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Abstract— We envision to add context awareness and ambient
intelligence to edutainment and computer gaming applications
in general. This requires mixed-reality setups and ever-higher
levels of immersive human-computer interaction. Here, we focus
on the automatic recognition of natural human hand gestures
recorded by inexpensive, wearable motion sensors. To study the
feasibility of our approach, we chose an educational parking
game with 3-D graphics that employs motion sensors and
hand gestures as its sole game controls. Our implementation
prototype is based on Java-3D for the graphics display and on
our own CRN Toolbox for sensor integration. It shows very
promising results in practice regarding game appeal, player
satisfaction, extensibility, ease of interfacing to the sensors,
and — last but not least — sufficient accuracy of the real-time
gesture recognition to allow for smooth game control. An initial
quantitative performance evaluation confirms these notions and
provides further support for our setup.

Keywords: Game Control, Gesture Recognition, Immer-
sive Human-Computer Interaction, Java-3D, Mixed Reality,
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I. INTRODUCTION

A central aspect of progress for edutainment and computer
gaming applications is their steady increase in the immersive-
ness of the user experience. Historically, this routinely sprang
from ever more involved and complex plots as well as crisper
and more spectacular 3-D graphics. Then, games combined
the two resulting in blazing graphics on top of challenging
interactive stories and other such things of personalization.
Game control, however, remained quite crude, mostly relying
on text input, mouse clicks, joypads, and joysticks. Maybe
this is why certain genres supporting much nicer control
devices flourish so well. Car racing games, for instance,
achieve an extremely immersive user experience by means of
realistic steering wheels and gear shifts paired with real-time
force feedback as their preferred means of game control.

During roughly the past 5 years, a general shift towards
better and more immersive game control started to take
hold. Pioneered by the “EyeToy” and dancing mats for Sony
game consoles, not only academics but also the entertainment
industry realized that people’s real-world physical actions
need to directly affect their playing reality. Contrasting with
others, we envision to employ inexpensive wearable sensors
to achieve this — preferably tiny motion sensors worn by
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people on their bodies (e.g., integrated into their clothes and
other personal accessories like watches or jewelry). Such
body-mounted sensors provide an inexpensive basis for mo-
tion analysis while letting users move and roam about freely,
independent of any additional infrastructure. Hence, we deem
them superior to and prefer them over other approaches
pursuing similar goals. Current hardware developments seem
to support our notion in this respect. Select gaming consoles
(e.g., Nintendo DS and Wii) and other electronic gadgets
already come equipped with integrated motion sensors.

This adds immediate relevance to the work presented here.
Our real-time parking game lets players direct a virtual car
and driver waving common, natural hand gestures in the
real world. Tiny motion sensors, unobtrusively mounted in
gloves, record the movements and send them via a wireless
connection to the remote computer running the main appli-
cation with 3-D graphics display. There, automatic gesture
analysis and recognition takes place before initiating the
virtual actions directed by the player’s real gestures.

After discussing related work in Section II, we focus on the
game and our prototype implementation based on our own
CRN Toolbox and Java-3D in Section III. Then, we elaborate
on the intricacies of our motion-sensed gesture recognition in
Section IV and present an initial performance evaluation for
the recognition scheme in Section V. Finally, we conclude
with some further discussions and thoughts on future work.

II. RELATED WORK

Over the years, countless new add-ons for more immersive
human-computer interaction in gaming applications were
proposed. Most of them never even made it beyond paper
design. The rest, however, are still numerous enough to feed
a surprisingly large pool of commercially available such
gadgets: steering wheels and gear shifts, infrared and laser
guns with according armor, infrared steering helmets, touch-
and pressure-sensitive mats for step-based activities like
dancing, cheap head-mounted displays, and video overlaying
made popular by the “Eyetoy” of Sony to name but a few.
Compared with our approach based on tiny and inexpensive
wearable sensors, the above mentioned gaming gadgets all
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feature disadvantages of clumsiness, relatively high costs,
and lack of flexibility among others.

By now, many independent researchers have demonstrated
the suitability and excellent further potential of body-worn
sensors for automatic context and activity recognition, e.g.,
[11, [2], [3], [4], [5]. [6], [7], [8]. The available scientific lit-
erature reports about successful applications of such sensors
to various types of activities, ranging from the analysis of
simple modes of locomotion [3] to more complex tasks of
everyday life [2] and even workshop assembly [9].

There are much fewer publications, however, about us-
ing wearable sensors in gaming applications. Several co-
authors of this text reported on an initial experiment with
wearable motion sensors for real-time recognition tasks in
games of martial arts [10]. The multiplayer game “Collective
Calm” [11] relies on gloves with integrated galvanic skin-
response sensors to determine the calmest of all participants
as the final winner. In [12], wearable pressure sensors
integrated into body protectors help to control and decide
the counting of points for Tackwando. Supposedly helping
children with their Kung Fu education, [13] introduces some
kind of interactive computerized toy ball.

Instead of relying on wearable sensors, various systems
employing image- and video-processing techniques pursue
similar goals of immersive human-computer interaction as
we do. Noteworthy in this context are [14], [15], [16], [17]
to name but a few. On top of relatively high system costs,
these works suffer from the usual drawbacks of video-based
approaches, i.e., high sensitivity for lighting conditions and
demanding requirements on equipment and infrastructure.

III. THE GAME AND OUR IMPLEMENTATION PROTOTYPE

Fig. 1. Screen display of the parking scene with the game in progress

The plot of our game features the player helping a virtual
driver to fit the latter’s virtual car into a parking lot. The
player does so by making real gestures with his arms and
hands while facing a virtual scene at the roadside where a
parking spot is available between other vehicles.

The game play and scene evolve as follows. A car on the
road waits to get in. Waving some common natural gestures,
the player directs the virtual driver’s simulated steering.
Thus, he effectively guides the waiting car into the parking
space. The goal is to perform this guiding task as fast and

safely as possible, in particular avoiding collisions with other
cars and obstacles (see Fig. 1 for a sample screen display of
the game in action).

The remainder of this section elaborates on the design,
structure, and other implementation details of our applica-
tion prototype for playing the parking game. We aimed at
a rapid solution built from reusable components. Hence,
the challenge was to avoid over-specialized optimizations
while at the same time maintaining instantaneous game
reactions and entertainment value. Furthermore, the design
was chosen with teaching purposes in context awareness and
activity / gesture recognition in mind. The implementation
comprises the following parts: (1) the CRN Toolbox as
middle-ware for signal processing and pattern recognition,
(2) the gesture detection and sensor interface, and (3) the
driver simulation and car movement.

A. The CRN Toolbox

MT9Reader

Data acquisition

‘ Similarity ‘ | similarity | | Similarity | Similarity search

Similarity comparison
Map identified and classified
gesture to a command string

B

Fig. 2.

Send command to application

Simplified view of toolbox configuration for the parking game

We consider the task of recognizing gestures as a special-
ization of context recognition in general where data from
sensors mounted on the body and in the environment are
captured continuously and processed in an on-line fashion.
To facilitate the creation of new application prototypes in
such fields, we developed the Context Recognition Network
(CRN) Toolbox [21]. This software toolbox allows to quickly
build distributed, multi-modal context recognition systems by
simply plugging together reusable, parameterizable compo-
nents. Thus, the toolbox simplifies the steps from prototypes
to final implementations that might have to fulfill real-
time constraints on low-power mobile devices. Moreover,
it facilitates portability between platforms and fosters easy
adaptation and extensibility. The toolbox also provides a
set of ready-to-use parameterizable algorithms including
different filters, feature computations and classifiers, a run-
time environment that supports complex synchronous and
asynchronous data flows, encapsulation of hardware-specific
aspects including sensors and data types (e.g., int vs.
float), and the ability to outsource parts of the computation
to remote devices.

Toolbox components are tasks executed in parallel. They
continuously process data received at the in-port and put
the results to the out-port. Connections can be defined
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between out-ports and in-ports. Special Reader-tasks acquire
the data from external sources like sensors, TCP-streams,
or files. They have no in-port. Similarly, Writer-tasks write
data to external devices. For the gesture recognition of the
parking game, we used the SWAB and similarity-search
components discussed in Section IV. A simplified version of
the toolbox configuration is displayed in Fig. 2, showing the
sensor-specific MT9Reader task as source of the data flow.
Several differently parametrized instances of the SWAB and
similarity-search tasks process the data streams until the final
TCPWriter writes the recognition results to a TCP-stream.

B. Overall Implementation Structure

Gesture Driver Car
Recognition Simulation Movement
Fig. 3. Structural components of our implementation prototype

As summarized in Fig. 3, our implementation prototype
consists of three main components that we describe below.

1) Gesture Recognition: The player is wearing a motion
sensor on the right hand. The data from this motion sen-
sor is continuously sampled and processed by our context
recognition toolbox for recognizing gestures of the player.
When a gesture is recognized by the toolbox, it sends the
corresponding command to the driver simulation.

2) Driver Simulation: The driver simulation receives
commands from the gesture recognition component and
accordingly controls the speed and steering angle of the
virtual car. It simulates the driver’s reaction on perceived
gestures. In contrast to the command which is instantaneous,
the simulated reaction has an extent in time space. Overlap
of reactions is handled by the driver simulation.

3) Car Movement: The car movement component is
ensuring the correct movement of the car in the virtual
scene. It is updating the position and orientation of the car
according to the current physical properties of the car and
the restrictions of the scene (e.g., collisions).

C. Sensor Interface and Data Recording

For the hand gesture interface a standard sports glove was
used with the motion sensor! attached on the back of the
hand. The motion sensor provides calibrated 3D acceleration,
gyroscope and magnetic field (compass) sensor data, however
only acceleration and gyroscope data was used in this work.
The sensor data was recorded at 100 Hz by the CRN Toolbox
MT9Reader task and forwarded to the gesture detection tasks
within the toolbox.

In order to obtain a simple gaming system we restricted
the gestures to the user’s right hand. A total of 16 different
gesture classes, potentially useful to navigate a car remotely,
were defined. Although the sensor was attached to the right
hand the users supported some gesture classes with their
left hand to achieve symmetry or a more natural motion
execution.

"Model: MT9, XSens BV, NL

D. Driver simulation and car movement
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Fig. 4. The (simplified) Java3D scene graph.

We found the Java3D scene graph suitable for our purpose
as it provides means for interaction and animation while
keeping the complexity at a low level. We also found a way
to use the 3D-modeling tool Blender’ for creating the 3D
scene and then loading it into the scene graph.

Driver simulation, car movement, and visualization are
realized using the scene graph depicted in Figure 4. The class
MpyUniverse provides the base of the scene graph where all
objects that show up in the scene or that model the behavior
of scene objects are attached. The Camera class covers
the details of how the scene is presented to the user. The
MovingCar class aggregates car model, driver simulation,
and car movement. Separate transform groups (T) for wheels
and car body allow the animation of car movement and wheel
rotation. Figure 5 shows the classes that affect the behavior of
the moving car. The behaviors are divided in those for driver
simulation and those for car movement. The ControlPort
receives commands from the gesture recognition component
via a TCP socket and triggers the CommandBehavior. The
CommandBehavior decides how to react on each command
and sends new target values for speed and steering angle to
the Speedinterpolator. The Speedlnterpolator animates the
actual reaction on a command and handles the overlap in
time space where the most recent reaction has the highest
priority. The speed will smoothly be animated to zero when
no command is received for a definable period of time. The
CarMovementBehavior class is triggered with each rendered
frame. It updates the position and orientation according to
the current state of the car and the time passed since the
last rendered frame. The state includes static properties like
the physical configuration of the car as well as dynamic
properties like speed, steering angle, and collision state.
The latter is controlled by the CollisionBehavior which is
detecting intersecting objects. For performance reasons, we

2Qpen source 3D graphics tool: http:/www.blender.org
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use simplified versions of the rendered models for collision

detection.
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Fig. 5.
animation of the virtual car.

We used Blender to readily compose the virtual scene
and we enriched it with freely available 3D models. Blender
can export the complete scene including models, materials,
textures, lights, and cameras to the X3D? standard. Further-
more, there is a loader component available for Java3D that
is capable of loading X3D encoded scenes into the scene
graph. Many other loaders either did not work properly or
only partially loaded the models. We used the X3D loader in
our application for models, materials, textures, camera, and

lights.

IV. MOTION-SENSED HAND GESTURE RECOGNITION

A. Pre-Recording and Pre-Selection of Gesture Classes

Behaviors for driver simulation and car movement controlling the

To estimate the detection algorithm parameters and evalu-
ate the detection performance, gesture data was recorded in
advance. For each class 20 to 40 individual instances were
acquired from two user resulting in a total of 1768 gesture
instances in 16 classes. From this initial set five classes
were selected to control the game. However, every player
may configure a personal set of gestures for controlling the
game. A brief description including a picture of the gesture
execution is presented in Tab. L.

The gesture classes included periodic, e.g. circular motion
of the hand, as well as non-periodic motions, e.g. pointing
with the hand. For periodic gestures begin and end of the
motion are defined arbitrary during execution in contrast to
non-periodic gestures, that can be described best as motion
event with a clear start end end point. Begin and end of
the motions were defined by annotating the recorded data in
a post-processing step. For periodic motions, the annotation
bounds were chosen arbitrary for each class, for non-periodic

motions the bound were defined to cover motion onset, e.g.
moving the hand up, and the rather static middle phase, e.g.
the actual pointing during a hand pointing gesture. The return

motion towards the hand rest position was excluded. This
is necessary since a natural driver would already spot the
gesture during the motion and not just after the hand returned
to the rest position. While being more natural, this approach
may lead to less distinctive gesture classes for the algorithm
since some cues from the hand motion are missing.

3Extensible 3D (X3D), ISO/IEC 19775:2004, http://www.web3d.org

TABLE I
DESCRIPTION OF THE CONSIDERED GESTURE CLASSES.

Class
name

Gesture
conduction

Gesture description

Overhead

Upward movement of the arm,
holding hand over head, sup-
ported by left hand, non-
periodic.

Stop

Opposed movement of the
lower arms bend at ~90 de-
grees from upper arms, starting
by moving towards each other
and return, hands in prona-
tion, non-periodic. Default ges-
ture for “Stop” command in the
game.

To me

Movement of the lIower arms
from extended position to-
wards the chest, return and re-
peat, hands in supination, peri-
odic. Default gesture for “Driv-
ing forward” command in the
game.

Away

Movement of the lower arms
from near chest position to-
wards extended position, return
and repeat, hands in pronation,
periodic. Default gesture for
“Driving backward” command

in the game.

Turn left

command in the game.

Turn right

command in the game.

Closer left

obstacle.

Left rotation movement of the
right arm, lower arm and hand
pointing down, periodic. De-
fault gesture for “Turn left”

Right rotation movement of the
right arm, lower arm and hand
pointing down, periodic. De-
fault gesture for “Turn right”

Left rotation of the lower right
arm, held in ~90 degrees of
the upper arm, hand in neutral,
periodic. Left hand held mo-
tionless was used to display an

Closer right

Right rotation of the lower
right arm, held in ~90 degrees
of the upper arm, hand in neu-
tral, periodic. Left hand held
motionless was used to display

an obstacle.

Sharp stop

neutral, non-periodic.
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Class
name

Gesture
conduction

Gesture description

Slow up-down movement of
the lower arms at ~90 de-
grees of the upper arm, hand
in pronation, periodic.

Slow down

Slow up movement of the
lower right arm at ~110..90 de-
grees of the upper arm, hand in
supination, periodic.

Arm up

Fast up-down movement of the
lower right arm at ~80..110 de-
grees of the upper arm, hand in
neutral, non-periodic.

Chop

Up-down movement of the ex-
tended arms, hand in pronation,
non-periodic.

Jump jack

Waving motion of the lower
right arm with hand at height
of head, periodic.

Wave

Pointing with extended arm in
line and height of shoulder,
hand in neutral, non-periodic.

Point

Inward-outward movement of
the lower right arm at ~90 de-
grees of the upper arm, hand in
neutral, periodic.

Sideways

B. Gesture Detection in Detail

Our system has to deal not only with the gesture classifica-
tion but also with the problem of gesture spotting. Thus the
control gestures need to be extracted from a continuous data
stream in which they are mixed with other random motions
(e.g. user scratching the head). Those other motions are
referred to as the "NULL class’. The difficultly of extracting
the relevant gesture stems from the fact that human arms
motions are very rich and subject of few constraints. As a
consequence, it is not possible to reliably model the NULL
class. This is in sharp contrast to, for example speech recog-
nition, where the NULL class consists essentially of silence
and some very seldom occurring sounds such as coughing.

Another issue are variations in the length of relevant gestures.
This means that a simple fixed sliding window search method
will not be able to identify all gestures. In a brute force
approach, sensor data may be scanned for relevant gestures
by considering each sample as potential gesture starting
point and each following sample as possible end. However,
considering practical data rates of 20 to 100 Hz this approach
is obviously not practicable for real time recognition, even
by constraining the search bounds.

The vast majority of related work in the area of ges-
ture recognition sidesteps the problems by defining specific,
simple to identify and often fixed length gesture start/stop
signals. As pointed out above, our aim is to keep interaction
as natural as possible so that such fixed start/stop markers
are not feasible.

In this paper we adapt and extend previous gesture spotting
work by our group ([18], [19]). Our method is based on
three main ideas: (1) using online piecewise linear approx-
imation segmentation of signal to reduce the computational
complexity of the search, (2) performing the search on a data
adapted, dynamically changing window size, and (3) fusing
classifiers with statistically largely independent sources of
errors to filter out false positives.

1) Data Segmentation: The procedure presented in this
work applies an online segmentation step to reduce the num-
ber of search points drastically. The algorithm utilized for this
step is Sliding window and bottom-up (SWAB) [20]. SWAB
works by moving a segment buffer along the data, linearly
returning segments and continuously adding new data. The
segmentation is obtained by testing the approximation of the
data signal by linear regression lines. A detailed description
can be found in Keogh et al. [20]. For the gestures used in
this work raw acceleration and gyroscope sensor axes were
used.

2) Feature Similarity Search: In the second step the
segmentation points are used to search for potential gestures
using a feature similarity detection algorithm. The search is
performed by comparing features of a data section under
investigation to a trained pattern. For a given segmentation
point, the history of sensor data is analyzed from a lower up
to an upper search bound. These bounds are determined in
the training step from minimum/maximum overlaps of the
annotated events and the segmentation points. The feature
comparison is achieved by computing the Euclidean distance
between the features of the data section under investiga-
tion during the search and the trained pattern. A distance
threshold, obtained during training, is used to omit unlikely
sections. The advantage of this algorithm is that it works as
a one class classifier. It can be applied to detect one relevant
class and it does not make any further assumption about the
data not included in the relevant class (NULL class). Multiple
instances of this feature similarity search can be used to spot
different classes independently, admitting an independent
feature selection for each class. Finally the obtained distances
are converted to confidences by normalization using the
distance threshold.
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3) Similarity Merging: In the third and final step, all
independent gesture detection results of the feature similarity
searches are merged. The algorithm used here is based on
a sliding buffer of gesture sections. Sections are entering
from the similarity search tasks. For each entering section
the collision (overlapping of the gesture section with sections
already in the buffer) are resolved in favor for the highest
confidence section. Sections are released from the buffer
after a timeout. We refer to this merging algorithm similarity
comparison. This step in the procedure works effectively as
a classifier, returning the most likely gesture section from the
independent search tasks.

This gesture detection and classification approach can be
customized to integrate very different gesture types. For the
gestures classes used in our work different SWAB segmen-
tations were utilized and individual feature sets were chosen
for each class. Furthermore the search bounds and distance
thresholds are adapted for each similarity search during
training. For the intended online gaming system delays must
be kept low. This was achieved by using relatively short
gestures and minimizing the buffers for the SWAB and
similarity comparison algorithms at the expense of a reduced
detection precision.

4) Integration with the CRN Toolbox: The three algo-
rithms for segmentation, feature similarity search and the
similarity comparison have been integrated as individual
tasks in the CRN Toolbox. Fig. 2 shows a data flow chart of
the individual detection tasks. For the ParkingMaster game
the tasks are used to spot relevant gestures online in the
continuous sensor data. The modularization of the detection
procedure permits fast reconfiguration for a certain set of
gestures. This can be used for personalization of the gaming
system. As detailed below, training data for all gestures was
acquired to determine the algorithm parameters in advance.

V. QUANTITATIVE PERFORMANCE EVALUATION

In order to evaluate the game, we analyzed the gesture
detection performance. Training and testing was performed
based on the previously recorded data sets. To account for
variations in the data set a 4-fold cross-validation procedure
was used to determine training and testing data set for the
detection procedure. For training 3 of 4 parts of the data
were used. Evaluation was performed on the left out data
part. This procedure was repeated until all 4 parts were used
for testing once. The boundaries of the parts were adapted
to avoid intersecting relevant gesture data sections.

To analyze the detection performance, we utilized the met-
rics Precision and Recall commonly used for evaluation in
Information Retrieval. These metrics are derived as follows:

Recognized gestures

Recall =
con Relevant gestures

(€Y

. Recognized gestures
Precision = Recognized gestures

(@)

Retrieved gestures

Relevant gestures corresponds to the manually annotated
number of actually conducted gesture instances in a class.

Retrieved gestures represents the number of gestures returned
by the algorithm. Finally, recognized gestures refers to the
correctly returned number of gestures. Higher values indicate
better performance for both metrics.

Tab. II presents a precision-recall evaluation for all
16 classes for single-user data. The evaluation is based on
the detection results returned by the similarity comparison
algorithm. Since single-user data was used the detection
performance corresponds to the result that can be achieved
when the system is trained for the user. It can be seen,
that the detection performs well for most of the classes:
scores greater than 0.8 can be achieved for both, precision
and recall. A small group of gestures (“Away”, “Closer left,
“Sharp stop”, “Point”) catch more insertions or miss events
(deletions) compared to the rest.

While the results for all 16 classes provide an overview
on the detection performance for each of the considered
gesture types, only five classes are used within the game.
We selected a default class configuration based on good de-
tection performance and intuitive applicability in the gaming
scenario. Fig. 6 shows the individual performance of the
selected classes. The result is based on data from two users
amounting to a total of 751 gesture instances contained in the
five classes. The results differ slightly from the evaluation
of all 16 classes since in this configuration, the similarity
comparison step is connected to five similarity search tasks
only. In this configuration a high recall is achieved for all
gestures, however at the expense of a low precision for the
gesture “Turn left”.

Stop 1

To me 1
2]

2 \

K Away 1
@)

Turn left 1

. I Precision | ‘

Turn right I Recall 1

0.1 02 03 04 05 06 07 08 09 1

Performance
Fig. 6. Precision-recall chart for the single-user evaluation of the default

gesture classes selected for the game. Best performance is found towards
high precision and recall.

Furthermore we evaluated the detection performance for a
new user of the game. This test corresponds to the hardest
scenario where the system must cope with gestures from a
not previously seen user. The evaluation was performed by
training the feature similarity algorithm with the gestures
from the first user and testing on the second. The procedure
was subsequently repeated by training on the second user.
Fig. 7 presents a performance comparison for the unseen-user
and single-user evaluations using the five default gestures.
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TABLE II
SUMMARY FOR THE SINGLE-USER DETECTION PERFORMANCE FOR ALL CLASSES.

Metric Classes
= o = a = M
E |22 |F 2] 8¢ : 3
— = e = = =
Sle |tz c|c| B B 5|z |c|8s|Els|z|3
S5|a | & | < | E&|E& | 0|0 |5 |sw|< |0 |2 |8&8|&|w>
Relevant | 33 37 147 | 145 | 268 | 154 | 175 63 129 | 103 87 46 68 47 148 [ 118
Retrieved | 41 38 148 | 119 | 274 | 156 | 260 58 152 | 103 75 38 57 48 125 | 129
Recognized | 33 34 143 | 119 | 256 | 153 | 173 58 124 | 103 75 38 57 47 117 | 115
Deletions 0 3 4 26 12 1 2 5 5 0 12 8 11 0 31 3
Insertions 8 4 5 0 18 3 87 0 28 0 0 0 0 1 8 14
Recall | 1.00 | 0.92 | 097 | 0.82 | 096 | 0.99 | 099 | 0.92 | 0.96 | 1.00 | 0.86 | 0.83 | 0.84 | 1.00 | 0.79 | 0.97
Precision | 0.80 | 0.89 | 0.97 | 1.00 | 0.93 | 0.98 | 0.67 | 1.00 | 0.82 | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 0.94 | 0.89

A sweep using different confidence thresholds was used to
create the precision-recall curves. The result clearly indicates
that a good performance is achieved for a user known to the
system by previous training. However, the system returns a
higher error rate for an entirely new user.
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Fig. 7. Precision-recall comparison (confidence threshold sweep) of the

single-user and unseen-user evaluations. This analysis is based on the default
game gestures. Best performance is found towards the top-right corner (high
precision, high recall).

VI. DISCcUSSION, CONCLUSION, AND FUTURE WORK
A. Evolving the Game and Our Implementation Prototype

Thanks to its unique user interface and despite its con-
ceptual simplicity, our parking game seems to enjoy broad
appeal. Nearly all test players (including ourselves!) report
the game to be entertaining and fun to play. Manifold ex-
tensions of play are possible, of course, and straightforward
to imagine: add other kinds of vehicles to park in, exact
timing, potential damage effects with audio-visual feedback,
different levels of ambient traffic on the road, and completely
new scenarios (e.g., controlling a virtual traffic cop).

Moreover, the game is quite educational by nature because
it requires real discipline and correct gesturing. Hence, we

might consider slight variations of our gaming setup as
a potential edutainment tool for learning how to gesture
correctly. Taking this idea a step further, the game and its
unique user interface might actually be interesting as a tool
for therapy of certain injuries and/or impairments.

As for implementation prototyping, the CRN Toolbox
proved its value. First and foremost, it hides the details of
how to manage the distributed gaming application overall
and how to interface to the sensors in particular. In addi-
tion, the toolbox also provides other kinds of middle-ware
functionality and a broad library of standard algorithms for
signal and data pattern processing. Last but not least, the
CRN Toolbox offers communication interfaces to different
programming languages (such as Java, C/C++, and MatLab)
on heterogeneous platforms. Thus, it is well suited for rapid
prototyping of demanding applications like the ones that we
envision for the realm of computer gaming.

B. Recognition of Motion-Sensed Gestures

We have presented a procedure to spot gestures online in
continuous data for controlling a 3D game. We subsequently
evaluated the recognition performance for two typical con-
figuration scenarios: single-user and unseen-user. The system
was able to detect the 16 different gesture classes from simple
motion sensors attached to a glove at one hand. The ges-
ture classes included periodic and non-periodic movements.
Since non-periodic gestures have different properties than
periodic, e.g. signals for movement begin and end, as well
as movement duration, they are difficult to detect with one
algorithm. However both performed well for the procedure
and scenario presented in this work. Due to the modular
concept the system can easily be extended to the second
hand or the whole body for other activity-based games.

The gesture spotting results indicate that the system works
very well in personally trained configurations (single-user).
As expected, the unseen-user evaluation indicated a drop
in detection performance. However in practical gaming the
system worked well. Here the performance difference was
subjectively less visible. This difference may be due to
the direct visual feedback in the gaming scenario whereas
data for this evaluation was gathered in advance without

38



Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

the running game. We plan to evaluate the system with
further users and analyze the variation of the detection
results, e.g. the influence of force and energy related to the
gaming situation. We expect that future game interfaces may
incorporate such information to adapt the detection or give
feedback to the user.

C. Usefulness of the CRN Toolbox

We used the parking game as a hands-on example for the
activity recognition tutorial at ISWC 2006, the Intl. Symp.
on Wearable Comp. (see http://www.ife.ee.ethz.
ch/~oam/projects/iswc2006/ for details). The ten
participants of the tutorial (re-)implemented the gesture
recognition and interfaced it with the rest of the game on
their own. All participants enjoyed substantial experience in
software engineering and programming, yet most were quite
new to the field of context recognition (8 out of 10). The
participants’ main complaints related to the lack of good
documentation for the CRN Toolbox. Other concerns pointed
towards a still somewhat clumsy syntax of the configuration
language and the need for a graphical user interface (GUI)
to better grasp and visualize the notion of connections. Both
these points are already remedied by now. On the positive
side, the participants liked the encapsulation of the toolbox
and found its concepts easy to understand even with only
minimal documentation.

We also employed the CRN Toolbox in practical classes
and three programming assignments at the University of
Passau in 2006. Each assignment spanned three days with
class times of 4h per day. Participants numbered 20 to 25
undergraduate students in their second year of study. Due to
the students’ lack of experience with programming in general
and context awareness in particular, we picked only “toy”
activity recognition tasks as exercises. Based on our favorite
wearable motion sensors, the assignments included cursor
control by trivial gestures, input of natural numbers, and
recognition of walking as opposed to sitting. Surprisingly,
several of the participants tackling cursor control managed
to extend their assignment towards gaming. They actually
implemented a working control to play simple classic games
like Tetris and Pong by means of real hand movements.
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