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Abstract— In climate models, aerosol forcing is the major
source of uncertainty in climate forcing, over the industrial
period. To reduce this uncertainty, instruments on satellites have
been put in place to collect global data. However, missing and
noisy observations impose considerable difficulties for scientists
researching global aerosol distribution, aerosol transportation,
and comparisons between satellite observations and global-
climate-model outputs. In this paper, we propose a Spatial
Mixed Effects (SME) statistical model to predict the missing
values, denoise the observed values, and quantify the spatial-
prediction uncertainties. The computations associated with the
SME model are linear scalable to the number of data points,
which makes it feasible to process massive global satellite data.
We apply our proposed methodology, which we call Fixed Rank
Kriging (FRK), to the level-3 Aerosol Optical Depth dataset
collected by NASA’s Multi-angle Imaging SpectroRadiometor
(MISR) instrument flying on the Terra satellite. Overall, our
results were superior to those from nonstatistical methods and,
importantly, FRK has an uncertainty measure associated with it.

I. INTRODUCTION

Estimates from the 2001 IPCC (Intergovernmental Panel on
Climate Change) Report show that aerosol (liquid or solid
airborne particulates having sizes ranging from more than 0.1
μm to less than 1 μm) forcing contains the major source
of uncertainty in climate forcing, over the industrial period.
Calculations of aerosol effects on climate require the use of
chemical-transport, energy-radiation, and general-circulation
models. The validity of these models needs to be evaluated
against aerosol information retrieved from satellites and other
data sources. Stratification of Aerosol Optical Depth (AOD)
by particle type is a key component of this strategy.

The Terra satellite, launched on December 18, 1999, is
part of the Earth Observing System (EOS) sponsored by the
National Aeronautics and Space Administration (NASA), and
one of the instruments on board is the Multi-angle Imaging
SpectroRadiometer (MISR). The MISR instrument retrieves
key aerosol properties, such as aerosol optical depth, as well
as aerosol shape and size. The global aerosol information
provided by MISR is vital to our understanding of geophys-
ical processes governing global changes of Earth’s climate,
including scattering and absorption of solar radiation and other
parameters (Diner et al. [5] and Kaufman et al. [13]).

MISR cameras cover a swath at the Earth’s surface that is

approximately 360 km wide and extends across the daylight
side of the Earth from the Arctic down to Antarctica. There are
233 geographically distinct, but overlapping, swaths, which are
also called paths. The MISR instrument collects data from all
paths on a repeat cycle of 16 days; that is, it covers the exact
same path every 16 days. The upper panel in Fig. 1 shows
a global map of the locations where MISR had successful
retrieval of AOD on one particular day (April 1, 2001). Each
colored strip represents data retrieval from one MISR orbit.
The gray areas are either where there was no coverage on
that day, or where the aerosol algorithm failed to retrieve
AOD. The spatial resolution of MISR level-2 aerosol data is
17.6km by 17.6km, which are converted to level-3 data at a
much lower spatial (0.5 degree by 0.5 degree) and temporal
resolution (1 day) by averaging those observations falling in
lower-resolution pixels over a certain period of time. The upper
panel in Fig. 1 shows the level-3 AOD data on April 1, 2006.

Level-3 data are not nearly as massive, but they are still
sparse in different regions of the globe. For example, the
middle panel in Fig. 1 shows a MISR level-3 AOD product
(0.5 degree by 0.5 degree) for the period of April 1, 2001 to
April 16, 2001, which spans a complete MISR repeat-cycle.
The plot is a global map of the averaged AOD values, where
the averages are taken pixel-by-pixel over all level-2 data
successfully retrieved in each 0.5 degree by 0.5 degree pixel
during those 16 days. Even for this low spatial and temporal
resolution, there are pixels with no data (gray pixels on the
map) that cover the poles and leave holes over other parts of
the mid-latitudes (e.g., over South America).

These missing data create great difficulties for those doing
research on global aerosol distribution and transportation, on
comparison between satellite observations and the global-
climate-model outputs, and on other related climate studies.
In this paper, our goal is to fill in the missing data and to
denoise the existing data, at level 3, in a statistically optimal
way. This involves an initial modeling of the spatial trend,
followed by a spatial-prediction method called kriging.

Kriging, or spatial best linear unbiased prediction (spatial
BLUP), has become very popular in the earth and environ-
mental sciences, where it is sometimes known as optimum
interpolation. Kriging methodology is able to produce maps of
optimal predictions and associated prediction standard errors
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Fig. 1. MISR Aerosol Optical Depth observations with gray areas repre-
senting unobserved pixels. Upper panel: level-3 AOD data for April 1, 2001;
middle panel: level-3 AOD data for April 1 through April 16, 2001; lower
panel: level-3 log(AOD) data for April 1 through April 16, 2001.

from incomplete and noisy spatial data (e.g., Cressie [2], Ch.
3). However, solving the kriging equations directly involves
inversion of an n × n covariance matrix Σ, where n data
may require O(n3) computations to obtain Σ−1. Under these
circumstances, straightforward kriging on global MISR AOD
data is impossible.

In recent years, various methods have been proposed to
approximate the kriging equations (Barry and Pace [1]; Ny-
chka [17]; Nychka et al. [18]; Kammann and Wand [12];
Furrer et al. [7]). Suggestions include giving an equivalent
representation in terms of orthogonal bases and truncating the
bases, doing covariance tapering, using approximate iterative
methods such as conjugate-gradient, or replacing the data
locations with a smaller set of space-filling locations.

Instead of approximating the kriging equations, we cloud
look for classes of covariance functions for which kriging can
be done exactly, even though the spatial datasets are large
(e.g., Huang et al. [10]; Tzeng et al. [19]; Johannesson et
al. [11]). In this article, we use a spatial covariance function

based on what we call a Spatial Random Effects (SRE) model,
which leads to a Spatial Mixed Effects (SME) model for the
data process. In our application, we use multi-resolution basis
functions to capture the spatial dependence in the data. The
kriging computations that follow from the SME model can
be carried out using Fixed Rank Kriging (FRK), proposed in
Cressie and Johannesson [4]. It was shown there that FRK
is linear scalable in the number of data, so it is capable of
handling the very large datasets associated with the MISR
instrument.

In Section 2, we discuss the SME model and review the
FRK computations associated with it. In Section 3, we propose
a procedure to select basis functions for the SME model, from
a family of multi-resolution W -wavelets. The procedure is
based on Huang and Cressie’s [9] approach of decomposing
deterministic and stochastic terms such that large absolute
wavelet coefficients are selected for use as either deterministic
or stochastic components. In Section 4, we apply the SME
model, with selected W -wavelet basis functions, to the MISR
level-3 global AOD data, and we compare the result to other
commonly used non-statistical methods, such as Inverse Dis-
tance Weighting and Nearest Neighbors Smoothing. Section
5 concludes the paper with discussion about future research,
including incorporating spatio-temporal variability into the
optimal predictor.

II. SPATIAL MIXED EFFECTS (SME) MODEL

Consider a real-valued spatial process {Y (s) : s ∈ D ⊂
R

d}, for which we are interested in making inference based
on data from Z(·) that have measurement error incorporated:

Z(s) ≡ Y (s) + ε(s) ; s ∈ D , (1)

where {ε(s) : s ∈ D} is a spatial white-noise process with
mean 0 and, for σ2 > 0, var(ε(s)) = σ2v(s) ∈ (0,∞); s ∈ D.

The hidden process Y (·) is assumed to have a linear mean
structure,

Y (s) = T(s)′β + ν(s) ; s ∈ D , (2)

where T(·) ≡ (T1(·), . . . , Tp(·))
′ represents a vector process

of known covariates; the coefficients β ≡ (β1, . . . , βp)
′ are

unknown; and the process ν(·) has zero mean and a (generally
nonstationary) spatial covariance function,

cov(ν(u), ν(v)) ≡ C(u,v) ; u,v ∈ D . (3)

Henceforth, we assume that ν(·) follows a Spatial Random
Effects (SRE) model, which is:

ν(s) ≡ S(s)′η,

where S(·) ≡ (S1(·), . . . , Sr(·))
′ represents a set of r basis

functions and η ≡ (η1, . . . , ηr)
′ is a zero-mean random vector

with covariance matrix given by Kr×r. Then from (1) and (2),
the data process Z(·) is a Spatial Mixed Effects (SME) model;
that is,

Z(s) ≡ T(s)′β + S(s)′η + ε(s) ; s ∈ D , (4)
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in which T(s)′β and S(s)′η model the large- and small-
scale spatial variations, respectively, and ε(s) represents the
measurement error in each potential observation.

In fact, the process Z(·) is known only at a finite number
of spatial locations {s1, . . . , sn}; define the vector of available
data to be Z ≡ (Z(s1), · · · , Z(sn))′. Our interest is in infer-
ence on the hidden Y -process, not the noisy Z-process, using
the data Z. In what follows, we consider point prediction,
where we wish to predict the Y -process at a location s0;
s0 ∈ D, regardless of whether s0 is or is not an observation
location. Block prediction can be generalized straightforwardly
for SRE models; see the discussion in Section 6.

A. Fixed Rank Kriging

For the SME model (4), we can write the n×n theoretical
covariance matrix of Y ≡ (Y (s1), . . . , Y (sn))′ as, C =
SKS′, and hence the covariance matrix of Z is:

Σ = SKS′ + σ2V , (5)

where recall that K is the r × r covariance matrix of η, S is
the n×r matrix whose (i, �) element is S�(si), and recall that
σ2V is diagonal with entries given by the measurement-error
variances.

Cressie and Johannesson [4] studied the kriging computa-
tions for this type of covariance model (5), and they named the
resulting prediction method Fixed Rank Kriging (FRK). The
authors showed that FRK computations only require inversion
of r× r matrices or diagonal n×n matrices; specifically they
showed that Σ−1 can be expressed as:

Σ−1 = (σ2V)−1 − (σ2V)−1S{K−1 + S′(σ2V)−1S}−1

S′(σ2V)−1 . (6)

In general, the kriging predictor can be written as:

Ŷ (s0) = t(s0)
′β̂ + c(s0)

′Σ−1(Z − Tβ̂) ,

where β̂ ≡ (T′Σ−1T)−1T′Σ−1Z and c(s0) ≡
(C(s0, s1), . . . , C(s0, sn))′. For the SRE model, this
results in the FRK predictor:

Ŷ (s0) = t(s0)
′β̂ + S(s0)

′KS′Σ−1(Z − Tβ̂) , (7)

where Σ−1 is given by (6). The FRK standard error is:

σk(s0) = {S(s0)
′KS(s0) − S(s0)

′KS′Σ−1SKS(s0)

+(t(s0) − T′Σ−1SKS(s0))
′(T′Σ−1T)−1

(t(s0) − T′Σ−1SKS(s0))}
1/2 , (8)

where Σ−1 is again given by (6). As the prediction location
s0 in (7) and (8) varies over D, a kriging-prediction map and
a kriging-standard-error map, respectively, are generated.

Closer inspection of the kriging equations (7) and (8) reveals
that for a fixed number of regressors p and a fixed rank r of
the covariance model defined by (5), the computational burden
is only linear in n. More interestingly, instead of storing the
n × n matrix Σ−1 in computer memory, FRK only needs to
deal with much smaller matrices, T′Σ−1 (p× n) and S′Σ−1

(r × n). Thus, FRK makes it feasible to construct maps of

kriging predictors and kriging standard errors based on very
large spatial datasets.

B. Fitting the SME model by Weighted Least Squares

Given data Z at locations {s1, . . . , sn}, and functions T(·)
and S(·), fitting the SME model (4) requires estimating β,
σ2, and K from the data. We follow the estimation scheme
proposed in Cressie and Johannesson [4], based on minimizing
the Frobenius norm between an empirical covariance matrix
and a theoretical covariance matrix derived from Σ = SKS′+
σ2V. We briefly review the method here; interested readers
can find more details in Cressie and Johannesson [4].

To estimate the covariance matrix K, an empirical covari-
ance is first computed, which is based on the method-of-
moments. The ordinary-least-squares estimator of β is:

β ≡ (T′T)−1T′Z , (9)

from which detail residuals, {Z(si)−T(si)
′β: i = 1, . . . , n}

are defined.
As in classical geostatistics (e.g., Cressie [2], Ch. 2),

“binned” data are used for computation of a method-of-
moments estimator Σ̂M , which is the empirical covariance
matrix of the binned detail residuals at bin centers {uj : j =
1, . . . ,M}, where r ≤ M < n. In a similar way, the
binned versions of S and V are obtained as S and V (see
Cressie and Johannesson [4], Appendix). Finally, one chooses
a positive-definite K and σ2 ∈ (0,∞) such that ΣM (K, σ2) ≡

SKS
′

+ σ2V, is as “close” to Σ̂M as possible. We measure
the closeness of two matrices A and B via the square of the
Frobenius norm:

‖A − B‖2 ≡ tr((A − B)′(A − B)) =
∑
j,k

(Ajk −Bjk)2 ,

which has also been used by Hastie [8] in deriving pseudos-
plines, and by Donoho et al. [6] in estimating covariances.

Minimizing the Frobenius norm between ΣM (K, σ2) and
Σ̂M leads to estimators σ̂2 ∈ (0,∞) that minimize

‖Σ̂M − ΣM (K̂, σ2)‖2 =
∑
j,k

(
(Σ̂M − P(Σ̂M ))jk

−σ2(V − P(V))jk

)2
,

where S = QR is the Q-R decomposition of S; K(σ2) ≡
R−1Q′(Σ̂M − σ2V)Q(R−1)′; and P(A) ≡ QQ′AQQ′ for
any M × M matrix A. Notice that this is just a simple
linear regression with slope σ2 and zero intercept. Hence,
the minimization, constrained so that σ2 > 0, can be easily
carried out. Finally, the K that minimizes the Frobenius norm
is obtained from:

K̂ ≡ R−1Q′(Σ̂M − σ̂2V)Q(R−1)′ , (10)

where σ̂2 needs to be adjusted so that K̂ is positive-definite.
This completes the model-fitting step. Using these estimated
parameters substituted into (7) and (8), FRK prediction can be
implemented.

714

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



Fig. 2. Two-dimensional W -Wavelets basis functions: (a) Ψ(1), (b) Ψ(2) ,
(c) Ψ(3), and (d) Ψ(4) .

III. MULTI-RESOLUTION BASIS SELECTION

To analyze the MISR AOD data, we propose to fit the model
(4), where T(·) and S(·) are chosen from multi-resolution
W -wavelet basis functions. We give a brief discussion of
W -wavelets in Section III-A and then present our selection
strategy for T(·) and S(·) in Section III-B.

A. W-wavelets

Multi-resolution methods using wavelet basis functions have
received quite a lot of attention recently in the Statistics
literature. The popularity of wavelets lies in their ability
to provide estimates of functions that have discontinuities
or varying degrees of smoothness over their domain. An
additional advantage of wavelets is their efficient computation
using Discrete Wavelet Transform (DWT) algorithms.

Wavelets are functions with varying scales and locations,
obtained by dilating and translating a mother wavelet ψ. Asso-
ciated with each ψ is a scaling function φ, also called a father
wavelet. Readers are referred to the review paper by Nason and
Silverman [16] for more details on wavelet bases. In this paper,
we concentrate on a family of wavelets called W -wavelets,
in particular the quadratic-spline W-wavelets (Kwong and
Tang [14]). Nychka et al. [18] suggested using them as basis
functions because they are able to approximate the shape of
common covariance models and handle boundaries easily.

To model the spatial data Z, a two-dimensional W -wavelet
basis is constructed through translation and scaling of four
template functions:

Ψ(1)(x, y) = φ(x)φ(y), Ψ(2)(x, y) = ψ(x)φ(y),

Ψ(3)(x, y) = φ(x)ψ(y), Ψ(4)(x, y) = ψ(x)ψ(y),

where Ψ(1) corresponds to the role of the father wavelet and
Ψ(2), Ψ(3), and Ψ(4) to that of mother wavelets in the one-
dimensional case. These template functions are the result of a
tensor product of the one-dimensional father and mother W -
wavelet functions (see details in Nychka et al. [18]). Fig. 2

shows the quadratic parents of this family, which are piecewise
quadratic splines. Unlike other popular wavelet bases, the W -
wavelets are not orthogonal, nor are they compactly supported.
In order to model the MISR AOD data, we choose functions
T(·) and S(·) in (4) from the two-dimensional quadratic-spline
W -wavelets.

As is well known, missing values pose difficulties when
computing the DWT, which requires a datum for every lo-
cation on a regular grid. Matsuo et al. [15] proposed filling
in any missing values using a Monte-Carlo Expectation-
Maximization approach, but in our case the computational
effort would be overwhelming. Our approach is to fill in the
missing values on the regular grid using Mean Polishing (e.g.,
Cressie [2], pp. 184, 185), but note that the “complete” data
are only used for the purpose of basis-function selection. Mean
Polish is a simple, computationally fast method that puts the
missing value at location s equal to Z̄lon(s) + Z̄lat(s) − Z̄,
where Z̄lon(s), Z̄lat(s), and Z̄ are the means of data with
the same longitude as s, with the same latitude as s, and
all observed data, respectively. The DWT on the “complete”
data is then used to accomplish the selection of T(·) and S(·)
functions; see the next section.

B. Basis Selection

Recall that the deterministic term T(·)′β and the stochastic
term S(·)′η in (4) model large- and small-scale spatial varia-
tion, respectively. This suggests generally that we choose T(·)
from wavelets at coarser scales and S(·) from scales finer than
those used for T(·).

Our strategy for basis-function selection is based on
methodology presented in Huang and Cressie [9], in which
the authors proposed a method to decompose deterministic
and stochastic terms in wavelet signal processes. Among the
wavelet coefficients at certain scales, those with large absolute
wavelets coefficients are selected for use as either deterministic
or stochastic components of (4), as follows.

In the SME model (4), we choose T(·) as all W -wavelets
involved in scales 1, . . . , J0, plus those with large absolute
coefficients at scale J0+1; in practice, J0 is usually small and
its choice depends on the desired level of large-scale spatial
variability. To choose S(·), we take those basis functions left
unselected for T(·) at scale J0 + 1, plus wavelets at scale
J0 + 2 that have large absolute coefficients. The method used
to determine which are the large absolute wavelet coefficients
is defined below.

To identify the large absolute wavelet coefficients automati-
cally at a given scale J , we adopt the method discussed in
Huang and Cressie [9]. Let m be the number of wavelet
functions at scale J , and w1, · · · , wm be the coefficients
calculated from the DWT. Let |w|(p) be the p-quantile of
|w1|, · · · , |wm|, and q(p) be the p-quantile of the standard
Gaussian distribution. We compute

τ̂ = |w|(1−2α)/q(1−α) ,

where 0 < α < 0.5 is chosen to ensure that the Q-Q line with
slope τ̂ fits the wavelet coefficients that are small or moderate

715

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



0 1 2 3
0

0.5

1

1.5

2

2.5
x 10

4

AOD
−6 −4 −2 0 2
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

log(AOD)

Fig. 3. Left panel: Histogram of AOD; right panel: Histogram of log(AOD).

in absolute value. A large absolute wavelet coefficient at scale
J is defined as a wi that satisfies:

|wi| > τ̂ × qmax,

where qmax ≡ max{q(1−p) : |w|(1−2p) < τ̂q(1−p), p =
1/2m, 2/2m, · · · , 1/2}; see Huang and Cressie [9]. After
identifying these coefficients, the corresponding wavelet func-
tions are selected to be in either T(·) or S(·), according to the
description given above.

IV. MISR AEROSOL OPTICAL DEPTH

We now carry out a spatial statistical analysis on the MISR
global level-3 AOD data. The dataset used in this study are
averaged level-2 AOD data, averaged within level-3 pixels,
for the 16-day period of April 1, 2001 to April 16, 2001.
Recall that this covers a MISR full repeat-cycle. The middle
panel in Fig. 1 shows the global AOD data with gray areas
corresponding to level-3 pixels with no data in them. In
addition to the averaged AODs, the MISR level-3 product also
provides the number of level-2 observations,N(s), used in that
average, for each pixel centered at s that is not gray.

Initial investigation shows a long-tailed distribution of AOD
(the histogram is shown in the left panel of Fig. 3), so
we use log(AOD) as the primary variable in our analysis.
The histogram of log(AOD) is shown in the right panel of
Fig. 3, clearly exhibiting a distributional shape that is close
to symmetric. Therefore, we fit the SME model (4) to Z, the
log(AOD) data. Untransforming from log(AOD) to AOD is
straightforward (e.g., Cressie [3]).

In Section 4.1, we apply FRK to data in a subregion
deliberately chosen with missing data, and we compare its
accuracy and computational cost to ad hoc, non-statistical
spatial methods. In Section 4.2, we present FRK for (almost)
global data. All computations were carried out in Matlab on a
linux machine with a Pentium 4 dual core 3.0 Ghz processor
and 2GB memory.

A. Spatial Analysis on a Subregion of the Globe

We apply the proposed FRK methodology to log(AOD) in
the rectangular region between longitudes −140◦ and 12◦ and
between latitudes −20◦ and 45◦, which covers a geographic
region that includes North and South America, Africa, and
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Fig. 4. Wavelet coefficients for log(AOD) data in the subregion. Upper
panel: J = 2; Lower panel: J = 3. The fitted Q-Q line is superimposed, and
coefficients corresponding to wavelet functions in T(·) and S(·) are plotted
as '�' and 'O', respectively.

parts of the Atlantic and Pacific Oceans. This study region is
delineated by the red box in the lower panel of Fig. 1.

The study region is a test-bed for validation experiments. It
was selected for three reasons. First, the observed log(AOD)
exhibits strong spatial dependence. Second, there are 128 ×
256 = 32,768 pixels (0.5 degree by 0.5 degree) in the region,
and this fairly large amount of data presents a good case with
which to compare the computational efficiencies of different
methods. Third, 6,971 (21% of total) pixels are unobserved in
this region, especially over areas of South America and the
Pacific Ocean, so it is a good case for testing the accuracy of
different methods for filling in missing values.

1) Basis Selection: Here we apply the basis-selection
method proposed in Section 3 to the data in the subregion.
We first compute the wavelet coefficients using the DWT
on log(AOD), with the missing values initially filled in by
Mean Polishing. Among the set of all coefficients, there are
4 × 2 × 4 = 32 at the first scale. The second scale involves
three sets of 4 × 8 basis functions (96 total), being scaled
translates of Ψ(2), Ψ(3), and Ψ(4). Similarly, the third scale
has 3 × 8 × 16 = 384 basis functions.

We then follow the basis-selection procedure given in Sec-
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predictions; lower-left panel: FRK standard errors; upper-right panel: OLS
fitted trend Tβ; middle-right panel: Inverse Distance Weighting; lower-right
panel: Nearest Neighbor Smoothing.

tion 3 with selection parameters J0 = 1, α = 0.2 at the second
scale, and α = 0.35 at the third scale. This procedure results
in 35 basis functions for T(·), 32 from the first scale and 3
from the second scale. Turning to S(·), the procedure selects
229 basis functions with 96 − 3 = 93 from the second scale
and 136 from the third scale. The Q-Q plots of w’s at the
second scale and at the third scale are shown in Fig. 4, where
the coefficients corresponding to wavelets in T(·) and S(·)
are plotted as symbols '�' and 'O', respectively. From the
figure, the wavelet coefficients within the two scales fit well
to a Gaussian distribution, except for those with large absolute
values.

2) SME Model Fitting: We now fit the SME model (4) to
Z (i.e., observed log(AOD)) in the study region (also shown
in the upper-left panel of Fig. 5). The Ordinary Least Squares
(OLS) fit using basis functions T(·) on the observed data leads
to OLS coefficients β, the fitted values ẐOLS(si) ≡ T(si)

′β,
and detail residuals, {D(si) ≡ Z(si) − ẐOLS(si) : i =
1, . . . , n}. The OLS fit is shown in the upper-right panel of
Fig. 5. Now, to estimate K and σ2 in the SME model, we bin
the detail residuals {D(si)} into M = 1253 bins, which result
from using a 5 × 5 window. Since each pixel is 0.5 degrees
by 0.5 degrees, the bins are 2.5 degrees by 2.5 degrees.

Recall that the diagonal matrix V is the binned version
of V; we assume V = diag(1/N(s)). The binned empirical
covariance matrix Σ̂M is calculated, and hence we obtain
estimates σ̂2 and K̂ using the fitting procedure given in
Section 2.2. Then the optimal spatial predictor, Ŷ (s0), and the
prediction standard error, σk(s0), are calculated using the FRK
equations (7) and (8), where s0 is allowed to range over all
level-3 pixels in the study region. The middle-left and lower-
left panels of Fig. 5 show the FRK predictions and the FRK
standard errors, respectively.

TABLE I

MSPE OF FRK, OLS, IDW, AND NNS FOR CASE 1.

FRK OLS IDW NNS
mean(MSPE) 0.346 0.4304 0.2186 0.2228

sd(MSPE) 0.0102 0.0086 0.0074 0.0074

The maps show that FRK captures the spatial variation
well, and its standard error behaves as expected, showing high
values at locations with many unobserved values. Especially,
the hot spot between longitudes −80◦ and −40◦ and between
latitudes −10◦ and 10◦ indicates FRK prediction at those
locations has uncertainty. We also observe that the uncertainty
map exhibits regular ”grid” pattern due to local supports of
the wavelets basis functions. The computation of FRK in this
subregion of 32,768 pixels took 33.7 seconds to fit the model
and 84.1 seconds to compute all 32, 768 predicted values and
their prediction standard errors.

3) Comparison with OLS, IDW and NNS: Besides visual
inspection of the FRK results, we can also compare, via
cross-validation experiments, the accuracy of FRK with other
computationally fast nonstatistical spatial-prediction methods,
such as the Inverse Distance Weighting (IDW) method and
the Nearest Neighbor Smoothing (NNS) method. These two
methods are commonly used to address the missing-value
problem in geosciences; the results of IDW and NNS are
shown in the middle-right and lower-right panels of Fig. 5,
respectively. We also include OLS in our comparison, which
is another possible method for predicting missing values for
large datasets.
Case 1: Cross-Validation by Random Sampling. For the
first comparison, we randomly selected 10% of the 25,897
observed values and treated them as testing data, denoted as
{Z(stest

i )}. Then the remaining 90% of the data are used to
predict them, based on the prediction methods FRK, OLS,
IDW, and NNS. In this experiment, the IDW and NNS methods
are computed for the 10 nearest observed values in a moving,
variable-size window, and OLS uses the functions T(·) that
were selected.

The prediction accuracy of each method is evaluated by
the Mean Squared Prediction Error (MSPE) over the testing
data; that is,

MSPE =
1

ntest

∑
i

(Z(stest
i ) − Ŷ (stest

i ))2,

where ntest as the size of the testing dataset. This cross-
validation procedure is repeated 50 times (50 different 10%
samples), and the mean and standard deviation of the 50
MSPE’s are reported in Table 1.

Overall, FRK outperforms OLS, but its prediction is not
as close to {Z(stest

i )} as IDW and NNS. FRK only at-
tempts to reproduce the smooth underlying process Y, not
the noisy measured values Z. When the prediction location is
surrounded by enough observed neighborhoods, we expect that
IDW and NNS work well. However, these two neighborhood
methods exhibit strong nonsmooth artifacts in areas where

717

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



TABLE II

MSPE OF FRK, IDW AND NNS FOR CASE 2.

FRK IDW NNS
MSPE 0.4046 1.0717 1.0716

a majority of data are missing (e.g., a large area in South
America, between longitudes −80◦ and −40◦ and between
latitudes −10◦ and 10◦). This effect will be investigated in the
second cross-validation experiment. More importantly, IDW
and NNS methods do not provide uncertainty measures, which
are essential for comparison of AOD over different regions or
at different time points.
Case 2: Contiguous Region Set Aside. In this comparison,
we concentrate on evaluating the performance of FRK, IDW,
and NNS in regions where a majority of the data are missing.
To mimic this in our experiment, we set aside a vertical strip
of observed values whose longitudes are between −110◦ and
−90◦, and treat them as testing data. The remaining data
are used to predict the testing data, based on the prediction
methods FRK, IDW, and NNS. As reported in Table 2, MSPE
of FRK is 0.4046, which is much lower than 1.0717 of IDW
and 1.0716 of NNS, respectively. Therefore, FRK clearly
outperforms IDW and NNS in this case. From these studies,
we conclude that FRK is more reliable for analyzing massive
MISR global AOD with its type of missing values.

B. Spatial Analysis on a “Global” Dataset

We present the results on an “almost global” dataset to show
the potential of our method to process massive MISR datasets.
We implement FRK using equations (7) and (8) on log(AOD)
data in the rectangular region between longitudes −130◦ and
126◦ and between latitudes −66◦ and 62◦. This almost global
region contains 512×256 = 131, 072 pixels of size 0.5 degree
by 0.5 degree. The region is delineated by the red box in the
upper panel of Fig. 6.

In this experiment, the model-selection step is carried out
with J0 = 2, α = 0.1 at the third scale, and α = 0.05 at the
fourth scale. The resulting functions T(·) and S(·) contain
163 and 429 wavelet functions, respectively. In the spatial-
model-fitting step, there are M = 2614 bin centers resulting
from bins that are 2.5 degrees by 2.5 degrees. The middle
and lower panels of Fig. 6 show the FRK predictions and
the FRK standard errors given by (7) and (8), respectively.
As for this subregion, we see that FRK prediction captures
the spatial variation and the FRK standard errors behave
appropriately (i.e., they are larger where there are fewer data).
The uncertainty hot spots observed in some regions correspond
to the areas where majority observations are missing. We
also point out that the regular “grid” pattern observed in the
uncertainty maps is due to local support of the wavelets basis
functions used in fitting the covariance matrix SKS′.

For this almost-global dataset with 131,072 pixels, the
computation times for fitting and prediction are 156.7 seconds
and 1477.0 seconds, respectively. It is worth pointing out that
the map we produce here is at a 0.5 degree by 0.5 degree

log(AOD), APR 1 to 16, 2001
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Fig. 6. Upper panel: Observed log(AOD); middle panel: FRK predictions;
lower panel: FRK standard errors.

resolution, so the number of pixels we deal with here exceeds
that of a global map at 1 degree by 1 degree resolution
(where there are 360 × 180 = 64, 800 pixels). It is clear
that the accuracy (Section 4.1) and computation times (Section
4.2) resulting from our experiments show that FRK is capable
of efficiently (statistically and computationally) modeling and
analyzing massive global datasets.

V. DISCUSSION

In this paper, we propose a Spatial Random Effects (SRE)
model using multi-resolution basis functions as part of a
spatial model we fit to massive global satellite datasets.
Through a methodology called Fixed Rank Kriging (Cressie
and Johannesson [4]), we are able to use spatial statistics
to predict the missing values, denoise the observed values,
and provide a measure of uncertainty. Importantly, FRK is
linearly scalable to the number of data points, which makes
it suitable for massive global satellite data processing. We
applied the proposed method to the MISR level-3 AOD data,
and overall our results were superior to nonstatistical methods.
FRK has the crucial advantage that it comes with a measure
of uncertainty (the FRK standard error).

When we wish to predict processes at one resolution, but
data are observed at another, the SRE model can be seen to
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be particularly advantageous. Recall that the SRE model has
covariance function, cov(ν(u), ν(v)) = S(u)′KS(v). Then
it is easy to see that cov(ν(B1), ν(B2)) = S(B1)

′KS(B2),
where ν(B) ≡ (1/|B|)

∫
B ν(u)du and S(B) ≡ (1/|B|)∫

B
S(u)du. That is, the form of the SRE model is invariant

under aggregation.
The spatial model used in this paper may be easily general-

ized to a space-time model, Z(s, t) = T(s)′β(t)+S(s)′η(t)+
ε(s, t) ; s ∈ D , t ∈ T . This model is not only flexible enough
to capture the spatial and temporal variation of the hidden
process, but it also shares the computational advantages of the
spatial model. In future work, we shall also consider basis
functions from spherical wavelets, in order to work directly
on the globe.
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