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Abstract— We present a method for performing mode clas-
sification of real-time streams of GPS surface position data.
Our approach has two parts: an algorithm for robust, uncon-
strained fitting of hidden Markov models (HMMs) to continuous-
valued time series, and SensorGrid technology that manages
data streams through a series of filters coupled with a pub-
lish/subscribe messaging system. The SensorGrid framework
enables strong connections between data sources, the HMM time
series analysis software, and users. We demonstrate our approach
through a web portal environment through which users can
easily access data from the SCIGN and SOPAC GPS networks in
Southern California, apply the analysis method, and view results.
Ongoing real-time mode classifications of streaming GPS data are
displayed in a map-based visualization interface.

I. INTRODUCTION

GPS measurements of crustal displacement are used in
scientific investigation into the nature of earthquake fault
behavior and the earthquake cycle. In order to detect pre- or
post-seismic stress changes on or around earthquake faults,
we wish to perform mode segmentation of GPS time series,
as time series segmentation enables identification of subtle
signals and mode transitions. This is useful for both interactive
data exploration and automated detection schemes that operate
on incoming data.

Our data is drawn from the Southern California Integrated
GPS Network (SCIGN) [1] and Scripps Orbit and Permanent
Array Center (SOPAC) [2] sensor networks; we use both the
real-time (1Hz for most stations) three-dimensional position
information [3], [4] and the daily averaged solutions. The
observed GPS measurements are generated by an underlying
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system that is both noisy and poorly understood; the driving
forces on the system derive not only from the physical
processes of the solid earth but also from external factors,
including atmospheric effects and human activity.

Fitting a hidden Markov model (HMM) to time series allows
us to describe the statistics of the data in a simple way that
ascribes discrete modes of behavior to the system. By match-
ing incoming data against the statistics of previously learned
modes, we can perform classification according to the best
match. In addition, it is possible to perform signal detection
across the entire sensor web by detecting simultaneous mode
changes; a significant number of mode changes across the
network or within a certain sub-network is an indication of
an event that is occurring over a wide geographical area.

For many applications, reliable HMM fitting results are
achieved by using a priori information to encode constraints
that reduce the number of free parameters [5]–[11]. For GPS
data, however, this information is not available as the under-
lying geophysical system is not well understood. As a result,
we used the regularized deterministic annealing expectation-
maximization (RDAEM) algorithm [12] to perform the fit.
This method constructs high-quality, self-consistent model
fits without using a priori information (although it does not
exclude the use of such information where available), at the
cost of some additional computation time.

To link this HMM technology to both the GPS data streams
and users, we used the SensorGrid architecture. This provides
a service-oriented approach for coupling real-time sensor
messages with scientific applications in a Grid environment.
Real-time data processing is supported by employing filters
around a publish/subscribe messaging system.

We begin in Section II with a description of the RDAEM
algorithm for fitting hidden Markov models (HMMs) and
provide an example of its benefits as compared to standard
methods on a sample GPS data set. We follow in Section III
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with a description of the SensorGrid architecture and how it is
used to link the HMM software to data and users. In Section
IV we show the results of the method as applied to real-time
GPS streams and our map-based visualization interface, and
in Section V we describe how the method can be applied to
detect signals across an entire GPS network.

II. FITTING HIDDEN MARKOV MODELS

We start our description of the RDAEM algorithm for fitting
HMMs by establishing some notation: a hidden Markov model
λ with N states is composed of a vector of initial state
probabilities π = (π1, . . . , πN ), a matrix of state-to-state
transition probabilities A = (a11, . . . , aij , . . . , aNN ), and the
observable output probability distributions B = (b1, . . . , bN ).
The observable outputs can be either discrete or continuous.
Here we are concerned with continuous valued outputs with
probability distributions denoted by bi(y, θi) where y is the
real-valued observable output (scalar or vector) and the θis are
the parameters describing the output probability distribution.
For the normal distribution we have bi(y, µi,Σi). An obser-
vation sequence O of length T is denoted O1O2 · · ·OT and a
state sequence Q of the model is denoted q1q2 · · · qT .

A. Deterministic Annealing

Deterministic annealing is a technique based on statistical
mechanics, used to mitigate the inherent sensitivity to initial
conditions of the standard expectation-maximization (EM)
method. It does this by using the principle of maximum
entropy to specify an alternative posterior probability density
for the hidden variables, allowing us to define a new effective
cost function depending on a temperature parameter. This
new cost function is analogous to the thermodynamic free
energy. Maximization of the likelihood of the HMM at a given
temperature is achieved via minimization of this cost func-
tion. Deterministic annealing attempts to avoid the standard
problems associated with simulated annealing [13], such as
relaxation from initial conditions and false local minima in
the free energy, through deterministic optimization of the cost
function at each temperature. In theory, it provides similarly
global solutions with less variance, while reducing average
computational cost.

Application of the deterministic annealing method to HMM
optimization was proposed both by Rose and Rao [14] and
by Granat and Donnellan [15]. Our deterministic annealing
approach is similar to that used by Rose and Rao but differs
in two important respects. First, since we address problems
in which labeled training data is not available, it is not a
supervised training method, and thus optimizes the likelihood
rather than the minimum classification error. Second, it em-
ploys EM rather than gradient descent at each temperature.
Our method is described in full in [12] but can be summarized
as follows: at each computational temperature we follow an
EM-like procedure to minimize the free energy, on the kth

iteration of which we optimize over the function

U(γ, λ|λ(k)) =
N∑

i=1

τ
(k)
i1 (γ) log πi

+
N∑

i=1

N∑
j=1

T−1∑
t=1

τ
(k)
ijt (γ) log aij

+
N∑

i=1

T∑
t=1

τ
(k)
it (γ) log bi(Ot), (1)

where 1/γ is the computational temperature and

τit(γ) =
αt(i, γ)βt(i, γ)∑N
i=1 αt(i, γ)βt(i, γ)

, (2)

and

τijt(γ) =
αt(i, γ)aγ

ijb
γ
j (Ot+1)βt+1(j, γ)∑N

i=1

∑N
j=1 αt(i, γ)aγ

ijb
γ
j (Ot+1)βt+1(j, γ)

. (3)

The modified forward and backward variables α(γ) and β(γ)
are calculated by a modification of the standard iteratitive
procedure:

1) Initialization:

αt(i, γ) = πγ
i bγ

i (O1), i = 1, . . . , N. (4)
βT (i, γ) = 1, i = 1, . . . , N. (5)

2) Induction:

αt+1(j, γ) =

[
N∑

i=1

αt(i, γ)aγ
ij

]
bγ
j (Ot+1),

t = 1, . . . , T − 1,

j = 1, . . . , N. (6)

βt(i, γ) =
N∑

j=1

aγ
ijb

γ
j (Ot+1)βt+1(j, γ),

t = T − 1, . . . , 1,

i = 1, . . . , N. (7)

B. Regularized Deterministic Annealing

Previous approaches to regularizing the HMM optimization
process have been based on the use of statistical priors to
modify the HMM objective function. These priors manifest
themselves in the calculations as regularization terms added to
the so-called Q-function maximized during the M-step of the
EM algorithm. Examples of such include Dirichlet-type priors
used to prevent overtraining of discrete output distributions on
limited data sets [16] and maximum entropy priors used for
pruning the HMM structure [17]. In addition, statistical priors
have been used more generally to provide upper bounds on the
objective function of models with continuous output distribu-
tions. For instance, the conjugate prior for Gaussian output
distributions described by Ormoneit and Tresp [18] wards
against solutions with infinitely narrow Gaussian outputs.

The regularized DAEM method is designed to discourage
HMM local optima characterized by component states with
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identical or nearly identical forms. Our experimental obser-
vation that local maxima solutions of this type are produced
quite frequently by the DAEM method is in agreement with
previous investigations into Naive Bayes networks [19].

Recall that for an HMM, the Q-function is

Q(λ, λ(k)) =
N∑

i=1

τ
(k)
i1 log πi

+
N∑

i=1

N∑
j=1

T−1∑
t=1

τ
(k)
ijt log aij

+
N∑

i=1

T∑
t=1

τ
(k)
it log bi(Ot).

Since this is separable in π, A, and B, we can divide it
into the sum of three functions: Q1(π), Q2(A), and Q3(B).
Although other priors are possible [12], for conceptual and
computational simplicity we chose to use an improper prior on
the HMM likelihood, based on the squared Euclidean distance
between the means of the state output distributions:

P3(B) =
N∏

i=1

N∏
j=1

exp
(ωQ3

2
(µi − µj)T (µi − µj)

)
, (8)

where ωQ3 > 0 is a weighting term. This prior rewards
solutions with widely spaced output distributions. From it we
derive the modified Q-function with

Q′
3 =

N∑
i=1

T∑
t=1

τ
(k)
it

(
log n − 1

2
log det(Σi)

− 1
2
(mi − µi)T Σ−1

i (mi − µi)

− 1
2
(Ot −mi)T Σ−1

i (Ot −mi)

+
ωQ3

2

N∑
j=1

(µi − µj)T (µi − µj)
)

(9)

where mi =
∑T

t=1 τ
(k)
it Ot/

∑T
t=1 τ

(k)
it . Note that for the

ease of subsequent manipulation and computation, we do
not properly account for the independence of the prior from
the hidden state variable. In theory, systems with highly
skewed populations of observations from each of the output
distributions may be misrepresented in this regularization
scheme. In practice, we have observed no evidence of any
serious consequence; nevertheless we keep in mind that the
regularized Q-function (9) is only an approximation.

To derive the revised EM update rule we first take the vector
derivative of Q′

3 in the means:

∂Q′
3

∂µT
i

= Σ−1
i (mi − µi)− ωQ3

N∑
j=1

µj + NωQ3µi. (10)

Setting the derivative to zero we have

Σ−1
i mi + (NωQ3I − Σ−1

i )µi = ωQ3

N∑
j=1

µj , (11)

for i = 1, . . . , N , which leads us to the system of equations
 Σ−1

1

. . .
Σ−1

N


+ωQ3

 ID×D · · · ID×D

...
. . .

...
ID×D · · · ID×D


 U

−NωQ3U = Σ−1
1

. . .
Σ−1

N

M, (12)

where M = [m1; · · · ;mN ], U = [µ1; · · · ;µN ], and ID×D is
a D × D identity matrix. This system can be solved by any
standard linear method given the inverse covariances Σ−1

i .
We evaluate the conditions on the weighting term ωQ3 under

which this solution is the global maximum by calculating the
Hessian:

∂2Q′
3

∂µT
i ∂µj

=

{
ωQ3(N − 1)I − Σ−1

i if i = j

−ωQ3 otherwise
(13)

If the Q-function is concave, then the Hessian H is negative
definite, and so for all nonzero column vectors x composed
of stacked N × 1 vectors xi,

xT Hx < 0
N∑

i=1

xT
i

(
NωQ3I − Σ−1

i

)
xi − ωQ3

N∑
i=1

xT
i

N∑
j=1

xj < 0

2NωQ3

N∑
i=1

xT
i xi −

N∑
i=1

xT
i Σ−1

i xi ≤ 0

2NωQ3

N∑
i=1

xT
i xi −

N∑
i=1

xT
i xi||Σ−1

i || ≤ 0

ωQ3 ≤ ||Σ−1
i ||/2N. (14)

This gives us a condition on ωQ3 for the Q-function to have a
global maxima in the means. Since the means are unbounded,
the solution does not lie on a boundary and we can have
confidence in the validity of using a positive regularization
term for a maximization problem.

To find the maximum in the covariances, we take the
derivatives of (9) in the components of Σ−1

i and set them
equal to zero, which gives us

Σi =
T∑

t=1

τ
(k)
it (Ot − µi)(Ot − µi)T /

T∑
t=1

τ
(k)
it . (15)

This is a global maximum since the Q-function is concave
as a function of the covariances Σi. To find the means
and covariances we need to solve equations (12) and (15)
simultaneously. This can be done by using the approximation
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Σi = Si, where

Si =
T∑

t=1

τ
(k)
it (Ot −mi)(Ot −mi)T /

T∑
t=1

τ
(k)
it , (16)

in equation (12) as an initial guess and then iterating be-
tween equations (12) and (15) until the solution converges.
In practice, it is usually sufficient merely to approximate Σi

as Si when calculating the means without any attempt at
iterative convergence whatsoever. This iterative rather than
direct maximization forces us to characterize the method as
a generalized EM algorithm rather than a pure EM approach.

C. RDAEM Fitting Results

Although a full analysis of the performance of the RDAEM
algorithm is beyond the scope of this work, we provide a
brief example of the benefits of this approach over standard
methods. In this example, we test the following model-fitting
algorithms: (1) the baseline EM algorithm (em basic), (2)
basic EM wrapped inside a loop that runs the algorithm
ten times and then picks as the final solution the one with
the highest likelihood (em ntries), (3) the DAEM algo-
rithm with starting computational temperature γmin = 0
and annealing schedule γnew = γold + 0.01 (daem step),
(4) the DAEM algorithm with γmin = 0.1 and anneal-
ing schedule γnew = 1.1γold (daem geometric), (5) the
RDAEM algorithm with ωQ3 set to the maximum at each
iteration (rdaem), (6) the RDAEM algorithm with ωQ3 = 1
(rdaem small), (7) the RDAEM algorithm with ωQ3 set
to the maximum at each iteration, wrapped in an outer loop
as per em ntries (rdaem ntries), and (8) the RDAEM
algorithm algorithm with ωQ3 = 1, likewise wrapped in an
outer loop as per em ntries (rdaem ntries small).
Methods 5-8 used the same geometric annealing schedule as
in daem geometric. In all cases, an HMM with Gaussian
output distributions was used to analyze the data, and a
conjugate prior of the type described in [18] with weight factor
10−6 was used to bound the output distributions above. To
avoid unit and scale disparity effects, each dimension of the
input was shifted and normalized to lie between 0 to 1.

Figure 1 presents a summary of the results for an experiment
performed on approximately two years of daily GPS solutions
collected by a station in Claremont, California. On the left
are two graphs showing the mean log likelihood of the
solutions found by different methods, each averaged across
100 experimental trials; the results for the methods em basic
and em ntries are plotted in both upper and lower charts for
reference. On the right side are two graphs showing the num-
ber of different solutions found by the different methods, out
of 100 trials. We see that rdaem ntries small provides
the best performance overall, losing nothing in terms of log
likelihood to any other method while providing considerably
improved solution stability (fewer distinct solutions). Although
em ntries is a close match in log likelihood, the stability
advantage of rdaem ntries small over em ntries is
large, up to four times as much for some model sizes.

III. SENSORGRID

SensorGrid is our research project that aims to build the
distributed computing infrastructure (i.e. “Grid”) to support
real-time streaming data. SensorGrid is also the name for our
software, built using topic-based publish/subscribe and Web
Service concepts. The architecture is general but we describe
here its specific application to managing GPS data streams. In
particular, we focus on the integration of an implementation
of the RDAEM algorithm for real-time state change detection
in GPS signals.

This architecture consists of three major components in
addition to the actual sensor nodes: individual filters that
process the real-time data streams, information services that
provide the metadata about the filters or filter chains, and a
Grid messaging system, which provides supports in areas like
fault tolerance, notification, and recovery. The filters are run
in specific orders to achieve particular processing goals. This
corresponds to different workflow scenarios in different Grid
domains. Filters are exposed as Web Services to allow remote
composition of filter chains.

A. Streaming Message Support

In a real-time data Grid the top priority is to be able to
provide access and process the continuously streaming data.
Any kind of interruption in this process will result in data loss.
To prevent data loss or similar problems, the messages should
be reliably transferred between the services. Traditional Web
Services are implemented on top of the already existing Web
infrastructure, making them universally accessible. However,
HTTP is not appropriate for high-rate data flow requirements.
For instance, if we want to disseminate real-time messages
from GPS sensors that output measurements once per second,
the latency associated with HTTP would cause data loss, espe-
cially for long distances. This is also true for large scale data
transfers. Furthermore, since the sensors are always alive and
continuously produce data the reliability and fault-tolerance of
the messaging architecture is extremely important. Therefore, a
better messaging solution is required for connecting the filters
and the sources.

To address this problem, we employed the NaradaBrokering
[20], [21] distributed messaging infrastructure. NaradaBro-
kering provides two related capabilities. First, it provides a
message oriented middleware (MoM) which facilitates com-
munications between entities (including clients, resources, ser-
vices and proxies) through the exchange of messages. Second,
it provides a notification framework by efficiently routing
messages from the originators to only the registered consumers
of the message in question. More details on the capabilities
and advantages of NaradaBrokering can be found in [20].

B. Real-Time Data Grid Implementation for GPS Networks

The Scripps Orbit and Permanent Array Center (SOPAC)
provides continuous, publicly available position and error data
for stations in its GPS networks. Raw data from the GPS
stations are collected by a Common Link proxy (RTD server)
and archived in RINEX files. To receive station positions,
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Fig. 1. A summary of the results of various HMM fitting algorithms applied to daily GPS solutions from a station in Claremont, California.
Upper Left: Both annealing methods are superior to em basic in log likelihood terms, but fall slightly behind em ntries. Lower Left:
The RDAEM methods do poorly in log likelihood terms when ωQ3 is set to the maximum at each iteration, but equal or outperform their
respective vanilla EM equivalents when ωQ3 = 1 is used. Upper Right: The faster annealing schedule used by anneal geometric resulted
in less stable solutions than the slower one used by anneal step, but still matched em ntries. Lower Right: rdaem ntries small
outperforms all others in terms of solution stability by a wide margin, while rdaem small still provided better stability than em ntries
at significantly lower computational cost.

clients are expected to open a socket connection to the RTD
server. After the RTD server receives raw data from the
stations it applies filters and for each network generates a
message. This message contains a collection of instantaneous
position information for every individual station, along with
other information such as the quality of the measurements
and their variances. For each GPS network, the RTD server
broadcasts one position message per second through a port in
a binary format known as RYO.

We used NaradaBrokering to provide these RTD server
broadcasts as real-time streaming position information to client
applications. The core of the system is an assortment of
filter chains that convert or otherwise process the incoming
data streams. These filters serve as both subscribers (data
sinks) and publishers (data sources). A basic filter consists
of three parts: a NaradaBrokering subscriber, a publisher, and
a data processing unit. An abstract filter interface we devel-
oped provides subscriber and publisher capabilities. Typically
a filter subscribes to a specified NaradaBrokering topic to

receive streaming messages, processes the received data, and
publishes the results to another topic. However, outputs need
not be always published; for instance, a Database Filter may
only receive the station positions to insert into a database.
Filters can be connected in parallel or serial for realizing more
complex tasks.

C. Coupling HMM Analysis with Streaming Data

The GPS data passes through a number of filters before
being presented to the HMM-based analysis application. Since
the data stream provided by RTD server is in a binary format,
the first filters act to decode it and present it in different
formats. Once we receive the original binary data, we immedi-
ately publish them to a NaradaBrokering topic (null filter). A
filter that converts the binary message to ASCII subscribes to
this topic and publishes the output message to another topic.
Another filter application subscribes to the ASCII message
topic and, using a GML schema for GPS position messages
we developed, publishes the GML representation to a different
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Fig. 2. The filter chain architecture used to process streaming GPS data. Several format conversion filters process the data before it is sent
to the RDAHMM software that performs the HMM-based time series analysis.

topic. This approach allows us to keep the original data intact
while making different message formats available to multiple
clients. A diagram of the GPS filter chain architecture can
be seen in Figure 2, showing how the data stream is passed
through the various format conversion filters before being
sent to the HMM analysis application (RDAHMM), which is
treated by the architecture as just another filter.

The RDAHMM software operates in two modes. In training
mode, the program finds optimal HMM parameters to fit the
model to the data using the RDAEM algorithm described in
Section II. In evaluation mode, the program uses a pre-existing
HMM to classify observations in a time series according to the
calculated state sequence. To classify modes in an incoming
data stream, we first use the RDAHMM software in training
mode to fit an HMM to an initial body of data from that stream.
We then run that model continuously in evaluation mode on
successive time windows of data from that stream. Although
the current version of the software is not completely real-time,
we can run it near real-time by keeping the time window for
evaluation relatively small. To do this, the RDAHMM filter
listens to the ASCII position topic and accumulates a certain
number of messages. As soon as the limit number is reached,
the RDAHMM filter invokes the RDAHMM application in
evaluation mode on the accumulated data.

IV. SINGLE STATION REAL-TIME ANALYSIS

We have developed a visualization interface for analysis of
the SOPAC GPS networks using Google Maps. The locations
of 85 GPS stations belonging to eight networks are displayed
on a map of Southern California; when a user selects one
of the stations, a window displays the most recent data from
that station, classified according to the trained HMM for that
station. An example of this interface in use can be seen in
Figure 3. A data accumulation filter was deployed to listen
to the ASCII position topic of each network and pick up the
individual station positions. This filter was set to collect as
many as 600 data points (roughly equal to 10 minutes worth of

data); these points are then sent to the RDAHMM filter. When
the RDAHMM analysis completes, it triggers the visualization
filter to display the classified accumulated data. The analysis
was performed for the X, Y and Z positions of each station; the
user can see the Y and Z axis position results by clicking on
the corresponding tab. These output plots are also available via
Web Service invocations and so can be integrated into other
user interfaces.

V. MULTIPLE STATION ANALYSIS

In the preceding sections we have concentrated on data flow
and analysis for individual GPS stations. In this section we
extend the techniques used to analyze data from a single sta-
tion to the analysis of entire networks or subnetworks. We are
interested in detecting geophysical events with geographically
disperse signatures, including not only earthquakes but also
aseismic events linked to crustal block motion or stress transfer
between earthquake faults. These types of events have been
observed in a few instances [22]–[28], but detections remain
rare due to the subtlety of the signals. We hope to observe
evidence of these types of aseismic events in the GPS data.

In our test of this approach, we used daily displacement
solutions for all 127 available SCIGN stations in a 820 day
window beginning Jan 1st, 1998. When GPS displacement
values for a given station were not available on a particular
day due to signal dropout or incomplete installation, we
assumed a zero displacement measurement for that day. We
note that since actual measurements are almost never of zero
displacement, this in effect adds an additional “dropout” class
to the data. Our next step was to train a separate hidden
Markov model on each of these GPS signals. Since the GPS
signals had similar statistics to one another, we could use
the results of our experiments on the Claremont, California
GPS station in II to estimate the model size. We observed that
there were very few maxima for up to five states; adding an
additional state to account for the dropout class, we used a six
state model. Once these models were trained, they provided
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Fig. 3. A screenshot of the visualization interface to HMM-based analysis of streaming GPS data. A user selects a station from a Google
Map interface; color-classified observations from that station from the last several minutes are displayed in a window.

us with the state sequences for each GPS time series. We
suspected that interesting geophysical events would manifest
themselves as changes in the signals across multiple GPS
stations, thus we looked for correlations in state changes across
the network.

Figure 4 shows the number of same-day state changes across
all stations using classifications given by six-state models.
There are a number of strong peaks indicating correlated state
changes; of note is the strong peak on day 652, which corre-
sponds to the Hector Mine earthquake. We observe that there
is an increasing trend in the average number of coincident
state transitions; this is because of the increasing number of
stations installed and activated during the observation period.
When we compare these network change correlations with the
seismic record, we find that the only large event during that
time period was the Hector Mine earthquake; other correlation
peaks are not strongly associated with seismic events, and
thus indicate aseismc events. Although the exact nature of
these events remains unclear and demands follow-on study, we
can infer from the timing of the correlation peaks that some
events most likely produce transitory effects, while others
are more lasting. We expect events that produce transitory
effects to be characterized by closely-paired correlation peaks
as the regional signal departs from and returns to the baseline.

Long-lasting effects, by the same logic, should only manifest
single peaks. Of course, some double peaks may form by
coincidence, but this observation provides a starting point for
further investigation.

VI. CONCLUSIONS

We have developed and implemented a method for perform-
ing robust mode classification analysis of streaming, real-time
GPS data. We linked streaming data from GPS networks in
Southern California to software that performs reliable fitting
of hidden Markov models even in the absence of a priori
information. A web portal environment provided a visualiza-
tion interface by which users could access data and HMM
classification results. In addition, we demonstrated that using
the classification results from multiple GPS stations can enable
detection of geographically distributed signals.

There are several directions for future work in this area.
We intend to improve the RDAEM HMM fitting algorithm to
reduce computational cost and enable true real-time analysis.
Follow-up work on regional signal detection through GPS
networks is necessary to determine the origins of regional
signals. In addition, we would like to add the regional signal
detection capability as a service available through SensorGrid
and extend its application beyond daily position time series to
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Fig. 4. Coincident state changes for six-state HMMs trained on daily position solutions from each of 127 SCIGN GPS stations.

real-time station data. This will enable identification of unusual
events happening on time scales of seconds to minutes, rather
than hours to days. In addition, this technology makes possible
data fusion between 1Hz seismograph and GPS data, bridging
the frequency gap between these two sources. Improving
the scalability and performance of the SensorGrid system
is another major goal; preliminary studies indicate that the
system (Figure 2) should scale to hundreds of GPS stations
for a single broker.
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