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Ahslrad-This nnner describer the Snooker Machine. sn must be able to search for alternative solutions in case . . 
inlrlligenl ruhnlic system lhal war built helwren tale 19115 and 
early 1988. The project was documcntcd by the BRC over the 
course or 2 years. "The Snooker Machine" was hrnadcasled on 
RBC's territorisl channel in the 1JK on the one hour Q.E.D. 
scicnce programme of 16th March 1988. 

'This paper summaries the lcchnical details of the system. It 
consisted a vision system, a rurzy expert system and a rohot 
manipulator. It outlines some of thc diflicullies that the Snooker 
Machinc had to overcame in playing a game of snoakcrlll 
against a human player. Given the rcccnt inter~sts in developing 
robnlic systems to play pooll21, 131, 141, this paper looks back 
at snme of those issues. It also nutlines snme computational 
intelligence approaches that may lead to solving some of the 
problems using today's technology. 

Keywords: Computational Intelligence, Artificial Intel- 
ligence, Fuzzy System, Expert System, Computer Vision, 
Robotics, Games 

I. INTRODUCTION 

In the mid 1980s there were si$nificdnt developments 
in utilizing information technology to automate complex 
tasks in business and in manufacturing industry. Computer 
Integrated Manufacturing (CIM) was beginning to be put into 
practice in factories. At the time, automated manufacturing 
was mainly based on pre-programmed inflexible tasks within 
fixed locations. There was a need for intelligent robots, 
capable of sensing, making decisions in order to handle 
irregular components and complex tasks. 

The Snooker Robot Player proiectl51 was first envisioned 
and led by Prof ~ o o r o s h  ~hodahandehloo, who headed 
the Robotics and Manufacturing Systems Research Group 
at Bristol University. The project was joined by Prof Jim 
Baldwin and his A1 group at Bristol. The idea was to 
use Snooker[l], a game of pool which was very poplar 
in the UK, to demonstrate the fundamental principles of 
artificial intelligence in robotics. It wa. believed that the ha..ic 
technology for developing such an intelligent robot would be 
transferable to handle complex industrial tasks by adapting 
to an ever changing environment. An intelligent robot would 

of difficulty. 
2) Data is gathered using sensors and knowledge is up- 

dated by learning from previous actions. 
3) An intelligent robotic system should be able to deal 

with uncenain situations and conflicting informalion. 
It should be able to derive a possible solution or to 
issue a further set of actions in order to resolve the 
situation. 

One of the main objectives of the project was to push the 
frontier of intelligent robotic systems and to demonstrate that 
such a system could be transferred and be used in industrial 
applications. It was then decided that equipment and software 
packages used for the project had to be off-the-shelf. Tailor- 
made solutions were kept to a minimum. 

The other main objective was to explore and to model 
uncertainty, imprecise definitions, vague human concepts and 
ardtegies in human decision making through the game of 
snooker. Snooker would give A1 rewarchers a significant 
number of challenges in dealing with knowledge represen- 
tation of an ewimnment that did not have fixed predefined 
positions, e.g. a game of Chess. Human players could not 
easily articulate the reasons of their decisions while playing 
snooker. It would be even harder to represent that knowledge 
in a coherent and logical system. 

111. SYSTEM AND HARDWARE 

The main system consisted of three separate sub-systems: 
1) a robotic arm, i.e. a mechanical manipulator. 
2) a CCD camera which was mountcd on thc cclling 

directly above the snooker table. The camera was 
attached to an industrial vision system. 

3) a decision making expert system running on a separate 
workstation. 

The choices of some of the following hardware were based 
on availability, affordability and suitability fmm our spon- 

be a robot which has to deal with uncertainty in sensing its 
environment, making complex decisions based on available A, Manigula,or 
information at the time, adapting to physical restrictions or 
its own limitations cithcr through its own knowledge basc or In lhe beginning, we had lried to u?x a am, 
through sensing its environment. a general putpose 6 axis mechanical manipillator. There were 

a few drawbacks. One was that the PUMA had very limited 
I1. oBJECTIVES AND SYSTEM reach even on a small size table. The second drawback was 

The main characteristics or requirement of an intelligent the limited speed and power of the manipulator. Without re- 
robotic system include the following: programming its original controller, we found that it would 

I )  The system must operate automatically, making deci- be rather difficult for it to hit many shots. Finally it did not 
sions with the usc of scnsoly data. An intclligcnt robot havc thc accuracy that wc nccdcd. 
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Fig. 1. Ssookcr Kohnl -us~ng  r PUClA roholnc am 

Next we tried a much larger Redifussion robotic manip- 
ulator. It had more reach and better accuracy, hut it lacked 
speed. 

It was then decided that a tailor made cue was necessary. 
A pneumatic cue was designed and created to solve the 
problem. The cue had a linear actuator which was attached at 
the end effector of the robotic manipulator. This allowed the 
system to position accurately and by the use of the pneumatic 
actuator, it would generate enough power and speed to hit 
the cue hall. 

Fig, 3. P<>,!ieg ,he h.dl u.it1, r plls"millic cue 

The new pneumatic cue was not without its own defi- 
ciency. Due to the fact that it was pneumatic in nature, 
it could only take open or close positions, there was no 
effective way to control the power of the shot. It also meant 
that it would be rather difficult to control the placement of 
the cue ball. 

As for the large Redifussion robotic arm, it could only 
reach slightly more than a quarter of the area of a small size 
snooker table. In order to play a full game, another mbot 
manipulator was needed. We eventually chose to use a gantry 
robot, an IBM 7565 Assembly Robot[6]. We also chose to 
use a much smaller 4 A x 6 A snooker table. This allowed 
thc manipulator to rcach most part (around 9011s accuracy 

and repeatability over the table were not uniform due to the 
limited of its mechanical joints and control algorithm. 

Fig. 4. Tbe IBM 7565 Assembly Robat and the new snooker table 

With the new IBM robot, a new pneumatic cue was used. 
It was lighter, and smaller in order to fit with the new 
but much smaller end effector. Given that the table was 
smaller, the m e  ball only needed to trdvel a much shorter 
distance. The snooker halls were also smaller and lighter 
than standard snooker balls. Therefore, we could use a much 
smaller pneumatic piston on the actuator for the cue. 

Fig. 5. Ths pnsumalis suc on ths IBM 7565 Asssmbly Robot 

The new pneumatic cue was designed with a tapered angle. 
It allowed the cue to be positioned behind the cue hall 
unobstlucted even when the cue ball was very close to the 
cushion or other snooker balls. 

B. The Hsion *stem 

The vision system consisted of an industrial Automatix 
AV4 vision system, once made by Robotic Vision Systems 
Inc. The system came with its own image processing algo- 
rithms and applications and they were managed by a high- 
level structured language called RAIL. 

The vision system was connected to a CCD camera 
which was located directly above the snooker tahle. This 
allowed the system to visualize the whole tahle without any 
ohstmction. 

By the beginning of 1988, another CCD camera was 
added onto the vertical part of the manipulator. This second 
CCD camera allowed the system to provide a more accurate 
calculation for the location of the cue ball. 

C. The F u ~ q  Expert $vstemLWrdware 
The fuzzy expert system was entirely developed on a 

separate computer system. In the beginning it was running 
on an IBM PC XT[7] which had 640KB of memory and a 
4.77MHz lntcl 8088 8-bit processor. It had a monochmmc 
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Hercules graphics card which allowed it to display line 
graphics in moderate resolution. The system ran on the IBM- 
WS operating system. l'he expert system was programmed 
in Arity Prolog. The graphics was written in Borland's Turbo 
Pascal. The main problem of using the IBM PC XT was 
the limitation of its memory. Slow computational speed was 
another drawback. By 1987, the fuzzy expert system was 
moved to an IBM RT[8] workstation running IBM AIX 
operating system and the system was re-written using Fril, 
an advanced fuzzy programming language developed at the 
University of Bristol. 

D. Sy~tern Intepration 

Nearly all the components of the system were off-the-shelf 
industrial equipment, they were not designed to communicate IF!\ 7505 Camera  LCD 
or to interface with one another. The only common interface Conll 'ol lrr  
among the components was the RS-232 serial interface. . . m~ ;:- -. 

The final configuration of the system in eady 1988 can be 
found in figurc 6. Thc vision systcm would capturc an image 
from the CCD camera. It would then process the image data 
and provide a set of x-y co-ordinates of the balls' positions 
on the (able to the fwzq expert system througl~ the serial RS- 
232 interface running at 9600kbps. The fuzzy expert system 
would then make a decision based on the positions of all 
the halls on the table. It would then issue a command to 
the robotic manipulator. It consisted of the preferred cue 
location in x-y co-ordinates and a directional vector. The Fig. 6. Snmksr Robot Player system mnfiguralion 

command w& sent to the robot manipulator via the vision 
system. The communication between the vision system and 
the fuzzy expert system was hi-directional. However, the 
communication between the vision system and the robot 
manipulator w a  unidirectional. The vision system could only o - g z n  
send commands to the robot manipulator, no feedback was u s 
required from the robot manipulator. 5 ; =  

0 2 ;  

IV. COMPUTER VISION - BALL IDENTIFICATION 

The AV4 vision was programmed to identify twenty three 
coloured balls on the table using its own built-in image 
processing libraty. The problem was made easier under stable 
lighting condition as gray scale values remained constant. 
The basic algorithm for ball identification was as follows: 

1) Determine the brightest and the darker gray values of 
the table, representing the upper and lower bounds of 
the background colour. This was used to locate balls 
outside the this hand (see figure7 and 8). 

2) Locate the objects and check whether the area of each 
object was compatible with the expected location of 
the balls. 

0 11 26 12 
3) Check whether the object had a circular shape. - 

Awm 6 g r q  suleunilr 
Figures 7and 8 indicates how gray scale values were a ..,,,.,. ,-,, R.-M..Eb-. 

distributed around the playing area and how balls could be ,*",*"l,ll,l"llll*Y,".,IU,.YI.I*,, 
I*nl,-i.",l..dd.l* ..nu 

missed or mis-identified. 4,. 'n.,rl,.li*II""UI!...l**. 
""S 

When a ball was identified, its location was obtained by 
recording the centre of the hall area in x and y pixel co- 
ordinates. These co-ordinates were used as reference point Fig. 7. Grey Scale Dihbution 

to obtain an avcragc valuc of thc ball colours by counting 
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Fig. 8. Grey Scale Profiles of Coloured Balls 

the gray scale value in a 7 by 7 pixel square around the 
ball's centre. The central 3 by 3 pixel area was ignored as 
this normally consisted of the direct reflection of the lighting 
from the celling. The gray scale level in this 3x3 area, if 
included in the calculation, would shift the average gray scale 
valuc of thc ball's colourtowards thc gray scalc valuc of light 
coloured balls (see figure 9). 

Fig. 9. PLmlr used in Calculation of Ball Colot~rr 

The average gray scale value of the remaining pixels was 
assumed to represent the colour of the ball. This procedure 
was repeated for all the balls on the table and a hierarchy 
of ball gray scale values was obtained. The normal order of 
bright to dark balls was known to be white, yellow, pink, 
red, brown, blue, green and black (see figure 8). Therefore, 
from the hierarchy of gray scale values, the first 3 values 
wcrc givcn thc lahcls white, yellow and pink. Thc last 4 

values were given the labels brown, blue, green and black. 
The remaining balls were given the label red. 

'The main drawback of this technique was that it was very 
sensitive to the ambient light variation. Calibration of the 
vision system was done during the boot up process and 
sometimes a re-calibration was needed. 

Markers were also positioned on the side cushions of the 
snooker table for the vision system to identify the boundary 
of the table and to be used for calibration. 

V. MODELING UNCERTAINTY - FUZZY EXPERT SYSTEM 

Knowledge-based approach was used to represent high- 
level human concepts, knowledge and strategies in playing 
a game of snooker. Historically the first expert system 
that manages uncertainty was developed by Buchannan and 
ShortclilTe, the medical expert system MYCIN[9]. The main 
drawbacks in most systems that need to manage uncertainty 
are the mles of combination of evidence. MYCIN used a set 
of ad hoc lules to derive its solutions. 

For the Snooker Machine, we employed a much more rig- 
orous approach which was also developed at the University 
of Bristol by Baldwin and his associates. A support logic 
programming[lO] paradigm was used for the representation 
of knowledge relationships (i.e. heuristic rules) with fuzzy 
and probabilistic uncenainties. This provided us a method- 
ology which allowed the integration of different sources of 
uncertain evidence using a calculus which is a generalization 
of probabilistic reasomng. 

In this section a brief introduction of Fril and Suppon 
Logic programming is given before we describe how we 
apply them to our fuzzy expert system. 

A. Support Logic unil MI[II] 

The language Fril[l I] embodies all the feature of 
Prolog[l2] and in addition to this, Fril can handle knowledge 
bases containing uncertainties. The syntax of Fril is very 
similar to the syntax of Micro-Prolog[l3] and differs from 
the more popular Edinburgh Prolog[lZ]. 

In Fril a clause or lule has the form 
((headj(body))(support pairs) 
e.g. 
( ( a ) (b~) (bd . . . (b~) )  : ( s n s n )  

where a is an atom and b l ,  bz, ..., b, are conjunctions of 
literals. S,,, S, are called the necessq  and possible support 
of a given bl, bz, ..., b, are tme. If the body of a is empty, 
then a is a unit clause, i.e. 

((a))  : (SnSp) 

The inference under uncertainty is called support logic 
programming. In the support logic programming system, 
Prolog type statements are not necessarily true but can be 
supported to a certain degree by an additional support pair. 
Each support pair shows the support for and against the 
tmth of the clause. A support pair in Fril is defined as an 
interval between O and 1 in which the unknown probability 
of thc clausc lies. A statcmcnt or clause with a support 

4

Proceedings of the 2007 IEEE Symposium on 
Computational Intelligence and Games (CIG 2007)



5

Proceedings of the 2007 IEEE Symposium on 
Computational Intelligence and Games (CIG 2007)



Fig. 10. Defining a F w q  Easy Shot 

((easyshot C X Y P) 
(possihleshot C X Y P) 
(near-pocket C X Y P)) (0.9 1) 

Possible-shot was defined as the path of the cue ball the 
the target ball of colour C, positioned at X-Y is clear and 
the path between the ball and the pocket is not blocked. 

For the fuzzy def i~t ion of the easyshot, the 1st Fril clause 
means that there is a subjective probability of 0.7 to 1 if it 
is a possible shot and if it is a straight shot, i.e. the angle 
between the cue ball path and the target ball C to pocket P 
is small. 

2nd Fril clause says that there is a subjective probability 
of 0.6 to 1 if it is a possible shot and that the cue ball and 
the target hall C are close to each others. 

Similarly the 3rd clause means that there is a 0.6 to 1 
chance that it is an easy shot if it is a possible shot and one 
can also see a full pocket. The final clause means that there 
is a much higher probability, 0.9 to 1, to be an easy shot if 
it is a possible shot and that it is near the pocket. 

By using Fril's calculus, the fuzzy expert system would 
combine all the evidence collected from those 4 clauses, 
i.e. different proof paths and derived a final support for 
whether the shot is an "easy shot". The early SLOP and 
Fril implementation used Dempster Shafer rule to combine 
thc supports from thc 4 clauses. 

D. Fuzzy Concept of Ball C1oseb.v - a recursive definition 

In this definition, any two snooker hall, which are less than 
55 millimeters apart, are said to be "closeby" together, while 
any halls which are more than 3 meters apart are treated as 
not close together. 

Suppose we move the two close balls a little further apart, 
say 220 millimeters, the two halls may still he close together 
hu the support for them to he close will be less. Similarly if 
we move the two balls which are "not-close", a little closer 
to each other (e.g. 220 mm), the two balls are still not-close 
together with some support. 

((Ball-closeby C X Y P) 
(cueball Xc Yc) 
(distance D Xc Yc X Y) 
(ball.close D)) 

((bdll.close D)(closeby D)):(l 1) 

((ballLclose DIVOT (closeby D)):(O 0) 

((ball-close D)(not-close D)):(O 0) 

((ball-close D)(NOT (not-close D)):(l 1) 

((closeby D)(lessthan D 55)) 
((closeby D) 

(sum S D 220) 
(closehy S))(0.9 1) 

((not-close D)(largerthan D 3000)) 
((not-close D) 

(sum D S 220) 
(not-close S))(0.9 1) 

E. Snooker. strategy and knowledge representation 

Snookeris a very derr~ar~di~~g and corllplex gdrne. Allhough 
we had found a way to model uncertainty and defining some 
fuzzy concepts, it was a far cry fmm modeling knowledge of 
a human snooker player. During the course of the project, we 
had the opportuluty to talk with the then World Champion 
Mr Steve Davis. Mr Davis was able to give us extremely 
valuable insight and knowledge about how a professional 
snooker player would make the decision. However, some of 
the concept of a pack of halls, lose reds, etc, were not easy 
to define and represent. In order to capture the knowledge of 
how experts make their decisions, we had to represent those 
concepts in a way that is similar to an Opening Libraty of a 
Chess program. In order to code a map of the table into the 
computer, we decided to represented the tahle in a grid. A 
pack could then be defined as more then 3 or 4 halls within 
a fuzzy area within the grid. Similarly experts' knowledge 
could then he represented in this fashion. 

By the end of 1987, we had only built a small set of rules 
within the libraty and they were mainly for the opening shots. 
In order to make the machine to play like a human, one has to 
control the placement of the cue ball. Given that we did not 
have the capability to contml the cue ball with the pneumatic 
cue, it was hard to assess the efficiency of those expert library 
N~CS. 
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VI. PERFORMANCE AGAINST A HUMAN SNOOKER 
PLAYER 

By early 1988 a game between the Snooker Machine and 
a human snooker player, Mr Ted Lowe - a famous BFK 
commentator, was staged and was filmed by the BBC as the 
finale of the Q.E.D science programme. Robots and machines 
were starting to r i d  humans in terms of intelligence and in 
dealing with a changing environment. 

Snooker Machine performed reasonably well given its 
hardware and software limitations at the time. The system 
was ahle to have minor breaks and was ahle to keep up with 
the score of the human player. The system was also ahle to 
clear all the colour halls achieving a 27 poiuts break 011 the 
tahle in one of its practice runs. 

The system required a couple of minutes to process the 
image data and then another couple of minutes to make a 
dec~sion through the Fuzzy Expert System before the robotic 
manipulator could move into positions to take a shot. On 
average it took something around 3 to 5 mins processing 
time for each shot. 

The Snooker Machine was surprisingly good and accurate 
in potting halls even when some of them were not "easy 
shot". We estimated that the system would probably miss a 
pot in every 3 to 4 shots, i.e. if a cue hall and a hall were put 
on the table randomly, the Snooker Machine could probably 
pot the hall into a pocket 66-75% of the time, although no 
statistics or actual recording of its performance was done at 
the time. The main problem was the accuracy of estimating 
the locations of the balls via the vision system. 

We had also simplified the decision making algorithm and 
used a much simpler algorithm to speed up the computational 
process, e.g. pot the red closest to a pocket. Due to its 
surprisingly good accuracy in poning halls, we did not find 
a degradation on its performance even when we switched to 
thc simplc algorithm instcad of thc morc complicatcd Fuzzy 
Expert System. 

The human snooker player was also haudicapped in several 
ways. Due lo the structure or the gantry robot rnar~ipulalor, 
the human player could not position comfortably on some 
of the shots where the structure would block the player. 
Secondly the table and balls were much smaller and lighter 
than the actual balls, it was much more difficult for a human 
player to position and control the cue ball. 

VII. WHAT WE'VE LEARNED 

The Snooker Machine was surprisingly accurate in poning 
balls. Given that if one can keep potting balls into the 
pockets, it would be rather difficult for the other player to 
win the game. 

We therefore concluded that the most efficient way to 
improve the performance of the Snooker Machine was to 
increase the accuracy of detecting the location of the cue 
balls and all the other balls on the table. 

In a way the best computational solution for beating a 
human snooker player might not be to model how a human 
player plays snookcr. Instcad it would bc bcst to utilizc 

the computational power, the accuracy of vision system 
in identifying and locating the balls on the table and the 
accuracy and repeatability of the robotic manipulator in 
hitting the cue ball. 

This would be similar to a Chess playing programme, 
instead of modeling human knowledge and hehaviour in 
playing chess, Deep Blue was able to beat the human World 
Champion by searching for the positions of each chess piece 
exhaustively with raw computational power. 

VIII. 20 YEARS ON - WHA'I' CAN W E  DO DIFFERENTLY 

Twenty years on, science and technology have been 
improving in a phenomenal pace. In 1986 a PC was an 
IRM AT muning at I6MHz. Currently PC has dual core 
processor running at 2GHz or more. Memoly at the time 
was within IMR range, while most machines now feature 
IGB of memory. Both memoly and processor speed have 
improved 1,000 times in performance. CCI) cameras have 
also improved tremendously. Most current mobile phones 
would have a camera, a processor and memory that rival 
what we had in making the Snooker Machine. 

In this section we shall look back at some of the problems 
that we faced and see how we can do it differently with 
today's technology. 

A. Comp~rter vision - ball identification 

As we have mentioned earlier we had encountered prob- 
lems in correctly identifying the colour of the balls due to 
the sensitivity of ambient lighting condition. We solved that 
by controlling the environment with blinds and powerful 
lighting. The prohlen~ will1 glare horn reflection or  the 
lighting on the celling was solved through making some 
assumptions. 

With today's technology, we could have solved those 
problems with colour computer vision. Given that the current 
technology has a much better resolution, we would like 
to think that colour vision will also solve the problem of 
identifying the cushion of the table without specific markers. 

B. Comp~rrer virion - Ball localization 
There were problems with ball localization due to shadows 

of the hall and glare of the snooker balls due to the reflection 
of the lighting. The accuracy of each shot depended on the 
correct localization of the cue hall and the other snooker 
halls. If we were to do that today, we would probably use 
multiple cameras to eliminate the problem with shadows. It 
would also be possible to do it with stereo vision. 

As in our case, we were ahle to use another camera 
mounted on the robotic manipulator to get a closer look at 
the snooker halls on the table. We were ahle to improve 
the performance of Iinding the centre of the ball although it 
would take a much longer time in computation. 

With today's technology in digital camera, we would be 
able to put a small digital camera at the end of the cue 
tip. It would also he able to track the motion of the robotic 
manipulator in real time and to make sure that the cue will 
hit thc centrc (or the prcfcrrcd arca) of thc cuc ball. 
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C. Pneumatic cue 

As we have mentioned earlier, the pneumatic cue can only 
be on or off, i.e. we could not control the speed of the cue 
and with that the placement of the cue ball. At the time there 
was plans to adjust placement of the pneumatic cue behind 
the cue ball. Therefore, it would have some control of the 
distance of the cue could have travel before hitting the ball, 
thus controlling the speed of the cue ball. It would have 
been possible to do some mathematical calculation for that. 
Alternatively we could have used neural network or fuzzy 
system approach to find the correct correlation between the 
distance behind the cue ball and the distance that the cue 
ball would have traveled. 

Given the li~llitation of the pneumatic cue, it may worth 
to consider an alternate design for the me. One suggesqion 
would be to use mulitple cues. The manipulator would 
change its end effector depending on the circumstances of 
the environment. For example, a pneumatic cue for long 
shots or opening shots when accuracy of controlling the cue 
ball would not he of prime concern. In other circumstances 
an electric motor driven mechanical cue could be used for 
precision shots or shots that need fine control of the cue ball. 

D. Coverage of !he Snooker table 

We had problems in getting the robotic manipulator to 
cover 100% of the table. By around the end of 1988, a 
much larger gamy robot was installed and a small 6 axis 
manipulator was attached to the end effector of the large 
gantry robot. The small 6 axis manipulator would be able to 
give a much finer and more accurate control for the Snooker 
machine while the large gantry robot would allow the whole 
machine to cover a full size snooker table. 

It would also be possible to mount a 6 axis manipulator on 
top of a mobilc platform in ordcr to providc 100% covcragc 
of the table. 

E. Knowledge-based Appmach 

Do we need intelligent algorithms if given two balls (a cue 
ball and another ball) on the table randomly, the machine can 
pot the ball 99% of the time? If the objective is to play a 
competitive game of snooker, it would be interesting to see 
whether a simple decision algorithm would be sufficient. On 
the other hand, if we were to create a machine to play like 
a human snooker player, i.e. to pass a Turing Test, then the 
modeling of human behaviour and their decision would he 
very important. 

If we were to model human decision in a snooker match 
today, we would probably collect data from a snooker match 
using a video camera or even from televised footage. It would 
be possible to locate the relative locations of each snooker 
ball on the table through computer vision. A data mining or 
machine learning algorithm might be able to condense and 
generalize those data into a set of rules used in our Fuzzy 
Expert System. 

In the end we had concluded that the Snooker Machine 
would not nccd morc sophisticatcd cxpcrt systcm rulcs until 

the system could find a way to control the cue ball. It 
would have a dramatic improvement on its performance in 
the research in sensing and control. 

IX. CONCLUSIONS 

In conclusion the Snooker Machine was very successful 
as an intelligent robotic system in playing snooker. It had 
also fulfilled some of its objectives in transferring some of 
the knowledge to other domains[ll [I 11. 
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