 
levels, M and L, and it contains fewer outliers and high 
pollution levels compared with winter. Hence, removing most 
of the high frequencies (including potential noise) or outliers 
that are obtained from 6.42% of the structures, ET4-180, may 
help the algorithm. Most of the classification errors are 
between M and L; 63 instances of L and 16 instances of M 
were misclassified as M and L respectively, but these errors 
are greatly reduced compared to the original data set, where 95 
and 46 instances of L and M were misclassified respectively 
(see Table 2; original and Case 5, summer). 

The spring data set (Table 1-Case 6) also shows similar 
findings, but the classification accuracy is lower (66.2%) than 
summer, and the improvement was 4.7% compared with the 
original time series (61.5%). However, the improvement for 
the spring data set is obtained from removing 7.10% of the 
structures, ET3-180. Note that the spring data set contained 
about 9.3% high CO levels (Table 1), although the algorithm 
works better with dominant low frequencies, ET1 and ET2 
(Fig. 3-A and B), describing the seasonal oscillation by 
removing most of the high frequencies. However, 
interestingly, the use of only low frequencies improves the 
misclassification between M and H; 4 instances of H were 
misclassified as M, compared to 11 for the original time series 
(Table 2; original and Case 6, spring).  

The winter (Table 1-Case 2) and full data set (Table 1-Case 
5) classification accuracies (83.4% and 70.8% respectively) 
show about 3% improvement by removing 0.12% of high 
frequencies, ET127-180, and removing 6.42% of structures, 
ET4-180, compared with the original time series (80.1% for 
winter and 67.8% for the full data set). While the winter data 
set contains many high CO data points (60.9%), removing 

further high frequencies that are obtained after ET81 (Table 1-
Case 3) decreases the classification accuracy, as it may 
remove truly high CO levels, which should not be considered 
as outliers. However, an interesting point is that removing 
high frequency eigentriples with very small variance, e.g. 
ET127-180, with 0.12% (Table 1-Case 2) shows an 
improvement, increasing the classification accuracy by about 
3%. This may suggest that ET127-150 may be potential noise. 
From this improvement, the correct classification for M is 
increased from 106 to 120 instances (Table 2; original and 
Case 2 in winter). However, no correct classification for L is 
observed, which needs further investigation. The full data set 
shows higher classification accuracy as more high frequencies 
are removed up to ET4-180. Since the full data set lacks 
characteristics compared with seasonally divided data sets, 
removing all frequencies except the general trend (ET1), 
seasonal components (ET2) and change points (ET3) provides 
smoothed but detailed time series structures, that help to 
generate the decision tree with the best classification accuracy. 
The major classification improvement resulted from 
increasing the number of correctly classified M instances from 
498 (original series) to 539 by decreasing misclassification 
between L and M (Table 2; original and Case 5).  

An interesting observation is seen from the autumn data set. 
Removing any components did not change the classification 
accuracy, although removing 0.12% of ET127-180 (Fig. 3-G 
and H) kept the same classification accuracy as the original 
time series (71.2%). Therefore, these structures could be 
considered as potentially insignificant noise that can be 
eliminated even without changing the structures, and removal 
of these may or may not help the algorithm, as the variance of 
these structures are very small (0.12%). However, the 
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differences between the original and removing ET127-180 
(Table 2-Case 2) is that removing ET127-180 improves 
detection of H, increasing correctly classified instances from 
66 to 72, but it decreases the correctly classified instances of 
M from 185 to 177. This point needs further investigation 
(Table 2-Case 2 for winter). 

Overall, removing more high frequencies from the original 

time series improves the classification accuracy for spring, 
summer and the full data set. In particular, spring and summer 
contain fewer high levels of CO, removal of high frequencies 
such as potential noise, outliers or insignificant signatures 
helps the algorithm efficiently. For example, the maximum 
classification accuracy improvement was 16.6% for summer 
by removing 6.42% of the structures (most of the high 

TABLE 1. Summary of decision tree classification accuracy using different SSA decomposed components.  

(%) Spring Summer Autumn Winter Average of 
single season 

Full data set 
 (all seasons) 

Original proportion of CO levels 

H 9.3 0.6 28.5 60.9 24.8 25.0 

M 59.3 44.9 58.7 36.4 49.8 49.8 

L 31.3 54.6 12.8 2.7 25.3 25.2 

Original time series      

C.A. 61.5 60.7 71.2 80.1 68.4 67.8 

SD. 5.0 4.7 3.7 3.3 1.0 7.9 
Case 1. Removing ET151-180 (<0.01%) in Fig. 3 - H from the rest (= adding G. ET127-150 on ET1-80)

C.A. 61.5 60.7 71.2 80.1 68.4 67.8 

SD. 5.0 4.7 3.7 3.3 1.0 7.9 
Case 2. Removing ET127-180 (0.12%) in Fig. 3 - G and H from the rest (=adding F. ET81-126 on ET1-80)

C.A. 62.4 59.5 71.2 83.4 69.1 66.9 

SD. 4.1 4.5 1.6 1.3 2.5 9.3 
Case 3. Removing ET81-180 (0.82%) in Fig. 3 - F to H from the rest (=adding E. ET41-80 on ET1-40)

C.A. 60.7 55.7 69.0 79.3 66.2 65.9 

SD. 1.2 6.5 7.2 3.0 2.3 8.9 
Case 4. Removing ET41-180 (2.28%) in Fig. 3 - E to H from the rest (=adding D. ET4-40 on ET1-3)

C.A. 56.0 58.5 67.1 68.2 62.5 62.0 

SD. 2.8 1.7 2.2 4.2 2.7 5.3 
Case 5. Removing ET4-180 (6.42%) in Fig. 3 - D to H from the rest (= adding C. ET3 on ET1-2)

C.A. 63.5 77.3 68.7 72.8 70.6 70.8 

SD. 1.6 0.5 0.6 2.2 0.5 5.1 
Case 6. Removing ET3-180 (7.10%) in Fig. 3 - C to H from the rest (= adding B. ET2 on ET1)

C.A. 66.2 72.0 68.5 70.9 69.4 65.8 

SD. 2.5 1.0 1.1 2.0 1.6 2.2 
Mean of the original and all 
cases within the same season 61.7 63.5 69.6 76.4 67.8 66.7 

SD of the original and all cases 
within the same season 3.1 8.0 1.6 5.7 2.7 2.7 

TABLE 2. Comparison of the confusion matrices between the original time series and the high frequency separated SSA additive components for all 
data sets. Note that the total number (sum of all three test results) of instances is shown. Numbers in bold indicate correctly classified instances.

Spring Summer Autumn Winter Full data set 

Original time series                         

 H M L  H M L H M L H M L  H M L 

H 12 11 1 H 1 0 0 H 66 15 0 H 189 26 0 H 276 67 2 

M 22 143 44 M 1 67 46 M 39 185 36 M 35 106 10 M 86 498 150

L 0 62 69 L 0 95 151 L 0 16 11 L 0 2 0 L 3 163 216

Case 6  
(Removing ET3-180) 

Case 5  
(Removing ET4-180) 

Case 2 
(Removing ET127-180) 

Case 2  
(Removing ET127-180) 

Case 5 
(Removing ET4-180) 

 H M L  H M L H M L H M L  H M L 

H 10 4 2 H 0 1 0 H 72 24 0 H 187 13 0 H 261 102 9 

M 21 154 35 M 1 98 16 M 33 177 34 M 37 120 10 M 99 539 124

L 3 58 77 L 1 63 181 L 0 15 13 L 0 1 0 L 5 87 235
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frequencies), compared to non pre-processed data. On the 
other hand, removing only a very small amount of high 
frequency information, the ET127-180 structures (0.12%), 
improved the winter classification accuracy by 3%, compared 
to non pre-processed data. The autumn data set did not show 
any particular improvement, and it may require further 
investigation. The use of SSA additive components as inputs 
for generating decision trees may have future use for any 
noisy time series, as this provides better classification 
accuracy for some parts of the data, which can be helpful for 
the overall analysis. It also allows exploring the data set.  

C. Knowledge discovery from decision trees 

Fig. 4 shows the highest performing decision tree out of the 
three training data sets for each of spring, autumn and winter 
(with respective accuracies of 68.6%, 73.0% and 84.6%). Note 
that the investigation is focused on climate responses or 
impacts on the high CO levels. The summer decision tree did 
not indicate the pathway of the high CO level. Also the 
interpretation is based on major findings.  

Since the input climate attributes are numerical, the 
decision trees have numerical threshold values. Note that the 
autumn decision tree (Fig. 4-B) shows wind direction (Wdir), 
which takes the value of A for easterly and southeasterly wind 
and B for southerly, southwesterly and westerly wind. The 
dominant wind direction is southeasterly, followed by 
southerly, southwesterly, easterly, and westerly. As previously 
mentioned in Section III, negative values of TD indicate the 
formation of temperature inversion (TI). The winter decision 
tree (Fig. 4-C) shows three TD nodes; the lowest (most 
negative) TD value suggests a strong TI (≤ -0.63 °C), whereas 
smaller (≤ 0.04 °C) and larger (≤ 0.5 °C) positive TD values 
suggest the mild and weaker TI formation.  

The winter decision tree has the largest tree size (TS=29) of 
all the trees and the highest number of leaves (NL=15), 
suggesting that the decision process for the winter CO level is 
most complicated, whereas the spring decision tree has the 
simplest and smallest tree (TS=11 and NL=6), and the autumn 
decision tree (TS=15 and NL=8) lies between the spring and 
winter trees. 

Common climate responses to the high CO level are found. 
The most important climate factor (found at the root of the 
tree) is WS with the value of  2.3-2.5 m/s (the threshold 
varies between seasons). The mean and standard deviation of 
wind speed in the study area are 2.60±0.97. Hence, when the 
wind speed is lower than the mean (light wind speed) the CO 
level is high. The second most important climate variable is 
TD. The autumn data set has milder TI formation (≤ 0.23 °C)
than winter, as generally TI is often observed more in winter 
with lower temperatures. Three different levels of TI (strong, 
medium and weak) also associate with the high CO level. 
However, the spring decision tree shows the association of TD 
is more with M and L (Fig. 4-A). In spring, the  9.7 °C TG is 
responsible for the high CO level instead. Interestingly, only 
the autumn decision tree uses the wind direction attribute; 
southeasterly direction associates with high CO level via 
lower TT (≤ 6.6 °C), but when TT is above 6.6 °C with lower 
humidity (≤ 70%; dryer air), the association of the high level 
is detected (Fig. 4-B). A similar finding is found from winter 
(Fig. 4-C). The association of the high CO level is: during 
mild TI, via lower TT (≤ 8.4 °C); during dryer relative 
humidity (≤ 90%), via colder TD (≤ 10.9 °C) or via further 
strong formation of TI  (≤ -0.63 °C). Also the weaker TI 
associates with the high CO level via lower TT (≤ 7.0 °C).  

Overall, the responsible climate attributes for the CO level 
are light wind speed and temperature inversion formation. 
This is a reasonable finding, also seen from previous research 
in the study area [15]. As this study is the first attempt for 

A. Spring data set.  

WS

TG

H

≤ 2.5 m/s

≤ 9.7 °C > 9.7 °C

TD

>2.5 m/s

...

Prediction
of M and LM

B. Autumn data set. 

WS

WS

TG

TD

H
TT

Wdir

M

HM

≤ 2.3 m/s

≤ 2.1 m/s

> 8.0 °C≤ 8.0 °C

≤ 0.23 °C
TI

> 2.1 m/s

> 0.23 °C

A

≤6.6 °C > 6.6 °C

> 2.3 m/s

M

H

 B

RH

H M

≤ 70 % > 70 %

C. Winter data set. 

WS

TD

TG

RH

TT

TD

H

H M

H

TD

TT

M

HM M

≤ 2.4 m/s

≤ 90 %

> 8.4 °C≤ 8.4 °C

≤ 0.04 °C
Mild TI

≤ 10.9 °C

≤ −0.63 °C
Strong TI

> 10.9 °C

> 90 %

> −0.63 °C

> 0.04 °C

≤ 7.0 °C

≤0.5 °C
Weak TI

> 0.5 °C

> 7.0 °C

WS

> 2.4 m/s

...

Prediction of M and L

Fig. 4. Examples of decision trees for spring (A in top), autumn (B 
in middle) and winter (C in bottom). Note that all decision trees 

shown here focused on the high CO level, otherwise branches for 
predicting medium and low CO levels are not shown. The autumn 

decision tree (B) shows the wind direction as A (NE, E, SE 
direction) and B (S, SW, W, NW direction). 
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applying the data mining technique, decision trees for 
knowledge discovery on the climate and air pollution, it is 
important to note that the exact threshold values and findings 
require further investigation, carried out by experts in this 
field. 

V. CONCLUSIONS

The use of SSA as the noise reduction method for the data 
mining application, a decision tree classifier, successfully 
improves the classification accuracy, compared with the 
original time series. The improvements are more effective, 
when the data set (containing all four seasons) is divided into 
seasons, as the summer data set classification accuracy 
improved up to 16.7%, compared with the original time series, 
after removing 6.42% of the signal. However, the autumn data 
did not show any improvement, which may suggest that other 
attributes can describe the CO level better than the currently 
used climate attributes. The advantage of using SSA is to 
provide several additive components that can be added to or 
removed from the main structures, allowing exploration of the 
nature of the noisy time series data set. 

Observing how the classification accuracy changes 
provides information on which components are essential to 
generate the decision tree or which help identifying the 
insignificant signatures in the noisy time series (potential 
noise). Generating the decision trees using climate attributes to 
predict the CO levels from different seasons provides 
knowledge of the responsible climate attributes or the pathway 
for the CO levels. In particular, the decision tree provides 
threshold values of each climate variable that are responsible 
for the change of CO levels. Detailed examination of the 
decision trees suggests that the most important climate 
condition is wind speed less than equal to 2.3 to 2.5 m/s, 
which associates with high CO levels. The second most 
important climate attribute is any level of temperature 
inversion formation. Note that the exact threshold value for 
each climate attribute requires further investigation from 
experts in the field, although results are used as indexes for 
future climate and air pollution study. In order to increase the 
sensitivity in generating the decision tree, the fuzzy decision 
tree technique may help reduce misclassification of the 
different CO levels (H, M, and L). However, the introduced 
noise reduction method via SSA is an encouraging data pre-
processing method for any data mining techniques. The data 
mining approach in this study can be adapted and used as a 
knowledge discovery tool for various environment researches 
in future. 
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