
Extracting NPC behavior from computer games using computer

vision and machine learning techniques

Alex Fink
Department of Mathematics

University of California, Berkeley
finka@math.berkeley.edu

Jörg Denzinger
Department of Computer Science

University of Calgary
denzinge@cpsc.ucalgary.ca

John Aycock
Department of Computer Science

University of Calgary
aycock@cpsc.ucalgary.ca

Abstract— We present a first application of a general ap-
proach to learn the behavior of NPCs (and other entities) in
a game from observing just the graphical output of the game
during game play. This allows some understanding of what a
human player might be able to learn during game play. The
approach uses object tracking and situation-action pairs with
the Nearest-Neighbor rule. For the game of Pong, we were
able to predict the correct behavior of the computer controlled
components approximately 9 out of 10 times, even if we keep
the usage of knowledge about the game (beyond observing the
images) at a minimum.

Keywords: Computer Games, Object Tracking, Agent
Modeling

I. INTRODUCTION

The behavior of non-player characters (NPCs) is often

crucial for the success of a game. We broadly define NPCs

as visible components of the game that are under the control

of the computer, and that either work with the human player

or against him or her. Designing NPCs is difficult, because

human game players would like NPCs to be very human-

like, challenging or supporting the player as another human

would. This requires complex behaviors that usually are

provided by the game designers as a script that uses the game

state as visible to the human player, but often also internal

information available only to the designers of the game. In

fact, there is a temptation to use a lot of information not

visible to the player to achieve intelligent behavior and to be

able to beat the player (at least from time to time) to keep

the game interesting. But the effects of using information not

available to the human player can also produce the opposite

effect, by making an NPC appear clairvoyant and not very

human-like.

In this paper, we present a method to learn the behavior of

an NPC based on observing the visual game display, which

means that we use the same information as is available to

the human player. The learned behavior can be used to see

differences between the implemented behavior and what the

human player will think the behavior is, but it can also be

used to re-engineer a game into a non-script-based NPC

version (if the observed behavior is the intended behavior).

Another application of our method is to re-engineer the

whole game in case the game code is not available – we

treat the game as a black box and do not need the internal

game state. Our architecture for NPCs, so-called situation-

action pairs with the Nearest-Neighbor rule, then also allows

for an easy modification of the NPC behavior (see our work

in [1]). These intended applications are somewhat similar to

what SegMan tries to accomplish for users of the Windows

Graphical Interface (see [2]).

Our general approach is as follows: by observing sessions

of game play, we capture the sequence of images that the

game produces, together with any input from the human

game player leading to the images. By using object-tracking

techniques from computer vision, we identify and follow

various pieces in the game display for which we want

to learn the behavior; these are NPC candidates. Using

these candidates, we abstract the images to what we call

situations. For each pair of following images, we identify the

change with respect to the situations represented by them for

the different candidates, creating observed situation-action

pairs for each candidate. We then compact the large set

of observed situation-action pairs into a small set that can

be used together with a distance measure on situations and

the Nearest-Neighbor rule to represent the behavior of each

candidate.

We applied our general approach to the game of Pong

which, despite being a simple game, already offers some

challenges with regard to determining the behavior of the

computer player. Additionally, we tried to use as little knowl-

edge about Pong as possible, so, for example, our method did

not know the laws of physics regarding how a ball bounces

when hitting an object. Our experiments showed that simple

object tracking methods can identify and follow the game

objects most of the time. The prediction accuracy possible

using only the observed images is around 90 percent for

the computer-controlled moving objects (slightly higher for

the ball, slightly lower for the computer player) due to an

accumulation of necessary approximations in the behavior

extraction process. Repetitions of the game situations with

different successor situations still presents some challenges,

as experiments with several sessions show.

This paper is organized as follows: in Section II, we

present our view of computer games, which is the basis

for our approach. This general approach is presented in

Section III. In Section IV, we present an instantiation of this

general approach to Pong with the additional goal of using

as little knowledge about game display and game play as

possible. In this section we also present our experimental

evaluation of the instantiation. Finally, in Section V, we

conclude with some remarks on future improvements.

24

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

1-4244-0709-5/07/$20.00 ©2007 IEEE

II. COMPUTER GAMES: OUR VIEW

In this section, we characterize the view of a computer

game that we will be using in this paper. We also present

an abstract view of the relevant properties of a computer

game. While our view is valid for all computer games, it is

clearly biased towards commercial games that are not based

on search-heavy computer players (like chess or checkers).

We conceive of a game as possessing a set of states,
and being in exactly one of these states at any given time

while it is in progress. The game interacts with a human

player by receiving a stream of inputs caused by the player’s

actions which influence the state, and presenting a stream of
outputs which are each computed as a function of the state

and the received actions. These streams of states, actions,

and outputs can be taken to be discrete; even if a game is

modeling a continuous change, this change will be discrete

at a sufficiently low level of implementation. In this initial

work, we assume that the game being analyzed is a single-

player game.

Since our perspective is that of modeling a game (and es-

pecially the NPCs in that game) based only on observations,

we let the timing of the output stream determine the timing

of the other two streams. With each output we associate one

state. This may be the same as the state of the previous

output, if nothing has happened in the game; of course, some

states of the game may not be reflected in our sequence if

the outputs are few enough. We associate one action with the

interval between each pair of states; again, this may require

postulating single actions corresponding to the player doing

nothing, or doing multiple things, in this time.

More formally, let S, Act, and Out be the sets of states,

actions, and outputs of a game. With the passage of time the

game takes on a sequence s0, s1, s2, . . . (si ∈ S) of states.

Each state is obtained from the preceding one by a function

ftr : S ×Act → S embodying the behavior of the game: for

each index i ∈ N, si+1 = ftr(si, ai), where ai ∈ Act is the

action taken by the player between si and si+1.
1 The game’s

output is computed by another function fout : S → Out;

while the game is in state si, it produces the output oi =
fout(si), yielding the observable sequence o0, o1, o2, . . . of

outputs.

Naturally, a player’s external perspective on a game means

that the player has no access to the game state si except

via the history of outputs oi. If the function fout is one-

to-one, si is recoverable, and this causes no difficulties.

However, in general, there can be hidden aspects of the
game’s state not reflected in the output. If these exist, the

state transitions which the player has the capacity to observe

can be characterized by a relation gtr ⊆ Out × Act × Out

such that for each index i, (oi, ai, oi+1) ∈ gtr. The presence

of these hidden components of states complicates approaches

which attempt to learn the game’s behavior as a function like

ftr, because gtr is not necessarily well-defined as a function.

1Note that even the use of a random number generator does not destroy
this view of game play if states are modeled appropriately, i.e., including
the seed of the random number generator.

This is a problem familiar from agent modeling (see, for

example, [3]). Nevertheless, human players expect a strong

correspondence between ftr and gtr, because a total inability

to predict how the game behaves does not yield a fun game!

The set S generally has considerable structure. Often it can

be decomposed as a subset of a Cartesian product S1×· · ·×
Sk, where each Si corresponds to the state of one particular

entity within the environment simulated by the game. When

such a decomposition is meaningful, the function ftr can be

looked at in terms of its component functions f i
tr : S×Act →

Si, so that f
i
tr describes the behavior of the i-th entity alone.

We are particularly interested in understanding the behav-

ior of those entities that can be considered non-player char-

acters, but we cannot consider these entities in isolation. The

actions of NPCs will affect other entities in the environment,

which in turn will have an impact on the entities controlled

by the player, so in fact it is necessary to model the behavior

of all of these components. Even the player’s control over

their own entities might not occur in an obvious fashion, so

it is worthwhile to model the behavior of these entities in

response to the player’s input as well. Thus, from the point

of view of our system, our problem is simply to model an

arbitrary entity in a game.

Obviously, learning the behavior of a game and all its

entities is not easy. It might even be necessary to get help

from a human being in suggesting hidden states, or hidden

components of states. But, as already stated, we see the

modeling of the behavior of NPCs based on the observations

alone as a help for a game developer to see if the game

is really doing what it is supposed to do. Therefore an

additional goal for us was to create an architecture for

describing game entity behavior that can be easily understood

and extended. This is the concept of situation-action pairs,

as described in the next section.

III. EXTRACTING NPC BEHAVIOR

In this section, we present our general approach for

extracting (or learning) NPC behavior. We first present the
approach on a high level and then we concentrate on the

two main steps, namely creating situations out of images

and approximating ftr.

A. The high-level approach

The problem of modeling NPCs in a game as formalized

above can be framed as learning the appropriate components

of the function ftr, given the input action sequence (ai)i∈N,

the output sequence (oi)i∈N, and perhaps some additional

knowledge about the game. In theory, this can be achieved

solving two subproblems: the first is to invert fout to recover

the state sequence (si)i∈N, the second is to learn ftr given

(ai)i∈N and (si)i∈N. Unfortunately, as stated in the last

section, states might have components that are not reflected

in the output, making our task a little more difficult and

requiring the introduction of some additional concepts.

While an element of S contains all the information needed

to compute the follow-up state (given an action) to a state

s, the output o produced by this state s may not provide

25

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

all the information that we need. So, it will not be possible

in most cases to invert fout. But in most cases it should

be possible to create out of the history (oi)i<k leading to

a particular output ok together with the history of actions

(ai)i<k an approximation of the inverted fout into a structure

that we call a situation sit, which is an element of a set

Sit. Even more, we would like to come up with a function

fout : Sit×Act×Out → Sit that allows us to concentrate

only on a single output (and the previous situation or parts

of it) to create the next situation.

Working with situations naturally means that we can only

approximate the function ftr used by the game, namely a

function ftr : Sit×Act → Sit. Even more, using situations

instead of the states is not the only reason why our function

ftr is an approximation of what is really happening in the

game. On the one hand, we will probably not observe all

possible situations within the output sequence that we use.

This means that we need to come up with some way to deal

with situations that were not observed while learning the

game behavior, since these situations might arise later. For

our problem, the use of situation-action pairs as suggested in

[6] is an appropriate way for realizing ftr. The basic idea of

this approach is to define a similarity measure on situations

and actions and to determine the value of ftr for a given

situation sit and an action a by computing the similarity

of (sit,a) to all observed pairs, then returning the follow-up

situation of the pair that is most similar to (sit,a).

Given this realization of ftr, we face the problem of a large

computational effort if we have to compute the similarity

of (sit,a) to a large number of observed pairs. Therefore

we need to reduce the amount of observed pairs, which is

unfortunately another reason why the result of our approach

is only an approximation of the game’s ftr-function.

Our general approach consists of the following steps:

Given the two sequences {oi}i∈N and {ai}i∈N and the start

output o0 of the game, we

• determine a suitable set Sit using the output sequence

(and perhaps some human help),

• determine sit0 using o0,

• for each i, we compute siti using oi, ai and siti−1,

resulting in the set SPP = {((siti−1, ai), siti)|i ∈ N}
• compact SPP .

Since determining a Sit and computing elements of it

from the output are highly related, we will look at these two

problems together in the next subsection. Then we will look

at one possibility for creating and compacting a set SPP .

B. From outputs to situations

The output of a computer game, with the exception of

“games” played in large simulators, consists of graphics on

the computer screen and audio signals. While some games

use audio to convey additional information, most games use

images as the primary information-bearing mode of output,

and the generated sound serves either as background or to

highlight some significant event (state change) in the game

that is also graphically indicated. Therefore we concentrate

on determining a suitable set Sit and the situations corre-

sponding to the observed output from graphical output.2

When constructing a game situation from a frame of

graphical output, we have to include in a situation specifica-

tions of any moving object we discover to be visible in that

frame. Additionally, in many games there are frame areas

that contain changing graphical symbols, usually out of a

small set of possible symbols. While the frame areas with

changing symbols can be rather easily identified and the set

of symbols approximated by simply collecting the symbols

in an area that are observed in an output sequence {oi}i∈N,

the detection and tracking of moving objects requires help

from the field of object tracking (see [5]), a well-studied area
within computer vision.

We take each entity in a game to be an object which moves

about within a two-dimensional space, having a position and

(instantaneous) velocity, and perhaps being absent altogether

at certain times. If the moving object is allowed to change

its displayed representation, then the mode of representation

also needs to be represented in the game situation, since

obviously it is also part of the state of this object that we

want to approximate. Our motivation for including velocity in

this setup of a situation instead of position alone is to provide

a compact representation of the history of an object. While

there might be additional history information that should

be included in a situation, there are also games where the

velocity of a moving object is not of consequence at all.

However, velocity is an feature which we expect from our

physical world and therefore an obvious part of a situation

description.3

So, an element of the Sit we need has to at least contain

the following parts:

• for each moving object obi:

xi, yi, vi, ri

with xi,yi the coordinates in the two-dimensional pic-

ture (including the value ⊥ indicating that the object is
not visible now), vi the velocity of obi and ri its current

display representation, i.e., the symbol out of a set Ri

used to display obi in the current situation

• for each non-moving, but changing object cobj :

rj

with rj being the current display representation for cobj ,

again out of a set Rj of possible symbols.

As already stated, the elements of each Ri are determined by

going through all observed outputs and collecting all symbols

2The games industry is constantly looking for additional and/or alternative
output devices that improve the gaming experience for a human player. But
we believe that visual output will always play an important role, simply
because our visual sense is so central in our life. We nevertheless want
to point out that there are already techniques to learn any kind of output
language that might be used in addition to graphical output, as, for example,
suggested in [4], and such techniques can be integrated into our approach
to create additional parts of a situation.
3We are aware that some game designers play interesting games with
physics engines, like manipulating gravity, to achieve certain effects and for
such games there will be the need for a human to assist our approach. But
our approach will at least show that there was some kind of manipulation
going on, as explained later.

26

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

appearing in a particular place. We represent each Ri as a

list and then an ri as above is simply a reference to the list

(i.e., the number indicating the position in this list).

This leaves us with the problem of finding out what the

moving objects in the game are. A naı̈ve way to solve this

problem in any given image would be to find connected

components of non-background-color pixels. We have taken

a slightly more sophisticated approach. Acknowledging that

there may be, for instance, scenery “objects” in the back-

ground or features not rendered in a single solid color, we

instead take differences of successive pairs of frames to

detect all changes between these frames, which we take to

be indicative of moving objects. This was sufficient for our

application in Section IV, but for some games there might

be the need to use more complex (and more expensive)

techniques for object tracking. For implementational simplic-

ity we immediately convert the output images to gray-level

images; this tends to preserve recognizability of scenes (see

[5]).

Let I1 and I2 be two consecutive frames of output. Their

difference image I2 − I1 is the image with

(I2 − I1)ij = (I2)ij − (I1)ij ,

where Iij is the (i, j) pixel of image I . Every object

which moved (or changed representation) between I1 and

I2 generates a region of nonzero pixels in I2 − I1. In most

cases a connected component of nonzero pixels will be the
result, and so we generally identify one object with each

such connected component. However, this is not always the

case: one particular counterexample is illustrated in Figure 1,

which our system heuristically identifies and treats as a single

object (see Section IV-B for more detail).

x

y

(a)

x

y

(b)

y − x

0

x − y

(c)

Fig. 1. A moving object whose motion from (a) to (b) generates the
disconnected difference seen in (c). Labels of regions denote uniform colors
which fill the region.

Of course, simply finding the individual appearances of

each moving object in each pair of frames is not enough.

In order to define Sit it is also necessary to know which of

the objects discovered in various output frames are actually

the same object, and how many objects actually appear.

Our approach assigns to each difference image component

a label, indicating which object it represents. We find the

total number of objects, k, and then for each of these obis

(1 ≤ i ≤ k) construct their contribution to the situation by

finding the two nearest attestations of objects with label i,

and interpolating between their attested positions to find a

position and velocity.

Our approach to this problem is based on the assump-

tions that objects generally move continuously, so that the

positions of the same object in two successive frames will

overlap; and that objects retain roughly the same color as
they move. By ‘color’ we mean the average absolute value

of all pixels in the connected component in the difference

image; this value will be a function of the color of the

original object if the background has a solid color.

The algorithm of Figure 2 attempts to perform this object

classification making only a single pass through the output

data. This algorithm, however, has problems with tracking

objects when they move discontinuously or disappear for a

time, or when one object overlaps another (because the two

will be merged into one connected component). Accordingly,

the algorithm which we implemented is based on this one, but

includes a number of ad hoc refinements using properties of

the particular game in our application to handle these cases.

We will present these refinements in Section IV-B.

1 mark all image components unused

2 for each frame F

3 do for each image component C in F

4 do if there exists any image component C ′

in an earlier frame F ′ such that C ′ and C

overlap and have similar colors

5 then let D be the most recent such
component

6 classify C as the same object as D

7 mark D used

8 else classify C to belong to a new object

Fig. 2. Approximate pseudocode for classifying objects.

C. ftr and creating a compactified SPP

The last subsection described how we can create a se-

quence (siti)i∈N out of an observed output sequence (oi)i∈N

and a sequence of user actions (ai)i∈N. In this subsection,

we present how our approximation function ftr is defined

using these sequences and how we create functions f i
tr for

the entities of the game.

The intention of ftr is to predict what the next game

situation will be, given the current game situation and the

action that the user takes, i.e., ftr: Sit × Act → Sit. For

a game entity, which obviously includes all NPCs, we are

only interested in the changes to a particular entity. For a

moving object obi, this means we want to predict the new

position of the object, its velocity and its new representation

(and all other parts of a situation that refer to the object). For

a non-moving, but changing object, we want to know its new

representation. In general, this means that f i
tr: Sit×Act →

Siti, where Siti is the set of possible value-combinations

of the situation components describing entity i and Siti is

essentially the same set but uses relative positions for the

position part instead of absolute positions. So, we describe

27

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

only the change of position (relative to the old position in

x and y coordinates). This is necessary, since we might not

have observed the game output for each possible situation,

and our approximation should predict the same movement

for similar situations.

To construct the f i
trs, we use the idea of situation-action

pairs of [6], except that in our case we have a situation

together with a user action as the first element of a pair and

a prediction of what will happen, as described above, as the

second element of the pair. The general idea is to have a set

SPP i = {(prot1, pred1),...,(protn, predn)}, where protj ∈
Sit × Act and predj ∈ Siti for all j. We then also define

a similarity (or distance) function disti: (Sit × Act)2 → R

that measures how similar two pairs of situations and actions

are. If we want to predict the value of f i
tr for (sit,a), we

compute disti(protj ,(sit,a)) for all j ∈ {1, ..., n} and return
predm for the element m in SPP i for which the distance is

minimal. If there are severalm1,...,ml ∈ {1, ..., n} for which
the distance is minimal, we return the prediction that occurs

most often among predm1
,...,predml

. Ties in this respect are

broken randomly.

This leaves us with how to get an appropriate distance

function. While there are many possible candidates for such

a function (see [7] for some possibilities), we have to take

into account what we want to achieve with our approach,

namely to create a model of NPC behavior reflecting what

an observer of the game most probably will assume as being

the model. And with this regard, situations where all moving

entities are at approximately the same places in the display

usually are considered very similar, whereas situations that

only differ quite a bit in the position of one entity are less

similar and situations that differ a lot in the positions of

several entities are not considered as similar at all. This

suggests the use of a Euclidean distance measure for the

position and velocity parts of situations.

But what about actions, representations, and possible other

parts in a situation description? Here, there are obviously

different ways that these components (and their differences)

can be integrated into the distance function; different human

players may vary in how they use the information represented

by these components in their model of what an entity will

do. In general, this means that the definition of the distance

function has the following structure:

dist((sit, a), (sit′, a′)) = wa · da(a, a′)+

k∑

j=1

wj
r · dj

r(rj , r
′

j)+

k∑

j=1

(wj
p · (‖x

′

j −xj‖+ ‖y′

j − yj‖)+wj
v · ‖vj − v′j‖)

wa, wj
r , wj

p and wj
v are weight parameters that can be

chosen by the user of our system and da and dj
r are distance

functions on Act and Rj , respectively, that need to be defined

by the user (if actions and representation should play a role

in measuring the similarity of situations).

The final problem we have to address is how to get the

sets SPP i for the different entities. An obvious way is to

just create them out of all ((sitj ,aj),sitj+1) tuples out of

(siti)i∈N, (ai)i∈N by computing for each entity the necessary

components, which boils down to computing the position

and velocity changes. But this can result in very large sets

SPP i which requires a substantial computational effort to

evaluate f i
tr for a given situation and action (remember, we

have to compute the distance to each element in SPP i).

Therefore we have to reduce this initial candidate set for

SPP i to an appropriate and manageable size. There is some

work that addresses the problem of instance reduction in
relation to using a set of examples and the Nearest-Neighbor

rule (see, for example, [8], [9], [10], [11]), which essentially

is the problem of selecting a small subset out of a given

set of instances while retaining without (too much) loss the

predictive accuracy of the approach.
The general idea of most of these approaches is to use the

distance function used by the Nearest-Neighbor rule to clus-

ter the set of examples into the appropriate number of classes

and then to select out of each cluster an instance to represent

the cluster. Naturally, the instances in a cluster might differ

in what their prediction is, and how this is handled is where

the difference between the different approaches lies. There

is obviously a trade-off between the targeted size of the end

set and the accuracy that this set will achieve (compared to

the unreduced set).
Potentially, all of these methods can be used for our

purpose. We used the source provided in [11] for our

experiments of the next section, modified to use our instance

structure (i.e., prototype-prediction pairs) and our distance

function.

IV. EXPERIMENTAL EVALUATION WITH PONG

Examining our general approach described in the last

section, there are several points in it that offer the possibility

or even the need to integrate knowledge about the game,

or an NPC entity, into the process of creating a behavior

model. The consequence of having such knowledge is that it

allows deriving some deep information, for example distance

measures for the representations an object can have, which

is otherwise a rather subjective task.
For our experimental evaluation, we wanted to use a game

where such subjective tasks are not necessary, so that we

get a baseline for what our approach can achieve without

having a user provide help to it. And naturally this means

that we should use a game that at least offers the possibility

of success for such a fully-automated approach, since games

with hidden information in their states obviously would result

in failure without using additional knowledge provided by the

user. “Classic” video games such as Pong, Breakout, Space

Invaders, Pacman, and so forth, are examples of games that

expected the human player to learn the game behavior to

beat the game in the end. And therefore we have chosen

one of these games, Pong, for our experimental evaluation.

In the remainder of this section, we will first describe the

Pong variant we use, then present how we instantiate our

28

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Fig. 3. A Pong screen-shot

general approach to Pong and finally our experiments with

this instantiation.

A. Pong

Pong, as the name suggests, is the first attempt of computer

games to imitate human sports, namely ping pong (i.e., table

tennis). There are many versions of Pong and we have chosen

the one in the 1977 Atari game Video Olympics in the human
vs. computer mode (Figure 3 is a screen-shot of the game).

We ran this game using Stella (see [12]), an open source

multi-platform emulator for the Atari 2600 that already has

screen-shot capabilities and that we modified to do a screen-

shot for each frame and write a log of input events (i.e.,

actions).

The game itself is easily explained. Each player controls

one of the paddles, i.e., the large rectangles in the playing

field (the computer controls the left one), and putting a

paddle in the path of the third rectangle, the ball, will cause

the ball to bounce off (according to the laws of physics as

implemented in the game) towards the side of the opponent.

The human player steers his/her paddle by pointing the

mouse where it is supposed to go. A player scores if the

ball is not intercepted by the opponent before it leaves the

screen on the opponent’s side. The current score is indicated

by the symbols (numbers) at the top of the screen.

B. Instantiating our method

The first step of our approach is to use object tracking on

the screen-captured frames to determine the objects and to

create the structure of an element of Sit. Figure 3 is already a

gray-scale image of the normal color image of the Pong game

we used. All entities within this game (even background

and boundaries) have distinct colors, except for the scores

that are in the color of the player that has the score. But

our system cannot be sure about that. In fact, for Pong the

problem depicted in Figure 1 occurs very frequently. The

Pong-specific heuristic we used to deal with this situation

is to compute the difference in grey-scale average value of

neighboring difference image components and to declare two

components as representing the same object if the difference

is equal (or near) to zero. Obviously, this workaround does

not work if the representation of a moving object goes

beyond being a connected component of the same color.

Because of the boundary between playing field and the

scores, we had no problems due to the score symbols using

the same color as the paddles.

Using this workaround, our system was able to detect the

ball, the computer paddle, and the player paddle and to keep

track of them over most of the captured frames. A problem

occurred every time after either player scored, since after

scoring, the ball, that had vanished when the score happened,

reappears in the center of the playing area and the paddle of

the opponent player jumps to a position in front of the ball.

If we want to learn the behavior of a single entity, then this

“teleportation” of entities is not very straightforward, and it

is no surprise that this causes problems for our system in

finding the entity in the next frame. But if we commit to

having only two paddles and the ball in the playing area

(which we did), then our system can use this additional

information to identify the new position of the paddle and

the ball when preparing the situation sequence out of the

output sequence.

Out of the results of the object tracking we get as structure

of an element of Sit for Pong:

(xco,yco,vco,xpl,ypl,vpl,xba,yba,vba,rcosc,rplsc)

where “co” identifies the components belonging to the com-

puter player, “pl” the ones belonging to the human player

and “ba” to the ball. “sc” indicates that it is a component

belonging to a non-moving score object. We do not include

representation components for the moving objects, since they

do not change and do also not contribute to the distance

measure, as is explained in the next paragraph.

Given this structure, and that an action in Pong is char-

acterized by the coordinate in the playing field that the

mouse points to, the only instantiations that we need for the

general distance measure are how to treat the representations

of objects and actions, and what weights to choose for the

components of the function. Since we want to minimize the

additional knowledge we put into our instantiation, we deal

with the representations of objects by declaring dr(r,r
′) = 0

if r = r′, and 1 otherwise. This allows us to get rid of the

representation component of the moving objects, while still

making the fact that a non-moving object changed available

to our function ftr. Since actions are positions, we employ

the Euclidean distance again, as in the case of positions of

objects. We set all weights to 1.

C. Results

Since we already presented the results of the object track-

ing (at least with regard to the detection of objects) in the

last subsection, the main question remaining is if the behavior

models for the NPCs (or moving objects) are approaching the

real thing. As stated in Section III-A, there are many aspects

that conspire against the perfect accuracy of our method and

many of these aspects are true even for Pong.

29

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

TABLE I

EXPERIMENTAL RESULTS: ACCURACY PERCENTAGE

training sequence accuracy
ball computer player human player

1 93.6 88.6 77.9
2 93.6 89.0 80.9
3 91.2 88.2 88.2
1 + 2 + 3 88.7 85.6 77.1

We do not have the source code for the Video Olympics’

version of Pong, so that a direct comparison between the

real game state and a situation and the prediction from

this situation was not possible for us. So, what we had to

do was to compare the accuracy of the predictions for the

entities with what really happened in the game. We set our

evaluation experiments up as follows. Each training sequence

was obtained by having a human play against the computer

until 4561 frames were produced. Our results are reported

in Table I and each accuracy entry represents the best result

among the methods from [11]. As can be seen by the results

for the individual games (i.e., the rows for training sequences

1, 2 and 3), the prediction accuracy of the models generated

for the three moving objects is indeed not perfect. The best

results are obtained (in all three cases) for predicting what

the ball does, which is a good result, since this is really the

first information that a human player needs to get his/her

own paddle into the right place. The results for predicting

where the computer goes are also very similar in all cases

and often much better than predicting what the human did.

A little bit puzzling at first is the last row, that sees

clearly worse results when using all sequences together to

create the prediction models. But we have to be aware that

with different game sessions the chance for having the same

situation-action pairs occurring with different predictions

gets higher (than it already is in a single session, as indicated

by the accuracy there) due to having more frames per score

(to give just one reason) and therefore there will be more

chances for making the wrong prediction. Also, the tactics of

a human player do not usually change much during a game,

while with some time in between usually changes occur

(reflecting the learning of the player) which also accounts

for more cases where the same prototype is associated with

different predictions. And we also have to take into account

that the compaction process amplifies this problem.

V. CONCLUSION AND FUTURE WORK

We presented the idea to use techniques from computer vi-

sion and machine learning to extract the behavior of NPCs in

games out of the game by observing the interactions between

the game and the human player. Our general approach is to

use object tracking through the frames of graphical output

produced by the game during a session of play to identify

and follow the objects of the game (including the NPCs).

This way, we can transfer the frames into situations (possibly

using additional knowledge about the game), that, together

with the user interactions, are used to model the behavior of

each object using situation-prediction pairs and the Nearest-

Neighbor rule.

Our evaluation of this approach using the game of Pong

and trying to include as little knowledge about the game as

possible shows that predictions of the behavior of computer

controlled entities are possible with an accuracy of around

90 percent. While this already can help a game designer

to comprehend what a game player will be able to learn

about NPC behavior while playing the game, obviously some

improvement will be necessary if we want to tackle more

complex games.

In fact, our general approach allows for a lot of im-

provements if using additional knowledge about the game

is allowed; exploring these possibilities is our future work.

On the object tracking side of things, we employed a rather

primitive version that did not require knowledge about icons

and graphical presentations for a particular entity. Adding

the knowledge of how an entity represents itself on the

screen allows for improvements, although we will have to

use techniques that deal with representations overlapping

each other that go beyond what we did so far. The use

of situation-prediction pairs allows for various ways that

we can use to include knowledge: in the distance measure,

by adding certain known behaviors (as in [1]) and by

adding components to the description of a situation that

represent this additional knowledge. We also expect to need

more knowledge about previous situations for more complex

games, like, for example, first person shooter games with

their potentially rapid change of what the player sees from

frame to frame. Finally, any approach to learn a computer’s

strategy in board games like chess or checkers will need

deep knowledge about the game’s rules and quite a number

of experiences by the learner.

VI. ACKNOWLEDGMENTS

The authors would like to thank Jim Parker for helpful

suggestions, especially regarding object tracking. The first

author did this work while at the University of Calgary. The

third author’s research is supported in part by grants from

the Natural Sciences and Engineering Council of Canada.

REFERENCES

[1] J. Denzinger and C. Winder. Combining coaching and learning to
create cooperative character behavior, Proc. CIG-05, Colchester, 2005,
pp. 78–85.

[2] M.O. Riedl, R. St. Amant. SegMan technical notes,
http://www.csc.ncsu.edu/faculty/stamant/segman-introduction.html.

[3] P. Gmytrasiewicz and E. Durfee. Reasoning about Other Agents:
Philosophy, Theory and Implementation, Proc. 12th WS on DAI, 1993,
pp. 143–153.

[4] L. Steels. The Origins of Ontologies and Communication Conventions
in Multi-Agent Systems, Autonomous Agents and Multi-Agent Systems
1(2), 1998, pp. 169–194.

[5] J.R. Parker. Algorithms for image processing and computer vision,
Wiley, 1998.

[6] J. Denzinger and M. Fuchs. Experiments in Learning Prototypical
Situations for Variants of the Pursuit Game, Proc. ICMAS’96, Kyoto,
1996, pp. 48–55.

[7] J. Denzinger and A. Schur. On Customizing Evolutionary Learning
of Agent Behavior, Proc. AI-04, London, ON, Springer LNAI 3060,
2004, pp. 146–160.

30

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

[8] D.W. Aha, D. Kibler, M.K. Albert. Instance-Based Learning Algo-
rithms, Machine Learning 6, 1991, pp. 37–66.

[9] B.V. Dasarthy, J.S. Sánchez, S. Townsend. Nearest Neighbor Editing
and Condensing Tools-Synergy Exploitation, Pattern Analysis and
Applications, vol. 3, Springer, 2000, pp. 19–30.

[10] J. Denzinger and J. Hamdan. Improving Modeling of other Agents

using Tentative Stereotypes and Compactification of Observations,
Proc. IAT 2004, Beijing, 2004, pp. 106–112.

[11] D.R. Wilson, T.R. Martinez. Reduction Techniques for Instance-Based
Learning Algorithms, Machine Learning, 2000, pp. 257–286.

[12] B.W. Mott et al. Stella: a multiplatform Atari 2600 VCS emulator,
http://stella.sourceforge.net.

31

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

