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Abstract— Linguistic summaries as descriptions of trends in
time series data are proposed. We further extend our (cf.
Kacprzyk, Wilbik and Zadrożny [1], [2], [3], [4], [5]) previous
works in which we put forward a new approach to the linguistic
summarization of time series. In this paper we basically propose
a modification of our previous work on the use of the Sugeno
integral developed in [5] by employing a modified fuzzy measure
and its related modified Sugeno integral. This gives better results
in particular in the case of some more sophisticated and extended
types of summaries.

I. INTRODUCTION

Time series are a type of data that is omnipresent and
plays a key role in many applications, in virtually all areas
of science, economics and technology. A crucial importance
of this type of data and an acute need to find effective and
efficient methods for its handling has triggered much research
and a considerable progress has been made. Notably, statistical
methods have played in this respect a considerable role, and
recently other methods have been proposed exemplified by
those based on neural networks, some biologically inspired
paradigms, based on cognitive analysis, etc.

Unfortunately, most of those traditional and new approaches
may be viewed to be not human consistent enough in the
sense that they do not intend to bridge the essential gap
between the human being and the computer. Namely, for the
human being the only fully natural means of articulation of
some assessments, intentions, etc. is natural language which
is strange to the “machine” as algorithm and techniques that
are traditionally employed handle numbers and present results
in numbers.

This paper is a further step in a new direction to the analysis
of time series data that has been proposed in a series of our
previous papers (Kacprzyk, Wilbik and Zadrożny [1], [3], [2],
[4], [5]). In these papers a new approach to the capturing of
the very essence of time series data has been proposed whose
essence is the use of natural language descriptions (statements)
to describe in a human consistent way how trends in time
series data evolve over time, how long some types of behavior
last, how rapid changes are, etc.
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Basically, in all those works we use the idea of Yager’s
linguistic data summaries proposed in Yager [6], and then
advanced in Kacprzyk and Yager [7], and Kacprzyk, Yager
and Zadrożny [8]. In its basic version this approach uses
Zadeh’s [9] fuzzy logic based calculus of linguistically quan-
tified propositions.

In our context of time series those Yager type summaries
can be exemplified by “most trends are short”, “most of long
trends are slowly increasing” , etc. To derive such linguistic
summaries of trends that can help capture what really happens
in the time series data under consideration, we proposed first
to use Zadeh’s classic calculus of linguistically quantified
propositions (cf. Kacprzyk, Wilbik and Zadrożny [1]). As a
further step, first, new types of linguistic summaries of trends
were proposed in Kacprzyk, Wilbik and Zadrożny [2]. Finally,
the use of the Sugeno integral was proposed in Kacprzyk,
Wilbik and Zadrożny [5].

Some practical calculations using those methods proposed
have indicated that some difficulties can occur, notably while
using the Sugeno integral for some more sophisticated ex-
tended types of linguistic summaries. This was related to prob-
lems with the monotonicity of the fuzzy measure employed in
the Sugeno integral.

In this paper, while following our previous approach in
which the Sugeno integtral has been employed (cf. Kacprzyk,
Wilbik and Zadrożny [5]), we put forward its modification by
employing a modified fuzzy measure and its related modified
Sugeno integral. This gives better results in particular in
the case of some more sophisticated and extended types of
summaries. we propose some modification of the definition
of a fuzzy measure for those extended types of linguistic
summaries of trends. This modification implies a new version
of the formula for the calculation of the Sugeno integral.

The paper is organized as follows. First we describe the
way the trends are extracted from time series and characterized
using a set of attributes. Then we briefly remind the basic idea
of the original Yager’s approach to linguistic data summariza-
tion and discuss how it may be used to summarize trends.
In the next section we show how these summaries might be
interpreted using the concept of a newly defined fuzzy measure
and the Sugeno integral. Finally we present some examples of
linguistic summaries of a data set.

II. TEMPORAL DATA AND TREND ANALYSIS

We deal with numerical data that vary over time, and a time
series is a sequence of data measured at uniformly spaced
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time moments. We will identify trends as linearly increasing,
stable or decreasing functions, and therefore represent given
time series data as piecewise linear functions. Evidently, the
intensity of an increase and decrease (slope) will matter, too.
These are clearly partial trends as a global trend in a time series
concerns the entire time span of the time series, and there
also may be trends that concern parts of the entire time span,
but more than a particular window taken into account while
extracting partial trends by using the Sklansky and Gonzalez
algorithm.

In particular, we use the concept of a uniform partially
linear approximation of a time series. Function f is a uni-
form ε-approximation of a time series or a set of points
{(xi, yi)}i=1,...,n if for a given, context dependent ε > 0,
there holds

∀i : |f(xi) − yi| ≤ ε (1)

We use a modification of the well known Sklansky and
Gonzalez [10] effective and efficient algorithm that finds a
linear uniform ε-approximation for subsets of points of a
time series. The algorithm constructs the intersection of cones
starting from point pi of the time series and including the
circle of radius ε around the subsequent data points pi+j ,
j = 1, 2, . . . , until the intersection of all cones starting at pi is
empty. If for pi+k the intersection is empty, then we construct
a new cone starting at pi+k−1. Figures 1 and 2 present the idea
of the algorithm. The family of possible solutions is indicated
as a gray area. Clearly other algorithms can also be used, and
there is a lot of them in the literature.

y

x

β1 γ1 β2 γ2p0

•
p1•

•p2

Fig. 1. An illustration of the algorithm for the uniform ε-approximation –
the intersection of the cones is indicated by the dark grey area

To present details of the algorithm, let us first introduce the
following notation:

• p_0 – a point starting the current cone,
• p_1 – the last point checked in the current cone,
• p_2 – the next point to be checked,
• Alpha_01 – a pair of angles (γ1, β1), meant as an

interval, defining the current cone as shown in Fig. 1,
• Alpha_02 – a pair of angles defining the cone starting

at the point p_0 and inscribing the circle of radius ε
around the point p_2 (cf. (γ2, β2) in Fig. 1),

y

x

p0

•
•

•p2

•

Fig. 2. An illustration of the algorithm for the uniform ε-approximation –
a new cone starts in point p2

• function read_point() reads a next point of data
series,

• function find() finds a pair of angles of the cone
starting at the point p_0 and inscribing the circle of
radius ε around the point p_2.

The pseudocode of the procedure that extracts the trends is
depicted in Fig. 3.

read_point(p_0);
read_point(p_1);
while(1)
{
p_2=p_1;
Alpha_02=find();
Alpha_01=Alpha_02;
do
{

Alpha_01 = Alpha_01 ∩ Alpha_02;

p_1=p_2;
read_point(p_2);
Alpha_02=find();

} while(Alpha_01 ∩ Alpha_02 �= ∅);
save_found_trend();
p_0=p_1;
p_1=p_2;

}

Fig. 3. Pseudocode of the modified Sklansky and Gonzalez [10] procedure
for extracting trends

The bounding values of Alpha_02 (γ2, β2), computed by
function find() correspond to the slopes of two lines such
that:

• are tangent to the circle of radius ε around point p2 =
(x2, y2)

• start at the point p0 = (x0, y0)
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Thus

γ2 = arctg


∆x · ∆y − ε

√
(∆x)2 + (∆y)2 − ε2

(∆x)2 − ε2




and

β2 = arctg


∆x · ∆y + ε

√
(∆x)2 + (∆y)2 − ε2

(∆x)2 − ε2




where ∆x = x0 − x2 and ∆y = y0 − y2.
The resulting ε-approximation of a group of points p_0,

. . . ,p_1 is either a single segment, chosen as, e.g. a bisector,
or one that minimizes the distance (e.g. assumed as sum of
squared errors, SSE) from the approximated points, or the
whole family of possible solutions, i.e., the rays of the cone.

This method is effective and efficient as it requires only a
single pass through the data. Now we will identify (partial)
trends with the line segments of the constructed piecewise
linear function.

III. DYNAMIC CHARACTERISTICS OF TRENDS

In our approach, while summarizing trends in time series
data, we consider the following three aspects:

• dynamics of change,
• duration, and
• variability,

and it should be noted that by trends we mean here global
trends, concerning the entire time series (or some, probably
large, part of it), not partial trends concerning a small time
span (window) taken into account in the (partial) trend extrac-
tion phase via the Sklansky and Gonzales [10] algorithm.

In what follows we will briefly discuss these factors.

A. Dynamics of change

Under the term dynamics of change we understand the
speed of changes. It can be described by the slope of a line
representing the trend, (cf. any angle η from the interval 〈γ, β〉
in Fig. 1). Thus, to quantify dynamics of change we may
use the interval of possible angles η ∈ 〈−90; 90〉 or their
trigonometrical transformation.

However it might be impractical to use such a scale
directly while describing trends. Therefore we may use a
fuzzy granulation in order to meet the users’ needs and task
specificity. The user may construct a scale of linguistic terms
corresponding to various directions of a trend line as, e.g.:

• quickly decreasing,
• decreasing,
• slowly decreasing,
• constant,
• slowly increasing,
• increasing,
• quickly increasing
Figure 4 illustrates the lines corresponding to the particular

linguistic terms.
In fact, each term represents a fuzzy granule of directions. In

Batyrshin et al. [11], [12] there are presented many methods of

constant

quickly
increasing

quickly
decreasing

increasing

decreasing

slowly

increasing

slowly

decreasing

Fig. 4. A visual representation of angle granules defining the dynamics of
change

constructing such a fuzzy granulation. The user may define a
membership functions of particular linguistic terms depending
on his or her needs.

We map a single value α (or the whole interval of angles
corresponding to the gray area in Fig. 2) characterizing the
dynamics of change of a trend identified using the algorithm
shown as a pseudocode in Fig. 3 into a fuzzy set (linguistic
label) best matching a given angle. We can use, for instance,
some measure of a distance or similarity, cf. the book by
Cross and Sudkamp [13]. Then we say that a given trend is,
e.g., “decreasing to a degree 0.8”, if µdecreasing(α) = 0.8,
where µdecreasing is the membership function of a fuzzy set
representing “decreasing” that is a best match for angle α.

B. Duration

Duration describes the length of a single trend, meant as a
linguistic variable and exemplified by a “long trend” defined as
a fuzzy set whose membership function might be as in Fig. 5
where OX is the time axis divided into appropriate units.

µ(t)

1

t

Fig. 5. Example of membership function describing the term “long”
concerning the trend duration

The definitions of linguistic terms describing the duration
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depend clearly on the perspective or purpose assumed by the
user.

C. Variability

Variability refers to how “spread out” (“vertically”, in the
sense of values taken on) a group of data is. The following five
statistical measures of variability are widely used in traditional
analyses:

• The range (maximum - minimum). Although the range
is computationally the easiest measure of variability, it is
not widely used, as it is based on only two data points that
are extreme. This make it very vulnerable to outliers and
therefore may not adequately describe the true variability.

• The interquartile range (IQR) calculated as the third
quartile (the third quartile is the 75th percentile) minus
the first quartile (the first quartile is the 25th percentile)
that may be interpreted as representing the middle 50% of
the data. It is resistant to outliers and is computationally
as easy as the range.

• The variance is calculated as
∑

i(xi−x̄)2

n , where x̄ is the
mean value.

• The standard deviation – a square root of the variance.
Both the variance and the standard deviation are affected
by extreme values.

• The mean absolute deviation (MAD), calculated as∑
i |xi−x̄|

n . It is not frequently encountered in mathemat-
ical statistics. This is essentially because while the mean
deviation has a natural intuitive definition as the “mean
deviation from the mean” but the introduction of the
absolute value makes analytical calculations using this
statistic much more complicated.

We propose to measure the variability of a trend as the
distance of the data points covered by this trend from a linear
uniform ε-approximation (cf. Section II) that represents a
given trend. For this purpose we propose to employ a distance
between a point and a family of possible solutions, indicated as
a gray cone in Fig. 1. Equation (1) assures that the distance is
definitely smaller than ε. We may use this information for the
normalization. The normalized distance equals 0 if the point
lays in the gray area. In the opposite case it is equal to the
distance to the nearest point belonging to the cone, divided by
ε. Alternatively, we may bisect the cone and then compute the
distance between the point and this ray.

Similarly as in the case of dynamics of change, we find for
a given value of variability obtained as above a best matching
fuzzy set (linguistic label) using, e.g., some measure of a
distance or similarity, cf. the book by Cross and Sudkamp [13].
Again the measure of variability is treated as a linguistic
variable and expressed using linguistic terms (labels) modeled
by fuzzy sets defined by the user.

IV. LINGUISTIC DATA SUMMARIES

A linguistic summary is meant as a (usually short) natural
language like sentence (or some sentences) that subsumes the
very essence of a set of data (cf. Kacprzyk and Zadrożny [14],
[15]). This data set is numeric and usually large, not com-
prehensible in its original form by the human being. In

Yager’s approach (cf. Yager [6], Kacprzyk and Yager [7], and
Kacprzyk, Yager and Zadrożny [8]) the following perspective
for linguistic data summaries is assumed:

• Y = {y1, . . . , yn} is a set of objects (records) in a
database, e.g., the set of workers;

• A = {A1, . . . , Am} is a set of attributes characterizing
objects from Y , e.g., salary, age, etc. in a database of
workers, and Aj(yi) denotes a value of attribute Aj for
object yi.

A linguistic summary of a data set consists of:

• a summarizer P , i.e. an attribute together with a linguistic
value (fuzzy predicate) defined on the domain of attribute
Aj (e.g. “low salary” for attribute “salary”);

• a quantity in agreement Q, i.e. a linguistic quantifier (e.g.
most);

• truth (validity) T of the summary, i.e. a number from the
interval [0, 1] assessing the truth (validity) of the summary
(e.g. 0.7); usually, only summaries with a high value of
T are interesting;

• optionally, a qualifier R, i.e. another attribute together
with a linguistic value (fuzzy predicate) defined on the
domain of attribute Ak determining a (fuzzy subset) of
Y (e.g. ”young” for attribute ”age”).

Thus, a linguistic summary may be exemplified by

T (most of employees earn low salary) = 0.7 (2)

or, in a richer (extended) form, including a qualifier (e.g.
young), by

T (most of young employees earn low salary) = 0.9 (3)

Thus, basically, the core of a linguistic summary is a
linguistically quantified proposition in the sense of Zadeh [9]
which, for (2), may be written as

Qy’s are P (4)

and for (3), may be written as

QRy’s are P (5)

Then, T , i.e., the truth (validity) of a linguistic summary,
directly corresponds to the truth value of (4) or (5). This
may be calculated by using either original Zadeh’s calculus
of linguistically quantified propositions (cf. [9]), or other
interpretations of linguistic quantifiers.

The truth values (from [0, 1]) of (4) and (5) are calculated,
respectively, as

T (Qy’s are P ) = µQ

(
1
n

n∑
i=1

µP (yi)

)
(6)

T (QRy’s are P ) = µQ

(∑n
i=1(µR(yi) ∧ µP (yi))∑n

i=1 µR(yi)

)
(7)

where Q is a fuzzy set representing the linguistic quantifier in
the sense of Zadeh [9].
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V. PROTOFORMS OF LINGUISTIC TREND SUMMARIES

It was shown by Kacprzyk and Zadrożny [14] that
Zadeh’s [16] concept of the protoform is convenient for deal-
ing with linguistic summaries. This approach is also employed
here.

Basically, a protoform is defined as a more or less abstract
prototype (template) of a linguistically quantified proposition.
Then, the summaries mentioned above might be represented
by two types of the protoforms:

• Summaries based on frequency:
– a protoform of a short form of linguistic summaries:

Q trends are P (8)

and exemplified by:

Most of trends have a large variability

– a protoform of an extended form of linguistic sum-
maries:

QR trends are P (9)

and exemplified by:

Most of slowly decreasing trends have a large
variability

• Duration based summaries:
– a protoform of a short form of linguistic summaries:

The trends that took Q time are P (10)

and exemplified by:

The trends that took most time have a large
variability

– a protoform of an extended form of linguistic sum-
maries:

R trends that took Q time are P (11)

and exemplified by:

Slowly decreasing trends that took most time
have a large variability

By the very essence of our approach, we need to perform
a linguistic quantifier driven aggregation.

The truth degrees T of the frequency based summaries
(8)–(9) can be directly computed using Zadeh’s calculus of
linguistically quantified propositions, in particular the formulas
(6) and (7) are of use. To be more specific, the truth values
(from [0, 1]) of (8) and (9) are calculated, respectively, as

T (Qy’s are P ) = µQ

(
1
n

n∑
i=1

µP (yi)

)
(12)

and

T (QRy’s are P ) = µQ

(∑n
i=1(µR(yi) ∧ µP (yi))∑n

i=1 µR(yi)

)
(13)

where, here and later on, we assume, for obvious reasons, that
the respective denominators are not equal to zero. Otherwise
we need to resort to slightly modlified formulas, but this will
not be considered in this paper.

The calculation of the truth values of duration based sum-
maries is more complicated and requires a different approach.
In the case of a summary “the trends that took Q time are
P ” we should calculate the time that is taken by “trend is P ”.
It is obvious then when “trend is P ” to degree 1, then we
can use the whole time taken by this trend. However, what
to do if “trend is P ” is to some degree (less than 1)? We
propose to only take a part of the time defined by the degree
to which “trend is P ”. In other words, we calculate this time
as µ(yi)tyi

, where tyi
is the duration of trend yi. The value

obtained (the duration of such trends that “trend is P ”) is then
normalized by dividing it by the overall time T . Finally, we
may calculate to which degree the time taken by such trends
that “trend is P ” is Q.

We proceed in a similar way in case of the extended form of
linguistic summaries. Thus, we obtain the following formulas:

• for the short form of the duration based summaries (10):

T (y that took Q time are P ) =

= µQ

(
1
T

n∑
i=1

µP (yi)tyi

)
(14)

where T is the total time of the summarized trends and
tyi

is the duration of the ith trend;
• for the extended form of the duration based summaries

(11):

T (Ry that took Q time are P ) =

= µQ

(∑n
i=1(µR(yi) ∧ µP (yi))tyi∑n

i=1 µR(yi)tyi

)
(15)

where tyi
is the duration of the ith trend.

One can notice that the procedure outlined above implies
simple, highly intuitively appealing formulas in the case of
the frequency based summaries while more complicated, yet
not intuitively appealing formulas in the case of the duration
based summaries. We will show in this paper that by using a
modication of the Sugeno integral based aggregation uniform,
intuitively appealing formulas can be obtained in both cases.

VI. LINGUISTIC SUMMARY INTERPRETATION VIA THE

SUGENO INTEGRAL

As mentioned in the previous section, the use of Zadeh’s
calculus of linguistically quantified propositions is well justi-
fied in the case of the frequency based summaries while may
lead to some questionable results in the case of the duration
based summaries. A Sugeno integral based aggregation may
help as proposed by Kacprzyk, Wilbik and Zadrożny [5]; this
will be outlined below.

Let us start with a brief recall of the basics of the Sugeno
integral. Let X = {x1, . . . , xn} be a finite set. Then, (cf., e.g.,
[17]) a fuzzy measure on X is a set function µ : P(X) −→
[0,1] such that:

µ(∅) = 0, µ(X) = 1
if A ⊆ B then µ(A) ≤ µ(B), ∀A,B ∈ P(X) (16)
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where P(X) denotes a set of all subsets of X .
Let µ is a fuzzy measure on X . The discrete Sugeno integral

of a function f : X −→ [0, 1], f(xi) = ai, with respect to µ
is a function Sµ : [0, 1]n −→ [0, 1] such that

Sµ(a1, . . . , an) = max
i=1,...,n

(aσ(i) ∧ µ(Bi)) (17)

where ∧ stands for the minimum, σ is such a permutation of
{1, . . . , n} that aσ(i) is the i-th smallest element from among
the ai’s and Bi = {xσ(i), . . . , xσ(n)}.

We can treat function f as a membership function of a fuzzy
set F ∈ F(X), where F(X) denotes a family of fuzzy sets
defined in X . Then the Sugeno integral can be equivalently
defined as a function Sµ : F(X) −→ [0, 1] such that

Sµ(F ) = max
αi∈{a1,...,an}

(αi ∧ µ(Fαi
)) (18)

where Fαi
is the α-cut of F and the meaning of other symbols

is as in (17).
The fuzzy measure and the Sugeno integral may be in-

tuitively interpreted in the context of multicriteria decision
making (MCDM) where we have a set of criteria and some
options (decisions) characterized by the degree of satisfaction
of particular criteria. In such a setting X is a set of criteria
and µ expresses the importance of each subset of criteria, i.e.,
how the satisfaction of a given subset of criteria contributes
to the overall evaluation of the option. Then the properties of
the fuzzy measure (16) properly require that the satisfaction
of all criteria makes an option fully satisfactory and that the
more criteria are satisfied by an option the better its overall
evaluation. Finally the set F represents an option and µF (x)
defines the degree to which it satisfies the criterion x. Then the
Sugeno integral may be interpreted as an aggregation operator
yielding an overall evaluation of option F in terms of its
satisfaction of the set of criteria X . In such a context the
formula (18) may interpreted as follows:

find a subset of criteria of the highest possible
importance (expressed by µ) such that at the same
time minimal satisfaction degree of all these criteria
by the option F is as high as possible (expressed
by α)
and take the minimum of these two degrees as the
overall evaluation of the option F .

(19)

Now we will explain how various linguistic summaries
discussed in the previous section may be interpreted using
the Sugeno integral. The linguistic quantifier Q is still defined
as in Zadeh’s calculus as a fuzzy set in [0,1], exemplified
by (22). We will assume that Q is a regular monotone and
nondecreasing quantifier:

µ(0) = 0, µ(1) = 1 (20)

x1 ≤ x2 ⇒ µQ(x1) ≤ µQ(x2) (21)

exemplified by

µQ(x) =




1 for x> 0.8
2x − 0.6 for 0.3 < x < 0.8
0 for x< 0.3

(22)

The truth value of particular summaries is calculated using
the Sugeno integral (18). For simple types of summaries we
are in a position to provide the interpretation similar to this
given above for the MCDM. For this purpose we will identify
the set of criteria X with a set of trends while an option F will
be the whole time series under consideration characterized in
terms of how well its trends satisfy P .

Unfortunately, a direct application of the line of reasoning
shown above may lead sometimes to problems with the
monotonicity of the measure used, in particular in the case
of an extended form of a summary. That is why we propose
in this paper some modifications to the definition of a fuzzy
measure to overcome these possible difficulties.

a) Simple frequency based summaries defined by (8):
The truth value of this type of a summary may be expressed
as:

T (Q trends are P ) = max
α∈{a1,...,an}

(
α ∧ µQ

(
|Pα|
|X |

))
(23)

Thus, referring to (19), the truth value is determined by
looking for a subset of trends of high enough a cardinality
as required by the semantics of the quantifier Q and such that
all these trends “are P ” to the highest possible degree.

b) Extended frequency based summaries defined by (9):
For the simple form of summaries the formula is not com-
plicated. However it is more difficult to find a proper fuzzy
measure for an extended type of summaries, where we need
to limit our universe of discourse to trends that “are R”.

The truth value of this type of a summary may be expressed
as:

T (QR trends are P ) =

= max
β∈{b1,...,bk}

( max
α∈{a1,...,an}

(α ∧ µQ

(
| (P ∩ Rβ)α |

| Rβ |

)
))

(24)

First we have to specify our “universe (of discourse)”, a
subset of such trends that all “are R”. Then, referring to
(19), for each such a “universe” we calculate the truth value,
determined by looking for a subset of trends of high enough
a cardinality as required by the semantics of quantifier Q in
comparison to the ”universe” and such that all these trends
“are P and R” to the highest possible degree. As the final
result we take the maximum value of all truth values obtained
for each “universe”.

c) Simple duration based summaries defined with (10):
The truth value of this type of a summary may be expressed
as:

T (Trends that took Q time are P ) =

= max
α∈{a1,...,an}

(
α ∧ µQ

(∑
i:xi∈Pα

time(xi)∑
i:xi∈X time(xi)

))
(25)

Thus, referring to (19) the truth value is determined by looking
for a subset of trends such that their total duration with respect
to the duration of the whole time series is long enough as
required by the semantics of the quantifier Q and such that all
these trends “are P” to the highest possible degree.
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d) Extended duration based summaries defined with (11):
The truth value of this type of a summary may be expressed
as:

T (R trends that took Q time are P ) =

= max
β∈{b1,...,bk}

(
max

α∈{a1,...,an}
(α ∧

∧ µQ

(∑
i:xi∈(P∩Rβ)α

time(xi)∑
i:xi∈Rβ

time(xi)

)))
(26)

Due to the properties (20)–(21) of the quantifiers employed
it is obvious that all µ’s defined above for particular types of
summaries satisfy the axioms (16) of the fuzzy measure.

VII. EXAMPLE

Let us assume that from some given data we have extracted
trends listed in Table I, e.g. using the algorithm shown in
Fig. 3. We assume the granulation of dynamics of change
presented in Section III-A.

TABLE I

TRENDS EXTRACTED

dynamics of change duration variability
id (α in degrees) (time units) ([0,1])
1 25 15 0.2
2 -45 1 0.3
3 75 2 0.8
4 -40 1 0.1
5 -55 1 0.7
6 50 2 0.3
7 -52 1 0.5
8 -37 2 0.9
9 15 5 0.0

We can consider the following simple frequency based
summary:

Most of trends are decreasing (27)

In this summary most is the linguistic quantifier Q. The
membership function is as in (22).

“Trends are decreasing” is a summarizer P with the mem-
bership function of the “decreasing” term given as in (28).
Let us recall, that for brevity we identify summarizers and
qualifiers with the linguistic terms they contain.

µP (α) =




0 for α ≤ −65
0.066α + 4.333 for − 65 < α < −50
1 for − 50 ≤ α ≤ −40
−0.05α − 1 for − 40 < α < −20
0 for α ≥ −20

(28)
n is the number of all trends, i.e., in this example n =

|X|=9.
The truth value of (27) is computed according to (18) and

(23) that yields:

T (Most of the trends are decreasing) =

= max
αi∈{a1,...,an}

(
αi ∧ µQ

(
|Pα|
|X |

))
= 0.511

If the truth value is computed according to the (12) we
obtain:

T (Most of the trends are decreasing) =

= µQ

(
1
n

n∑
i=1

µP (yi)

)
= 0.601

If we assume the extended form, we may have the following
summary:

Most of short trends are decreasing (29)

Again, most is the linguistic quantifier Q with its mem-
bership function given as (22). “Trends are decreasing” is a
summarizer P as in the previous example. “Trend is short” is
the qualifier R. We define the membership function µR(t) as
follows:

µR(t) =




1 for t ≤ 1
− 1

2 t + 3
2 for 1 < t < 3

0 for t ≥ 3
(30)

The truth value of (29) is computed using the formula (18)
and (24):

T (Most of short trends are decreasing) =

= max
β∈{b1,...,bk}

(
max

α∈{a1,...,an}

(
α ∧ µQ

(
|(P ∩ Rβ)α|

|Rβ |

)))
= 0.54

If the truth value is computed according to the (13) we
obtain:

T (Most of short trends are decreasing) =

= µQ

(∑n
i=1(µR(yi) ∧ µP (yi))∑n

i=1 µR(yi)

)
= 0, 822

On the other hand, we may have the following simple
duration based linguistic summary:

Trends that took most time are slowly increasing (31)

“Trends are slowly increasing” is the summarizer P with the
membership function µP (α) defined as follows:

µP (α) =




0 for α ≤ 5
0.1α − 0.5 for 5 < α < 15
1 for 15 ≤ α ≤ 20
−0.05α + 2 for 20 < α < 40
0 for α ≥ 40

(32)

The linguistic quantifier most is defined as previously. The
truth value of (31) is computed via the formula (18) and (25)
and we obtain:

T (Trends that took most time are slowly increasing) =

= max
αi∈{a1,...,an}

(
αi ∧ µQ

( ∑
xi∈Pα

time(xi)∑
i:xi∈X time(xi)

))

= 0.733
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If the truth value is computed according to the (14) we
obtain:

T (Trends that took most time are slowly increasing) =

= µQ

(
1
T

n∑
i=1

µP (yi)tyi

)
= 0, 733

Finally, we may consider an extended form of duration
based summaries, here exemplified by:

Trends with a low variability that took most of

the time are slowly increasing (33)

Again, most is the linguistic quantifier and “trends are slowly
increasing” is summarizer P , with a membership function
defined as in the previous example. “Trends have a low
variability” is the qualifier R. The membership function µR(v)
is given as follows:

µR(v) =




1 for v ≤ 0.2
−5v + 2 for 0.2 < v < 0.4
0 for v ≥ 0.4

(34)

The truth value of (33) is computed according to the formula
(18) and (26) and we obtain:

T (Trends with low variability that took most of

the time are slowly increasing) =

= max
β∈{b1,...,bk}

(
max

α∈{a1,...,an}

(
α ∧

∧ µQ

(∑
i:xi∈(P∩Rβ)α

time(xi)∑
i:xi∈Rβ

time(xi)

)))

= 0.75

If the truth value is computed according to the (15) we
obtain:

T (Trends with low variability that took most of

the time are slowly increasing) =

= µQ

(∑n
i=1(µR(yi) ∧ µP (yi))tyi∑n

i=1 µR(yi)tyi

)
= 1

VIII. CONCLUDING REMARKS

We have proposed a further extension of our previous
works (cf. Kacprzyk, Wilbik and Zadrożny [1], [2], [3], [4],
[5]) in which we proposed a new approach to the linguistic
summarization of time series. In this paper we have taken as a
point of departure our recent work in this direction [5] in which
a Sugeno integral based aggregation has been employed, and
have extended it by employing a modified fuzzy measure and
its related modified Sugeno integral. This gives better results in
particular in the case of some more sophisticated and extended
types of summaries.
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