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Abstract— A combinatorial graph can be used to place a
geography on a population of evolving agents. In this paper
agents are trained to play Prisoner’s dilemma while situated on
combinatorial graphs. A collection of thirteen different combina-
torial graphs is used. The graph always limits which agents can
mate during reproduction. Two sets of experiments are performed
for each graph: one in which agents only play prisoners dilemma
against their neighbors and one in which fitness is evaluated
by a round robin tournament among all population members.
Populations are evaluated on their level of cooperativeness, the
type of play they engage in, and by identifying the type and
diversity of strategies that are present. This latter analysis relies
on the fingerprinting of players, a representation-independent
method of identifying strategies. Changing the combinatorial
graph on which a population lives is found to yield statistically
significant changes in the character of the evolved populations
for all the metrics used.

Keywords: Prisoner’s Dilemma, Spatial Algorithm, Evolutionary
Computation.

I. INTRODUCTION

The prisoner’s dilemma [15], [14] is a classic model in
game theory. Two agents each decide, without communication,
whether to cooperate (C) or defect (D). The agents receive
individual payoffs depending on the actions taken. The payoffs
used in this study are shown in Figure 1. In the iterated
prisoner’s dilemma (IPD) the agents play many rounds of
the prisoner’s dilemma. IPD is widely used to model emer-
gent cooperative behaviors in populations of selfishly acting
agents and is often used to model systems in biology [29],
sociology [22], psychology [28], and economics [21]. This
study continues a series of experiments that seek to understand
the dynamics of the evolution of agents that play iterated
prisoner’s dilemma. In [20], [25] the techniques for evolving
finite state automata to play the iterated prisoner’s dilemma
are studied. In [30], [9] a mechanism for permitting agents to
choose which agents they will play, and to refuse offers of
play from those they find unacceptable is developed. The key
point in these papers relevant to the current study is that the
limitation of partner choice enabled by cooperation and refusal
created a substantial increase in the level of cooperation that
appeared in the evolving agents.

In [12] a curious phenomenon was studied in which agents
permitted more time to evolve were found to gain in their
ability to defeat agents that had evolved for a shorter time
even though the agents were from separate evolutionary lin-
eages. The phenomenon was called non-local adaptation. A
later study [11] on the same phenomenon, with agents using
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tags, confirmed the result. These studies suggested that new
features appear over long evolutionary time. A later study
[13] demonstrated that there are strategies that only appear
after tens of thousands of generations of evolution, suggesting
one possible mechanism for non-local adaptation. The new
agent types were very similar to the always defect strategy,
but able to cooperate with copies of themselves, by using a
form of “password” encoded within the finite state machine
representation used. Non-local adaptation has been observed
in other contexts than the prisoner’s dilemma. It appears in a
model of competitive exclusion by plants in [18]. Non-local
adaptation is observed in agents playing the game divide the
dollar in [2]. An artificial predator-prey system is shown to
exhibit non-local adaptation in [8]. In [1] a population of
virtual robots given the task of painting a floor competitively
(in two colors) exhibit non-local adaptation.

In [31], [11] a technique called fingerprinting was developed
for identifying which strategies were present in a population
of evolved agents. This technique was used in [13], [5],
[6], [7] to understand which strategies arose in different
representations for agents. In [19] a continuous versions of
the IPD using a neural net representation is compared with the
usual discrete version of the game with finite state machines.
The study in [7], continued in [5], investigates the effect of
changing the representation used for a prisoner’s dilemma
agent. The representations covered by the two studies are
two version of feed forward neural nets (one biased at the
neuron level toward cooperation), Boolean parse trees [16],
with and without a one-step time delay operation, a linear
genetic programming representation called an ISAc list[10],
look-up tables, a type of Markov chain [27], and both a direct
and cellular [5] representation of finite state machines. The
change of representation, with other factors held as near to
constant as possible, yielded a change from 0% to 95% in the
probability that final populations were cooperative.

One clear implication of the literature reviewed is that the
details of how an evolutionary algorithm trains prisoner’s
dilemma agents can have a huge impact on the degree to
which cooperation emerges as well as the strategies that arise
during evolution. In this study an additional source of variation
in this regard is examined: geography. In [3], [17], [4] it
was shown that placing the population of an evolutionary
algorithm performing optimization on a combinatorial graph
can have a substantial effect on time to solution, over 9-fold
faster in some cases. Such algorithms are called graph based
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Fig. 1. The score matrix used for the prisoner’s dilemma in this study. Scores
are given for (Player 1,Player 2).

evolutionary algorithms (GBEAs). The geography specified
in the form of the combinatorial graph acted to modify the
flow of genetic information within the population. Different
graphs were shown to be the best (and worst) for different
problems. This study joins the GBEA line of investigation with
that investigating the evolution of prisoner’s dilemma playing
agents.

The experiments in this study will perform standard exper-
iments for evolving finite state machines to play the iterated
prisoner’s dilemma save that a graph will be used to restrict
mating of the agents and, in half the experiments, the set of
agents that they play against during fitness evaluation. Other
studies, e.g. [26], [24], [23], place a spatial structure on the
iterated prisoner’s dilemma. These studies used far simpler
representations than the eight-state finite state machines used
in this study. In addition some of the analysis tools used in this
study are quite recent and not available to the earlier studies.
In essence none of the other studies treat the same version of
spatially structured iterated prisoner’s dilemma.

The remainder of the study is structured as follows. In
Section II a brief introduction to graph theory is given and
the combinatorial graphs used in the study are defined. The
details of the evolutionary algorithm and analysis techniques
are given in Section III. Results are presented in Section IV.
Discussion and possible next steps are given in Section V.

II. MATHEMATICAL BACKGROUND

Some familiarity with graph theory is assumed. An excellent
reference in the area is [32]. The theory required in this study
is reviewed here. A combinatorial graph or graph G is a
collection V(G) of vertices and E(G) of edges where E(Q)
is a set of unordered pairs from V(G). Two distinct vertices
of the graph are neighbors if they are members of the same
edge. The number of edges containing a vertex is the degree
of that vertex. If all vertices in a graph have the same degree,
then the graph is said to be regular. If the common degree of
a regular graph is k, then the graph is said to be k-regular.
A graph is connected if one can go from any vertex to any
other vertex by traversing a sequence of vertices and edges.
The diameter of a graph is the largest number of edges in a
shortest path between any two of the vertices. The diameter
is, in some sense, the shortest path across the graph.

In this paper, a graph used to constrain mating and prisoner’s
dilemma play in a population will be called the population

™
U
P
KK

VALY

Ti26 Hy

Fig. 2. Examples of complete, Petersen, Torus, and hypercube graphs. Save
for the Petersen graph these examples are all smaller than the graphs actually
used but are members of the same families of graphs.

structure. The general strategy is to use the graph to specify
the geography on which a population lives, permitting mating
and, in half the experiments, play of the prisoner’s dilemma
only between neighbors. The goal is to study the impact this
has on the prisoner’s dilemma agents that evolve.

TABLE I
GRAPHS USED AND THEIR INDEX NAMES. INDEX NAMES ARE USED TO
INDEX THE GRAPHS IN FIGURES.

Graph | Index Name | Size | Regularity | Diameter
[P C32 32 2 16
Csa C32 64 2 32
Pis,1 P16-1 32 3 9
Ps21 P16-1 64 3 17
Pis,s P32.5 32 3 6
Psa 5 P32.5 64 3 7
Tas T4.8 32 4 6
Tx8 T8_8 64 4 8
Ty 16 T4_16 64 4 10
Hs HS5 32 5 5
Hsg Ho 64 6 6
Kso Complete 32 32 31 1
Kga Complete 64 64 63 1

A. List of graphs

This section provides some necessary mathematical defini-
tions and describes the combinatorial graphs used in this study.

Definition 1: The complete graph on n vertices, denoted
K, has n vertices and all possible edges. An example of a
complete graph is shown in Figure 2.
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Definition 2: The n-cycle graph, denoted C,,, has vertex
set Zj,,. Edges join pairs of vertices that differ by 1 (mod n)
so that the vertices form a ring with each vertex having two
neighbors.

Definition 3: The n-hypercube graph, denoted H,,, has the
set of all n-character binary strings as its set of vertices. Edges
consist of pairs of strings that differ in exactly one position.
A 4-hypercube is shown in Figure 2.

Definition 4: The n X m-torus graph, denoted T, ,,, has
vertex set Z, X Z.,. Edges are pairs of vertices that differ
either by 1 (mod n) in their first coordinate or by 1 (mod m)
in their second coordinate but not both. These graphs are nxm
grids that wrap (as tori) at the edges. A 12 x 6-torus is shown
in Figure 2.

Definition 5: The generalized Petersen graph with parame-
ters n and k, with k relatively prime to n, is denoted P, j and
has vertex set 0,1,...,2n — 1. The vertices 0,...,n — 1 are
connected in a standard n-cycle. The vertices n,...,2n—1 are
also connected in an n-cycle but with the ith vertex connected
to the (i k)th (mod n) vertex. Finally, pairs of vertices ¢, n+1
are connected. The graph Psj 5 is shown in Figure 2.

The graphs used in the study are given in Table I. They were
chosen to give a good selection of degree and diameter param-
eters with two population sizes, 32 and 64. The importance of
degree and diameter in optimizing evolutionary algorithms is
given in [17] while the impact of population size is shown to
be substantial in [13].

III. EXPERIMENTAL DESIGN

For each graph used in this study two sets of evolutionary
runs are performed. They differ only in the way in which
fitness is evaluated. In the neighbor fitness runs the fitness
of an agent playing iterated prisoner’s dilemma is evaluated
by having it play 150 rounds against each of its neighbors in
the graph. In the universal fitness runs fitness is evaluated by
having each agent play each other agent for 150 rounds. The
fitness recorded is the average score per play. The use of 150
rounds of play is intended to provide consistency with [25]
and other studies derived from it [30], [9].

Agents are implemented as 8-state Mealy finite state ma-
chines (FSMs). Each machine has an initial state and action
and a vector of eight states. Each state specifies an action and
next state in case of the opponent’s cooperation or defection.
A machine of the type used in this study is shown in Figure
3.

Evolution proceeds by generations. In populations of size
32 an elite of 20 machines are simply copied into the next
generation. In populations of size 64 this elite has a size of
40. The remaining machines are replaced as follows. For each
member of the population not in the elite a graph neighbor
is selected with fitness proportional probability. The non-elite
population member undergoes two point crossover of its vector
of states with the selected neighbor (the neighbor remains
unmodified). The initial state and action of the machine follow
its first state during crossover. The machine resulting from
the crossover is also subjected to a mutation. This mutation
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States:8.
Start:C->2

If C |[If D
0)C-> 2|D-> 4
1)C-> 7|D-> 3
2)C-> 2|C-> 5
3)C-> 3|D-> 2
4)C-> 3|D-> 1
5)C-> 4|D-> 4
6)D-> 0|C-> 0
7)D-> 7|C-> 0

Fig. 3. A finite state machine of the type used in this study. The machines
initial action is cooperation and its initial state is state 2. Actions and next
states are given in the form action — state in columns corresponding to an
opponent’s action of cooperation or defection.

changes the initial state 5% of the time, the initial action 5%
of the time, a transition to a next state 40% of the time, and an
action associated with a state 50% of the time. These values
provide consistency with previous experiments. Once all non-
elite population members have been replaced in this fashion
the algorithm continues to the next generation.

Each set of evolutionary runs contains 100 independent
trials each of which is run for 250 generations. At the end
of 250 generations the elite members of the final population
are saved for later analysis. The population fitness is saved in
each generation as well. A population is deemed cooperative
if its average fitness is 2.8 or more. This number is derived in
[30]. In play with finite state machines with 16 or fewer states,
a score of 2.8 or more indicates that defections are occurring
only in the transient portion of play. Finite state machines must
fall into a repeating loop of states and actions at some point
- the transient portion of play is the part before the repeating
portion.

Three forms of analysis are performed. In the first, the prob-
ability that a population is cooperative is estimated over the
100 independent runs performed for each graph and possible
fitness function. The second catalogs the elite strategies from
the final generation that arise for each graph and fitness func-
tion. This cataloging uses a technique called fingerprinting, ex-
plained subsequently. The third analysis examines each agent’s
responses in its finite state transition diagram and tabulates
the fraction of each type of possible response exhibited by the
evolved agents. The possible types of responses are to respond
to cooperation with cooperation (CC), to respond to defection
with defection (DD), to respond to defection with cooperation
(DC), and to respond to cooperation with defection (CD). Only
those responses that are accessible from an agent’s initial state
are tabulated. An alternative to this analysis would have been
to examine the actions that actually occurred during fitness
evaluation - and this alternative is neither better nor worse,
simply different. Tabulating the actions in the agent’s finite
state diagrams is a broader measure as it contains the agent’s
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full potential spectrum of behavior rather than its realized
behavior within its own population.

A. Fingerprinting

Fingerprinting is a method of extracting a functional sig-
nature from a prisoner’s dilemma playing agent that is inde-
pendent of the representation of the agent. Fingerprints are
explained in some detail in [11] and an example of how to
use Markov chains to compute exact fingerprints is given
there. The fingerprint of a prisoner’s dilemma strategy A
is the expected value per play if A plays forever against a
noise-modified version of Tit-for-tat. Tit-for-tat is a prisoner’s
dilemma strategy that returns the other player’s last move as its
current move. Tit-for-tat is modified by giving it a probability
x of cooperating no matter what it would normally have done
and a probability y of defecting no matter what it would
normally have done. The fingerprint is thus a function from
the possible values of = and y into the set of possible scores.
It is often possible to compute the fingerprint as a rational
function of the noise parameters x and y. The fingerprint of
Tit — for — tat, for example, is:

322 4+ Sxy + y2

@+ v)? W

Even when fingerprints cannot be computed exactly they can
be computed to a high degree of accuracy by sampling. In this
study, sampled fingerprints are used to place a metric space
structure on the space of prisoner’s dilemma strategies: the
Euclidean distance between points whose coordinates are the
scores at 25 sample points of the fingerprint function. This, in
turn, permits us to catalog the strategies, treating groups within
a radius smaller than the error in the sampling technique as
a group of identical strategies, so that we may compare the
populations that evolve on each of the graphs.

Fingerprinting is used in two kinds of analysis in this study.
A survey for well-known strategies was made, computing
their density in the final populations for each graph. The
well-known strategies used include ftit-for-tat (TFT), always
cooperate (AlIC), and always defect (AlID), which appear
throughout the literature. Psycho is the opposite of tit-for-tat,
returning the opposite of its opponents previous action. The
strategy tit-for-two-tats (TF2T) defects only if its opponent
has defected on the last two actions. The strategy two-tits-for-
tat(TTFT) defects on the two rounds after any defection by its
opponent. The strategy punish once (Punl) is defined in [6]
while the strategy Fortress 3 (Fort3) is defined in [13]. The
finite state transition diagrams for punish-once and fortress 3
are given in Figure 4.

Fingerprints are also used to compile an empirical diversity
measure based on the entropy of occurrence of strategies.
By comparing sampled fingerprints it is possible to compute
the fraction of strategies of each type that occurs. The types
themselves are not identified except as a fingerprint. These
fractions are then treated as probabilities of occurrence for
the strategies that do appear and the entropy of this empirical
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Fig. 4. Finite state transition diagrams for state-minimal representations of
punish once (top) and fortress 3 (bottom).

probability distribution P is found using:

entropy(P) = Y —p- Loga(p)
peEP

2

where the p € P are the probabilities of occurrence for
the strategies. The set of strategies for which the entropy
is computed is the aggregation of the elite part of all final
populations in generation 250.

The entropy of a probability distribution is the number
of bits required, on average, to describe a sample taken
from the distribution. Entropy grows as the number of types
present increases and it also increases with the evenness to
which population members are distributed among those types.
Entropy is thus a good scalar summary of the diversity of a
population. Entropy is a logarithmic measure of diversity so
that a difference of one in the entropies of two populations
represents a 2-fold difference in their diversity.

IV. RESULTS

Figure 5 gives 95% confidence intervals on the probability
that a final population will be cooperative for all graphs and
both fitness functions. This probability is computed across the
100 independent populations run for each graph and fitness
function. The clearest result is that populations in which the
fitness is evaluated by having the entire population play one
another are substantially more likely to become cooperative
than ones in which fitness is evaluated by playing only neigh-
bors. These two fitness functions are the same for the complete
graphs, in which all population members are neighbors, but for
all other graphs there is a statistically significant difference
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Fig. 5.
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Shown are 95% confidence intervals on the probability that a final population will be cooperative after 250 generations of evolution. The probabilities

shown on the left are for fitness evaluation in which agents play only their neighbors in the graph while the probabilities on the right are for fitness evaluation

in which all agents play one another.

in the probability of cooperative behavior when the fitness
function changes.

A less dramatic but still significant effect is that the prob-
ability of cooperative behavior increases with the number of
neighbors. This is true for both fitness functions. Finally, in
some cases such as Pjg; and P33, larger populations are
significantly more likely to cooperate than smaller ones when
the fitness function and number of neighbors are held constant.
There are no cases where the reverse is true, but there is not
a significant difference in the majority of the cases.

The graph T} s is anomalously cooperative when the fitness
function that plays only neighbors is used and it is anoma-
lously uncooperative for the other fitness function. None of
the graph parameters summarized in Table I suggest an easy
explanation for this and the anomaly has been noted for future
study.

Table II summarizes the density of a selection of well-know
strategies. For all graphs, strategies with a tit-for-tat finger-
print are the most common. As discussed in [6], fingerprints
measure only the asymptotic behavior of a strategy, not its
transient behavior, and so these large numbers of tit-for-tat
strategies probably contain variations that end up playing tit-
for-tat against most opponents after a small number of plays.
If we treat the probability that a population member will
have a tit-for-tat fingerprint (not exactly the same thing as
playing tit-for-tat) as a Bernoulli variable then row three of
Table II contains additional evidence that the graphs exhibit
significantly different behaviors as geographies for evolving
populations of prisoner’s dilemma agents (computations not
shown).
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TABLE III
POPULATION DIVERSITY AS MEASURED MY EMPIRICAL ENTROPY OF
STRATEGIES IN THE AGGREGATION OF ELITE FINAL POPULATIONS FOR
ALL RUNS FOR EACH GRAPH. RUNS WHERE FITNESS EVALUATION WAS
AGAINST NEIGHBORS ARE DENOTED WITH Nbr WITH POPULATION WIDE
FITNESS EVALUATION IS DENOTED WITH Uni. THESE ARE EQUIVALENT
FOR THE COMPLETE GRAPHS K32 AND K64.

Diversity of strategies in each graph.
| 32-member populations [[ 64-member populations
Degree | Graph | Nbr Uni Graph | Nbr Uni
2 C32 8.42 6.95 Co4 8.96 6.58
3 Pl16-1 8.21 717 P32_1 8.36 6.29
3 P16.5 8.10 6.41 P32.5 8.53 5.33
4 T8 4 8.01 7.39 T8 8 8.20 5.31
4 T16.4 7.78 591
5/6 HS 8.06 7.05 He6 7.89 5.21
31/63 K32 7.61 Ko4 5.69

The entropy-based diversities of the aggregated final popu-
lations for each graph and fitness function are shown in Table
III. Since the number of strategies is twice as large for the
64-member populations (with 40 member elites) as for the 32-
member populations (with 20 member elites) that the diversity
of corresponding graph types is slightly higher for all graphs
except the complete graph. This reversal of diversity in the
complete graph is consistent with the non-graph based results
in [13] for populations of size 6, 36, and 100.

Diversity is higher for the fitness function that uses play
against neighbors only in all graphs where the two fitness
functions were distinct. This difference is at its lowest for
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TABLE II
DENSITY OF WELL-KNOWN STRATEGIES IN THE AGGREGATION OF THE FINAL ELITE POPULATIONS FOR ALL RUNS ON EACH GRAPH.

[ C32 | Co4 | H5 | H6 [ P61 | P165 | P32,1 | P325 | Ti64 | T84 | 183 | K32 | K64
Neighbor Play
AlIC 0.021 | 0.018 | 0.011 | 0.012 | 0.016 | 0.019 | 0.014 | 0.017 | 0.017 | 0.013 | 0.015 | 0.003 | 0.002
Alld 0.034 | 0.025 | 0.013 | 0.009 | 0.032 | 0.028 | 0.031 0.019 | 0.022 | 0.026 | 0.026 | 0.006 | 0.001
TFT 0.199 | 0.205 | 0.243 | 0.300 | 0.214 | 0.235 | 0.265 | 0.240 | 0311 | 0.243 | 0.275 | 0.270 | 0477
Psycho | 0.002 | 0.004 | 0.003 | 0.004 | 0.003 | 0.003 | 0.002 | 0.005 | 0.001 | 0.004 | 0.002 | 0.001 0
Punl 0.004 | 0.002 | 0.004 | 0.006 | 0.003 | 0.004 | 0.003 | 0.004 | 0.006 | 0.005 | 0.007 | 0.005 | 0.002
TF2ZT | 0.002 | 0.006 | 0.005 | 0.003 | 0.006 | 0.003 | 0.003 | 0.004 | 0.005 | 0.002 | 0.003 | 0.001 | 0.003
2TFT 0.001 | 0.001 | 0.001 0 0.001 0 0 0.001 | 0.001 | 0.001 0 0.001 0
Fort3 0 0.001 | 0.001 0 0.002 | 0.001 0 0 0 0 0 0.010 0
Universal Play
AIC__[ 0004 | 0 [ 0001 [ 0.002 [ 0.001 | 0.004 | 0 [ 0.001 [ 0.00I | 0.002 | 0.001 | 0.003 | 0.002
Alld 0.003 | 0.001 | 0.002 | 0.001 | 0.002 | 0.003 | 0.001 0.002 0 0.005 | 0.001 | 0.006 | 0.001
TEFT 0336 | 0403 | 0329 | 0.532 | 0312 | 0.399 | 0.434 | 0.526 | 0461 | 0.296 | 0.518 | 0.270 | 0477
Psycho | 0 0 0 0 [ 000l | © 0 0 | 0001 [ 0001 0 | 000l O
Punl 0.001 | 0.001 | 0.003 | 0.002 | 0.004 | 0.004 | 0.002 | 0.002 | 0.002 | 0.001 | 0.003 | 0.005 | 0.002
TF2T 0.002 | 0.001 | 0.001 | 0.001 | 0.003 | 0.003 | 0.002 | 0.001 | 0.001 0 0.003 | 0.001 | 0.003
2TFT 0 0 0 0 0 0 0 0 0 0 0 | 000l | 0
Fort3 0 0 0.001 0 0.020 | 0.002 0 0 0.009 0 0.004 | 0.010 0
Ty 4 where there is 53% (28917739 = 1.53) greater diversity. TABLE IV

The largest diversity difference is 919%, for P33 5.q

The fraction of actions of each of the four possible types are
summarized in Table IV. The “unused” portion of the finite
state machines was not incorporated into this tabulation; only
actions that the agent could take against some opponent were
tabulated. For every graph in which the two fitness functions
were different (i.e. not the complete graphs K¢ and K32) the
fraction of CC transitions is higher for the fitness function
in which an agent plays all other agents. Since there are 11
such graphs this is significant with p = 2% = 0.0005. This
is the strongest pattern in these data. It is worth noting that
the complete graphs, the most cooperative, are also the least
forgiving; the DC action is forgiving because it represents an
unanswered defection.

V. DISCUSSION AND NEXT STEPS

For all three metrics, probability of cooperative behavior
in the final population, density of well-known strategies, and
entropic diversity of all strategies the choice of graph made
a significant difference in the character of prisoner’s dilemma
agents evolved. This difference made by changing the set of
opponents used to evaluate fitness (neighbors as opposed to
all agents) is also substantial. The choice of the contact graph
for mating in a population of prisoner’s dilemma agents can
change the probability of cooperative behavior from zero to
about 95%. This is startlingly similar to the range caused by
changing the representation as demonstrated in [5], [6], [7].
This high level of change appeared only in the experiments
using the fitness function that evaluated an agent’s fitness
by having it play only its neighbors. The impact for the
other fitness function was slightly less than half as large. As
in earlier studies, what might appear to be a detail of the
simulation has a potentially dominant impact on its outcome.

Cooperation was found to be more likely both when agents
played larger numbers of partners during fitness evaluation
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THIS TABLE SUMMARIZES THE FRACTION OF TRANSITIONS ACCESSIBLE
FROM THE AGENT’S INITIAL STATE, TABULATED ACROSS ALL AGENTS, OF
THE FOUR POSSIBLE TYPES. THIS TABULATION IS PERFORMED FOR EACH

GRAPH AND FITNESS FUNCTION. THE ACTIONS ARE OF THE FORM
opponent’s action agent’s response SO THAT DC, FOR EXAMPLE,
REPRESENTS RESPONDING TO DEFECTION WITH COOPERATION. THE TWO
FITNESS FUNCTIONS ARE IDENTICAL ON THE COMPLETE GRAPHS.

Response Types

Graph [ CC | DD [ DC | CD

Neighbor Fitness
C32 0.3231 | 0.292 | 0.177 | 0.208
C64 0.3335 | 0.288 | 0.166 | 0.212
H5 0.3799 | 0.279 | 0.120 | 0.221
H6 0.4053 | 0.271 | 0.095 | 0.229
P16-1 | 0.3377 | 0.298 | 0.162 | 0.202
P16.5 | 0.3545 | 0.281 | 0.146 | 0.219
P32_1 | 0.3489 | 0.290 | 0.151 | 0.210
P32.5 | 0.3761 | 0.281 | 0.124 | 0.219
T16-4 | 0.3695 | 0.282 | 0.131 | 0.218
T84 0.3690 | 0.284 | 0.131 | 0.216
T8.8 0.3794 | 0.282 | 0.121 | 0.218

Complete Graphs
K32 0.3978 | 0.278 | 0.102 | 0.222
Ko64 0.4085 | 0.265 | 0.092 | 0.235

Universal Fitness
C32 0.3904 | 0.290 | 0.110 | 0.210
C64 0.4037 | 0.293 | 0.096 | 0.207
H5 0.4079 | 0.271 | 0.092 | 0.229
Ho6 0.4038 | 0.269 | 0.096 | 0.231
Pl16_.1 | 0.3854 | 0.288 | 0.115 | 0.212
P16.5 | 0.4012 | 0.280 | 0.099 | 0.220
P32_1 | 0.4178 | 0.277 | 0.082 | 0.223
P32.5 | 04100 | 0.264 | 0.090 | 0.236
T16-4 | 0.4237 | 0.279 | 0.076 | 0.221
T84 0.3990 | 0.273 | 0.101 | 0.227
T8-8 0.4193 | 0.267 | 0.081 | 0.233
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and when they had a larger choice of available breeding
partners. This observation holds for both fitness functions. It
also echoes the conclusions of [23], even though this used
a radically different fitness function in which agents played a
new, randomly selected opponent in each round of the iterated
prisoner’s dilemma. The most uncooperative populations were
for populations of size 64 on the two highest diameter graphs:
C64 and P32_1 with diameters of 32 and 17 respectively. The
very strong effect of the all agents fitness function yielding
higher levels of cooperation was echoed in the higher fraction
of agent actions consisting of reciprocated cooperation.

Figure 6 shows the three most common strategies, other than
tit-for-tat, for K64 using fitness against all other agents. The
finite state machines shown are representative; the strategies
realized in these agents has many possible finite state forms.
One advantage of fingerprinting is the ability to capture be-
havior rather than specific representation. These agents share a
number of properties. Against a nice opponent (one that never
defects first) they cooperate indefinitely. This cooperative
behavior has small cross section to mutation occupying the
initial action and one transition in the first two machines and
the initial action and two transitions in the third machine.
The first two machines are modest modifications of tit-for-
tat. Neither will answer cooperation with defection, ever.
Against an opponent that always defects they will permit
an unanswered defection every fourth time (first machine)
and every third time (second machine). The third machine
permits three unanswered defections (more if they are mixed
with cooperations in the right proportion) but when too many
unanswered defections happen it falls into a state that plays
tit-for-tat. All three of these machines can coexist well with
copies of themselves and with the most common strategy in
the experiments, tit-for-tat. These machines suggest a possi-
ble classifying principle for nice machines: the fraction of
unanswered defections they will tolerate when playing against
an opponent that always defects. For tit for tat and the third
machine in Figure 6 the answer is “none”. For the first and
second machines it is one-quarter and one-third respectively.

The largest effect detected in this study is the impact of
changing the fitness function. In all experiments mating was
limited by a combinatorial graph. In half the experiments,
opponents used to evaluate fitness were limited by the same
graph while in the remainder all pairs of distinct agents
played one another during fitness evaluation. Having different
breedings and interaction graphs might yield very different
results and is worth investigation.

This study clearly demonstrated a substantial impact that
results from modifying the geography limiting play and/or
mating for evolving prisoner’s dilemma agents. This paper is
one of a series that seek to understand how the details of
an evolutionary algorithm changes the trajectory of evolution
from overall behaviors such as the emergence of cooperation
to small details like the identity and character of strategies that
actually arise during evolution. A great deal of work remains
to be done. First of all, many factors that might have an
impact similar to that of representation, duration of evolution,

or geography remain to be investigated. A systematic study of
the impact of variation operators and elite size that otherwise
matches the experimental design of the existing studies in this
area might be valuable, for example. Before plunging ahead
with such a study, however, a standard for how to report
prisoner’s dilemma studies is needed. Among those things that
clearly should be reported are:

1) Representation or encoding. The data structure used to
encode the strategies should be clearly recorded. The
depth of memory and space of possible strategies should
be reported when this is possible.

2) Fitness function. The fitness function should be clearly
specified. In this study the sum over 150 rounds of play
with each opponent was used as the fitness function. In
[23] an intriguing fitness function motivated as interac-
tions between tourists and souvenir shop owners with a
new random partner selected in each play was used.

3) Model of evolution. The algorithm for selection of
structures for reproduction and for placement of new
structures to update the population must be specified.
This includes population size, selection method, and
elite fraction if any.

4) The presence of randomness, both in the form of vari-
ation operators, noise during play, and randomness in
selection of opponents, should be reported.

5) The duration of the experiment, in mating events, gen-
eration, and/or fitness evaluations should be reported
as well as the synchronous or asynchronous nature of
population updating.

6) The exact payoff matrix used for the iterated prisoner’s
dilemma.

In addition to reporting the design of the experiment so that
a standard set of features are reported so and to permit com-
parison, some metric for evaluating experiments are needed.
A diffident suggestion of possible metrics are:

1) The fraction of populations that are cooperative together
with the definition of cooperative. For the finite state ma-
chines and payoff matrix used in this study, population
mean fitness in excess of 2.8 is a reasonable definition
of “cooperative”[30], but for other representations this
threshold may not be a good one.

2) The fraction of paired moves of the types CC, DD, CD,
and DC that occurred in the final generation or in other
epochs of the experiment.

3) The identity of strategies that arise. Fingerprinting [31],
[11] is a method of doing this but others can be
developed.

4) The level of diversity, e.g. agent count entropies of the
sort used in this study.

For any such standards to be broadly used they must be
community based and developing a standards group for the re-
porting the design and outcome of game-theoretic experiments
done with evolutionary computation is probably a worthwhile
undertaking.
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Fig. 6.

common strategy was tit-for-tat.
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