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Abstract—This paper describes the Snooker Machine, an
intelligent robotic system that was built between late 1985 and
carly 1988. The project was documented by the BBC over the
course of 2 years. “The Snooker Machine” was broadcasted on
BBC’s territorial channel in the UK on the one hour Q.E.D.
science programme of 16th March 1988.

This paper summaries the technical details of the system. It
consisted of a vision system, a fuzzy expert system and a robot
manipulator. It outlines some of the difficulties that the Snooker
Machine had to overcome in playing a game of snooker[1]
against a human player. Given the recent interests in developing
robotic systems to play pool|2], 3], [4], this paper looks back
at some of those issues. It also outlines some computational
intelligence approaches that may lead to solving some of the
problems using today’s technology,
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I. INTRODUCTION

In the mid 1980s there were significant developments
in utilizing information technology to automate complex
tasks in business and in manufacturing industry. Computer
Integrated Manufacturing (CIM) was beginning to be put into
practice in factories. At the time, automated manufacturing
was mainly based on pre-programmed inflexible tasks within
fixed locations. There was a need for intelligent robots,
capable of sensing, making decisions in order to handle
irregular components and complex tasks.

The Snooker Robot Player project[5] was first envisioned
and led by Prof Koorosh Khodabandehloo, who headed
the Robotics and Manufacturing Systems Research Group
at Bristol University. The project was joined by Prof Jim
Baldwin and his Al group at Bristol. The idea was to
use Snooker[l], a game of pool which was very poplar
in the UK, to demonstrate the fundamental principles of
artificial intelligence in robotics. It was believed that the basic
technology for developing such an intelligent robot would be
transferable to handle complex industrial tasks by adapting
to an ever changing environment. An intelligent robot would
be a robot which has to deal with uncertainty in sensing its
environment, making complex decisions based on available
information at the time, adapting to physical restrictions or
its own limitations cither through its own knowledge basc or
through sensing its environment.

II. PROJECT OBIJECTIVES AND SYSTEM REQUIREMENTS
The main characteristics or requirement of an intelligent
robotic system include the following:
1) The system must operate automatically, making deci-
sions with the usc of scnsory data. An intclligent robot

1-4244-0709-5/07/$20.00 ©2007 IEEE

must be able to search for alternative solutions in case
of difficulty.
2) Data is gathered using sensors and knowledge is up-
dated by learning from previous actions.
An intelligent robotic system should be able to deal
with uncertain situations and conflicting information.
It should be able to derive a possible solution or to
issue a further set of actions in order to resolve the
situation.

3.

One of the main objectives of the project was to push the
frontier of intelligent robotic systems and to demonstrate that
such a system could be transferred and be used in industrial
applications. It was then decided that equipment and software
packages used for the project had to be off-the-shelf. Tailor-
made solutions were kept to a minimum.

The other main objective was to explore and to model
uncertainty, imprecise definitions, vague human concepts and
strategies in human decision making through the game of
snooker. Snooker would give Al researchers a significant
number of challenges in dealing with knowledge represen-
tation of an environment that did not have fixed predefined
postitons, e.g. a game of Chess. Human players could not
casily articulate the reasons of their decisions while playing
snooker. It would be even harder to represent that knowledge
in a coherent and logical system.

III. SYSTEM AND HARDWARE

The main system consisted of three separate sub-systems:

1) a robotic arm, i.e. a mechanical manipulator.

2) a CCD camcra which was mounted on the celling
directly above the snooker table. The camera was
attached to an industrial vision system.

3) a decision making expert system running on a separate
workstation.

The choices of some of the following hardware were based
on availability, affordability and suitability from our spon-
SOrs.

A. The Robotic Manipulator

In the beginning, we had tried to use a Puma robotic arm,
a general purpose 6 axis mechanical manipulator. There were
a few drawbacks. One was that the PUMA had very limited
reach even on a small size table. The second drawback was
the limited speed and power of the manipulator. Without re-
programming its original controller, we found that it would
be rather difficult for it to hit many shots. Finally it did not
have the accuracy that we needed.
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Fig. 1. Snooker Robot - using a PUMA robotic arm

Next we tried a much larger Redifussion robotic manip-
ulator. It had more reach and better accuracy. but it lacked
speed.

Fig. 2. Using a Redifussion robotic arm

It was then decided that a tailor made cue was necessary.
A pneumatic cue was designed and created to solve the
problem. The cue had a linear actuator which was attached at
the end effector of the robotic manipulator. This allowed the
system to position accurately and by the use of the pneumatic
actuator, it would generate enough power and speed to hit
the cue ball.

Fig. 3. Potting the ball with a pneumatic cue

The new pneumatic cue was not without its own defi-
ciency. Due to the fact that it was pneumatic in nature,
it could only take open or close positions, there was no
effective way to control the power of the shot. It also meant
that it would be rather difficult to control the placement of
the cue ball.

As for the large Redifussion robotic arm, it could only
reach slightly more than a quarter of the area of a small size
snooker table. In order to play a full game, another robot
manipulator was needed. We eventually chose to use a gantry
robot, an IBM 7565 Assembly Robot[6]. We also chose to
use a much smaller 4 ft x 6 ft snooker table. This allowed
thc manipulator to rcach most part (around 90Its accuracy

and repeatability over the table were not uniform due to the
limited of its mechanical joints and control algorithm.

Fig. 4. The IBM 7565 Assembly Robot and the new snooker table

With the new IBM robot, a new pneumatic cue was used.
It was lighter, and smaller in order to fit with the new
but much smaller end effector. Given that the table was
smaller, the cue ball only needed to travel a much shorter
distance. The snooker balls were also smaller and lighter
than standard snooker balls. Therefore, we could use a much
smaller pneumatic piston on the actuator for the cue.

Fig. 5. The pncumatic cuc on the IBM 7565 Asscmbly Robot

The new pneumatic cue was designed with a tapered angle.
It allowed the cue to be positioned behind the cue ball
unobstructed even when the cue ball was very close to the
cushion or other snooker balls.

B. The Vision System

I'he vision system consisted of an industrial Automatix
AV4 vision system, once made by Robotic Vision Systems
Inc. The system came with its own image processing algo-
rithms and applications and they were managed by a high-
level structured language called RAIL.

The vision system was connected to a CCD camera
which was located directly above the snooker table. This
allowed the system to visualize the whole table without any
obstruction.

By the beginning of 1988, another CCD camera was
added onto the vertical part of the manipulator. This second
CCD camera allowed the system to provide a more accurate
calculation for the location of the cue ball.

C. The Fuzzy Expert System/Hardware

The fuzzy expert system was entirely developed on a
separate computer system. In the beginning it was running
on an IBM PC XT[7] which had 640KB of memory and a
4.77MHz Intcl 8088 8-bit processor. It had a monochrome
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Hercules graphics card which allowed it to display line
graphics in moderate resolution, The system ran on the IBM-
DOS operating system. The expert system was programmed
in Arity Prolog. The graphics was written in Borland’s Turbo
Pascal. The main problem of using the IBM PC XT was
the limitation of its memory. Slow computational speed was
another drawback. By 1987, the fuzzy expert system was
moved to an IBM RT[8] workstation running IBM AIX
operating system and the system was re-written using Fril,
an advanced fuzzy programming language developed at the
University of Bristol.

D. Svstem Integration

Nearly all the components of the system were off-the-shelf
industrial equipment, they were not designed to communicate
or to interface with one another. The only common interface
among the components was the RS-232 serial interface.

The final configuration of the system in early 1988 can be
found in figurc 6. The vision system would capture an image
from the CCD camera. It would then process the image data
and provide a set of x-y co-ordinates of the balls® positions
on the table to the fuzzy expert system through the serial RS-
232 interface running at 9600kbps. The fuzzy expert system
would then make a decision based on the positions of all
the balls on the table. It would then issue a command to
the robotic manipulator. It consisted of the preferred cue
location in x-y co-ordinates and a directional vector. The
command was sent to the robot manipulator via the vision
system. The communication between the vision system and
the fuzzy expert system was bi-directional. However, the
communication between the vision system and the robot
manipulator was unidirectional. The vision system could only
send commands to the robot manipulator, no feedback was
required from the robot manipulator.

IV. COMPUTER VISION - BALL IDENTIFICATION

The AV4 vision was programmed to identify twenty three
coloured balls on the table using its own built-in image
processing library. The problem was made easier under stable
lighting condition as gray scale values remained constant.
The basic algorithm for ball identification was as follows:

1) Determine the brightest and the darker gray values of
the table, representing the upper and lower bounds of
the background colour. This was used to locate balls
outside the this band (see figure7 and 8).

2) Locate the objects and check whether the area of each
object was compatible with the expected location of
the balls.

3) Check whether the object had a circular shape.

Figures 7and R indicates how gray scale values were
distributed around the playing area and how balls could be
missed or mis-identified.

When a ball was identified, its location was obtained by
recording the centre of the ball area in x and y pixel co-
ordinates. These co-ordinates were used as reference point
to obtain an avcrage valuc of the ball colours by counting
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Fig. 8. Grey Scale Profiles of Coloured Balls

the gray scale value in a 7 by 7 pixel square around the
ball’s centre. The central 3 by 3 pixel area was ignored as
this normally consisted of the direct reflection of the lighting
from the celling. The gray scale level in this 3x3 area, if
included in the calculation, would shift the average gray scale
valuc of the ball’s colour towards the gray scale value of light
coloured balls (see figure 9).

El Pixels used in ball colour (denlification

l_{] Pixel net used due ta lighting reflections

Fig. 9. Pixels used in Calculation of Ball Colours

The average gray scale value of the remaining pixels was
assumed to represent the colour of the ball. This procedure
was repeated for all the balls on the table and a hierarchy
of ball gray scale values was obtained. The normal order of
bright to dark balls was known to be white, yellow, pink,
red, brown, blue, green and black (see figure 8). Therefore,
from the hierarchy of gray scale values, the first 3 values
were given the labels white, yellow and pink. The last 4

values were given the labels brown, blue, green and black.
The remaining balls were given the label red.

The main drawback of this technique was that it was very
sensitive to the ambient light variation. Calibration of the
vision system was done during the boot up process and
sometimes a re-calibration was needed.

Markers were also positioned on the side cushions of the
snooker table for the vision system to identify the boundary
of the table and to be used for calibration.

V. MODELING UNCERTAINTY - FUZZY EXPERT SYSTEM

Knowledge-based approach was used to represent high-
level human concepts, knowledge and strategies in playing
a game of snooker. Historically the first expert system
that manages uncertainty was developed by Buchannan and
Shortcliffe, the medical expert system MYCIN[9]. The main
drawbacks in most systems that need to manage uncertainty
are the rules of combination of evidence. MYCIN used a set
of ad hoc rules to derive its solutions.

For the Snooker Machine, we employed a much more rig-
orous approach which was also developed at the University
of Bristol by Baldwin and his associates. A support logic
programming[10] paradigm was used for the representation
ol knowledge relationships (i.¢. heuristic rules) with [uzzy
and probabilistic uncertainties. This provided us a method-
ology which allowed the integration of different sources of
uncertain evidence using a calculus which is a generalization
of probabilistic reasoning,

In this section a briel introduction of Fril and Support
Logic programming is given before we describe how we
apply them to our fuzzy expert system.

A. Support Logic and Fril{11]

The language Fril[ll] embodies all the feature of
Prolog[12] and in addition to this, Fril can handle knowledge
bases containing uncertainties. The syntax of Fril is very
similar to the syntax of Micro-Prolog[13] and differs from
the more popular Edinburgh Prolog[12].

In Fril a clause or rule has the form

{(head)(body)){support pairs)

c.e.

((@)(br)(ba)...(by)) : (SnSp)
where @ is an atom and by, by, ..., b, are conjunctions of
literals. S,,, S}, are called the necessary and possible support
of a given by, by, ..., b, are true. If the body of @ is empty,
then a is a unit clause, i.e.

((a)) : (5nSp)

The inference under uncertainty is called support logic
programming. In the support logic programming system,
Prolog type statements are not necessarily true but can be
supported to a certain degree by an additional support pair.
Each support pair shows the support for and against the
truth of the clause. A support pair in Fril is defined as an
interval between 0 and 1 in which the unknown probability
of the clausc lics. A statcment or clausc with a support
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pair of (1 1) represents the fact that the statement is true
or has a probability of 1, whereas a support pair of (0 0)
represents false or probability of 0. If nothing is known about
a particular statement or fact, then the appropriate pair would
be (0 1) indicating that the probability of the fact being true
lies between 0 and 1.

The calculus of support logic is based on Baldwin’s Mass
Assignment Theory. Details of the calculus can be found in
[10] and [14]. A summary of it is given here.

Support logic conjunction, disjunction and negation can be
summarized as follows: Given two facts @ and b

((a)) = (SpSp)
(%)) : (Sn5)

and assuming that @ and b are independent, the supports
for conjunction and disjunction of a, b are

(and (a)(b)) : (Sy - SpSq - Sp)

o S ntp

(or (@)(b)) : (82 + 8% — 5% 52)(S2 + 8% —

alr]
Op

-5p))

S,

In addition Fril provides an inference mechanism to com-
bine a set of rules, this 1s, compound statements made up
of propositions joined together with logic operators. The
inference rules is based on the theorem of total probability.,

Pr(head) Pr(head|body) - Pr(body)

+ Pr(head|not body) - Pr{not body)
Therefore, if we have
((head)(body)) : (S S0
((head)(not body)) : (S S{H=P)
((body)) : (SbS°

“n~p

then using the theorem of total probability, the necessary
and possible supports for head to be true are

qh {
e

h
0|

In Prolog, if a clause does not exist in the knowledge base,
the negation of the clause is assumed to be true. In support
logic, if a clause does not exist in the knowledge base, it is
assumed to have a support of (0 1), i.e. totally uncertain.

Fril also provides additional calculus to combine supports
from different perspectives. This corresponds to a predicate
with multiple clauses from which supports can be derived
differently from different proof paths from an instantiated
goal. Fril provides two choices of reasoning mechanism for
multiple perspectives:

« the intersection law - it combines supports from dif-

ferent proof paths by finding the intersection of all

b | S,("hl b) (1 _ S;j) Si(':.hlb) < Sghl Wb

S0 g
(k| =b) ) (l _ q.‘)}
“n

(|l ” uy S(h|b SR b
'Sfal}‘-c’g'i'bu bf(r.l)>br(¢| )

S;hlb) < SS" )

S RRICI I U ¢ )
S}me} S S;()hhb)

Sj(;.hlb} . S;: T S-}.(}hl_‘b} . (] 75’2)

the probability intervals, provided that the probability
intervals overlap each other,

« Dempster-Shafer renormalization law[15] - Dempster’s
law assumes that the multiple support clauses corre-
spond to independent viewpoints which can contain
conflicting evidence. This law assigns supports for joint
occurrence of different sources of evidence and redis-
tributes the estimated conflict by a process of renormal-
ization regardless of whether there is any foundation
for such conflict. This law is not based on the theory
of probability and it is not consistent with the Mass
Assignment Theory.

B. Playing Snooker with Fuzzy Rules

The fuzzy expert system for the Snooker Machine was first
implemented on the IBM PC XT using SLOP (Support Logic
Programming Language)[5] [16] which was a predecessor of
Fril. SLOP’s inference engine was wrilten in Prolog, so it was
rather slow and limited. The system was re-programmed in
Fril when it was migrated to the IBM 6150 RT system.

The fuzzy expert system consists of 3 parts:

1) Mathematical primitives - functions which calculate
distances, angles between balls and pockets.
Mathematical definitions - consists of equations defin-
ing the path of the cue ball or the path of an object
ball.

Fuzzy expert rule - consists of predicates that define
vague imprecise human concepts, e.g. an easy shot.
It also includes rules that collect evidence from the
situation and making a decision through Support Logic,
¢.g. whether to play a break or to play safety[ 1] instead.

2)

3)

C. Definition of a Fuzzy FEasy Shot
The concept of an easy shot can have the following
dependencies (see Fig 10):
o the angle between the cue ball path and the target ball
path,
« the distance between the cue ball and the target ball C
« the angle between the target ball path and the pocket P.
« the distance between the target ball C and the pocket P.

However, it is not all so easy to define an “Easy Shot”
by using those parameters. By using Fril and Support Logic,
one can define such a concept separately and let Fril combine
the evidence together.

A *easy shot” can be defined as follows in Fril:

((easy_shot C X Y P)
(possible_shot C X Y P}
(straight C X Y P} (0.7 1)

((easyshot C X Y P)
(possible_shot C X Y P)
(ball-close C X Y P)) (0.6 1)

((easyshot C X Y P)
(possible_shot C X Y P)
(full-pocket C X Y P)) (0.6 1)
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Defining a Fuzzy Easy Shot

((casyshot C X Y P)
(possible_shot C X Y P)
(near-pocket C X Y P)) (0.9 1)

Possible_shot was defined as the path of the cue ball the
the target ball of colour C, positioned at X-Y is clear and
the path between the ball and the pocket is not blocked.

For the fuzzy definition of the easy_shot, the 1st Fril clause
means that there is a subjective probability of 0.7 to 1 if it
is a possible shot and if it is a straight shot, i.e. the angle
between the cue ball path and the target ball C to pocket P
is small.

2nd Fril clause says that there is a subjective probability
of 0.6 to 1 if it is a possible shot and that the cue ball and
the target ball C are close to each others.

Similarly the 3rd clause means that there is a 0.6 to 1
chance that it is an easy shot if it is a possible shot and one
can also see a full pocket. The final clause means that there
is a much higher probability, 0.9 to 1, to be an easy shot if
it is a possible shot and that it is near the pocket.

By using Fril’s calculus, the fuzzy expert system would
combine all the evidence collected from those 4 clauses,
i.e. different proof paths and derived a final support for
whether the shot is an “easy shot”. The early SLOP and
Fril implementation used Dempster Shafer rule to combine
the supports from the 4 clauscs.

D. Fuzzy Concept of Ball Closeby - a recursive definition

In this definition, any two snooker ball, which are less than
55 millimeters apart, are said to be “closeby™ together, while
any balls which are more than 3 meters apart are treated as
not close together.

Suppose we move the two close balls a little further apart,
say 220 millimeters, the two balls may still be close together
bu the support for them to be close will be less. Similarly if
we move the two balls which are "not-close™, a little closer
to each other (e.g. 220 mm), the two balls are still not-close
together with some support.

((Ball_closeby C X Y P)
(cue_ball Xc Yc)
(distance D X¢c Yc X Y)
(ball_close D))

((ball_close D)(closeby D)):(1 1)
((ball_close D)NOT (closeby D)):(0 0)
((ball_close D)(not-close D}):(0 0)
((ball_close DYNOT (not-close D)):(1 1)

((closeby D)(lessthan D 55))
((closeby D)
(sum S D 220)
(closeby S)(0.9 1)

((not-close D)(largerthan D 3000))
((not-close D)
(sum D § 220)
(not-close §))(0.9 1)

E. Snooker, strategv and knowledge representation

Snookeris a very demanding and cormplex game. Although
we had found a way to model uncertainty and defining some
fuzzy concepts, it was a far cry from modeling knowledge of
a human snooker player. During the course of the project, we
had the opportunity to talk with the then World Champion
Mr Steve Davis. Mr Davis was able to give us extremely
valuable insight and knowledge about how a professional
snooker player would make the decision. However, some of
the concept of a pack of balls, lose reds, etc, were not easy
to define and represent. In order to capture the knowledge of
how experts make their decisions, we had to represent those
concepts in a way that is similar to an Opening Library of a
Chess program. In order to code a map of the table into the
computer, we decided to represented the table in a grid. A
pack could then be defined as more then 3 or 4 balls within
a fuzzy area within the grid. Similarly experts” knowledge
could then be represented in this fashion.

By the end of 1987, we had only built a small set of rules
within the library and they were mainly for the opening shots.
In order to make the machine to play like a human, one has to
control the placement of the cue ball. Given that we did not
have the capability to control the cue ball with the pneumatic
cue, it was hard to assess the efficiency of those expert library
rulcs.
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VI. PERFORMANCE AGAINST A HUMAN SNOOKER
PLAYER

By carly 1988 a game between the Snooker Machine and
a human snooker player , Mr Ted Lowe - a famous BBC
commentator, was staged and was filmed by the BBC as the
finale of the Q.E.D science programme. Robots and machines
were starting to rival humans in terms of intelligence and in
dealing with a changing environment.

Snooker Machine performed reasonably well given its
hardware and software limitations at the time. The system
was able to have minor breaks and was able to keep up with
the score of the human player. The system was also able to
clear all the colour balls achieving a 27 points break on the
table in one of its practice runs.

The system required a couple of minutes to process the
image data and then another couple of minutes to make a
decision through the Fuzzy Expert System before the robotic
manipulator could move into positions to take a shot. On
average it took something around 3 to 5 mins processing
time for each shot.

The Snooker Machine was surprisingly good and accurate
in potting balls even when some of them were not “easy
shot”™. We estimated that the system would probably miss a
pot in every 3 to 4 shots, i.e. if a cue ball and a ball were put
on the table randomly, the Snooker Machine could probably
pot the ball into a pocket 66-75% of the time, although no
statistics or actual recording of its performance was done at
the time. The main problem was the accuracy of estimating
the locations of the balls via the vision system.

We had also simplified the decision making algorithm and
used a much simpler algorithm to speed up the computational
process, e.g. pot the red closest to a pocket. Due to its
surprisingly good accuracy in potting balls, we did not find
a degradation on its performance even when we switched to
the simple algorithm instcad of the more complicatcd Fuzzy
Expert System.

The human snooker player was also handicapped in several
ways. Due Lo the structure of the gantry robol manipulator,
the human player could not position comfortably on some
of the shots where the structure would block the player.
Secondly the table and balls were much smaller and lighter
than the actual balls, it was much more ditficult for a human
player to position and control the cue ball.

VII. WHAT WE'VE LEARNED

The Snooker Machine was surprisingly accurate in potting
balls. Given that if one can keep potting balls into the
pockets, it would be rather difficult for the other player to
win the game,

We therefore concluded that the most efficient way to
improve the performance of the Snooker Machine was to
increase the accuracy of detecting the location of the cue
balls and all the other balls on the table.

In a way the best computational solution for beating a
human snooker player might not be to model how a human
playcr plays snookcr. Instcad it would bc best to utilize

the computational power, the accuracy of vision system
in identifying and locating the balls on the table and the
accuracy and repeatability of the robotic manipulator in
hitting the cue ball.

This would be similar to a Chess playing programme,
instead of modeling human knowledge and behaviour in
playing chess, Deep Blue was able to beat the human World
Champion by searching for the positions of each chess piece
exhaustively with raw computational power.

VIIL. 20 YEARS ON - WHAT CAN WE DO DIFFERENTLY

Twenty years on, science and technology have been
improving in a phenomenal pace. In 1986 a PC was an
IBM AT running at 16MHz. Currently PC has dual core
processor running at 2GHz or more. Memory at the time
was within IMB range, while most machines now feature
1GB of memory. Both memory and processor speed have
improved 1,000 times in performance. CCD cameras have
also improved tremendously. Most current mobile phones
would have a camera, a processor and memory that rival
what we had in making the Snooker Machine.

In this section we shall look back at some of the problems
that we faced and see how we can do it differently with
today’s technology.

A. Computer vision - ball identification

As we have mentioned earlier we had encountered prob-
lems in correctly identifying the colour of the balls due to
the sensitivity of ambient lighting condition. We solved that
by controlling the environment with blinds and powerful
lighting. The problem with glare [rom rellection ol the
lighting on the celling was solved through making some
assumptions.

With today’s technology, we could have solved those
problems with colour computer vision. Given that the current
technology has a much better resolution, we would like
to think that colour vision will also solve the problem of
identifying the cushion of the table without specific markers.

B. Computer vision - Ball localization

There were problems with ball localization due to shadows
of the ball and glare of the snooker balls due to the reflection
of the lighting. The accuracy of each shot depended on the
correct localization of the cue ball and the other snooker
balls. If we were to do that today, we would probably use
multiple cameras to eliminate the problem with shadows. It
would also be possible to do it with stereo vision.

As in our case, we were able to use another camera
mounted on the robotic manipulator to get a closer look at
the snooker balls on the table. We were able to improve
the performance of finding the centre of the ball although it
would take a much longer time in computation.

With today’s technology in digital camera, we would be
able to put a small digital camera at the end of the cue
tip. It would also be able to track the motion of the robotic
manipulator in real time and to make sure that the cue will
hit the centre (or the preferred arca) of the cuc ball.
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C. Pneumatic cue

As we have mentioned earlier, the pneumatic cue can only
be on or off, i.e. we could not control the speed of the cue
and with that the placement of the cue ball. At the time there
was plans to adjust placement of the pneumatic cue behind
the cue ball. Therefore, it would have some control of the
distance of the cue could have travel before hitting the ball,
thus controlling the speed of the cue ball. It would have
been possible to do some mathematical calculation for that.
Alternatively we could have used neural network or fuzzy
system approach to find the correct correlation between the
distance behind the cue ball and the distance that the cue
ball would have traveled.

Given the limitation of the pneumatic cue, it may worth
to consider an alternate design for the cue. One suggestion
would be to use mulitple cues. The manipulator would
change its end effector depending on the circumstances of
the environment. For example, a pneumatic cue for long
shots or opening shots when accuracy of controlling the cue
ball would not be of prime concern. In other circumstances
an electric motor driven mechanical cue could be used for
precision shots or shots that need fine control of the cue ball.

D. Coverage of the Snooker table

We had problems in getting the robotic manipulator to
cover 100% of the table. By around the end of 1988, a
much larger gantry robot was installed and a small 6 axis
manipulator was attached to the end effector of the large
gantry robot. The small 6 axis manipulator would be able to
give a much finer and more accurate control for the Snooker
machine while the large gantry robot would allow the whole
machine to cover a full size snooker table.

It would also be possible to mount a 6 axis manipulator on
top of a mobile platform in order to provide 100% coverage
of the table.

E. Knowledge-based Approach

Do we need intelligent algorithms if given two balls (a cue
ball and another ball) on the table randomly, the machine can
pot the ball 99% of the time? If the objective is to play a
competitive game of snooker, it would be interesting to see
whether a simple decision algorithm would be sufficient. On
the other hand, if we were to create a machine to play like
a human snooker player, i.c. to pass a Turing Test, then the
modeling of human behaviour and their decision would be
very important.

If we were to model human decision in a snooker match
today, we would probably collect data from a snooker match
using a video camera or even from televised footage. It would
be possible to locate the relative locations of each snooker
ball on the table through computer vision. A data mining or
machine learning algorithm might be able to condense and
generalize those data into a set of rules used in our Fuzzy
Expert System.

In the end we had concluded that the Snooker Machine
would not nced more sophisticated cxpert system rules until

the system could find a way to control the cue ball. It
would have a dramatic improvement on its performance in
the research in sensing and control.

IX. CONCLUSIONS

In conclusion the Snooker Machine was very success(ul
as an intelligent robotic system in playing snooker. It had
also fulfilled some of its objectives in transferring some of
the knowledge to other domains[17] [11].
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