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Abstract— In the Iterated Prisoner’s Dilemma (IPD) game,
players normally have access to their own history, without
being able to communicate global information. In this paper,
we introduce information sharing among players of the IPD
game. During the co-evolutionary process, players obtain access,
through information sharing, to the common strategy adopted
by the majority of the population in the previous generation.
An extra bit is added to the history portion in the strategy
chromosome. This extra bit holds a value of 0 if the decisions
to cooperate were greater than the decisions to defect in the last
generation and 1 if otherwise. We show that information sharing
alters the dynamics of the IPD game.

I. INTRODUCTION

Real life situations exhibit complex behaviors that affect
the decisions of all parties involved. Simple games with rich
dynamics have been used to understand emergent behaviors
in complex situations. The Prisoner’s Dilemma (PD) game,
despite its simplicity, has been used extensively in modeling
several complex real-world problems such as in international
politics, economics and social systems [3].

In the age of globalization, whether to share information
or not is becoming an important, sometimes controversial,
issue. Regardless of the different views on the topic, with
the existence of media, internet, and laws such as freedom
of information, information sharing is becoming an inevitable
concept that we cannot avoid.

Information sharing has the potential to create a shared
understanding of the world [12]. The process of information
sharing includes both the provision of information as well
as the confirmation of the validity of previously received
information [12].

The Iterated Prisoner’s Dilemma (IPD) game has been
used as a platform for understanding the dynamics of many
complex situations. Oh [11] modeled internet searching agents
as players in the IPD game, where these players seek to
acquire a certain piece of information from the internet. If
players act selfishly, each will send a lot of queries to different
sites and this will increase the traffic and waste common
resources (sites). However, if these players cooperate and share
information (not just the information found from search results
but information also about the strategies used for search), the
resources (sites) will be wisely used.

In the IPD game, there has always been an assumption that
players have access to their own history, without being able to
communicate global information. In this paper, we introduce
information sharing among players of the IPD game. During
the co-evolutionary process, players obtain access, through

information sharing, to the common strategy adopted by the
majority of the population in the previous generation. An extra
bit is added to the history portion in the strategy chromosome.
This extra bit holds a value of 0 if the total decisions to
cooperate was greater in number than the decisions to defect
in the last generation, and 1 if otherwise. This extra bit
represents the information shared by all players and has
the effect of doubling the length of the chromosome. The
information shared between players remains constant for a
complete generation. We investigate the effect of information
sharing with different history steps and different temptation
levels. The effect of noise in the shared information is also
studied.

The rest of the paper is organized as follows: in the
following section, we introduce the IPD game. Experiments,
results and discussions then follow.

II. ITERATED PRISONER’S DILEMMA

The Prisoner’s Dilemma (PD) game is a non-zero sum and
non-cooperative game. The basic form of the PD game is a
two-player game where there is a single available choice to
each player: to cooperate or defect. The payoff matrix of the
PD game (Figure 1) must satisfy two conditions related to the
payoff values for different actions that may be taken by each
player [8], [14]:
• T > R > P > S
• 2×R > (S + T )

Fig. 1. The payoff matrix of the 2-player PD Game.

The PD game models the conflict between self interest
(being selfish) and the group interest; hence the dilemma. An
individual rationality alone leads to a poor outcome because
of the existence of a Pareto optimal solution if both actors
cooperate. Iterated Prisoner’s Dilemma (IPD) is a series of
repeated rounds of the PD game. This feature makes the PD
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game more capable of modeling complex situations where
future interaction between the actors is influenced by their
history during playing the game [3], [1], [2]. For sufficiently
large weight (discount factor) for future interactions, coop-
eration can emerge spontaneously. This is a very interesting
characteristic to observe how cooperation may evolve among
a group of potentially selfish players [14]. In many real-world
situations, the evolution of cooperation is considered the best
solution for the long run because it represents the maximum
benefit for the group or society. As such numerous studies have
been conducted of the dynamics of the IPD game in order to
discover under what conditions cooperation evolves.

Understanding the properties of successful strategies in
IPD is vital to our understanding of the dynamics of the
game. Axelrod [3], [1] attempted to discover the properties
of successful strategies in 2-players PD game through the
formation of a computer tournament of 14 strategies that were
submitted by different researchers. The tournament was held
in a round robin form (each strategy plays with each other
strategy including itself and the RANDOM strategy). Axelrod
discovered that properties like “to be nice” (not to be the first
to defect), “to be forgiving” (have propensity to cooperate
after others defection avoiding defection echo that will lead to
unending mutual punishment) and “to be provocative” (not to
be exploited) existed in the top ranked strategies. The winner
TIT FOR TAT (TFT) strategy (start by cooperation and then
do whatever the other player does) depends on reciprocity.
Axelrod held a second tournament [2] after announcing the
results and analysis of the first one, 62 strategies participated
and the winner was again TFT. The results of the second
tournament was very surprising because all participants knew
the results of the first tournament but no one could get a better
performing strategy than TFT.

A more sophisticated way was needed to investigate the
conditions of cooperation. Axelrod [1], [5] proposed the idea
of using genetic algorithms to evolve more complex strategies.
These strategies co-evolve in a population of competitive
strategies.

Lindgren [10] started with very simple strategies and used
Genetic Algorithms (GA) to evolve them to more complex
ones. Axelrod [4], [5] used GA for evolving strategies where
the strategy representation contains a history portion which is
used in remembering the players’ actions for the previous l
history steps. If there were 3 players and two history steps,
then the history portion will consist of 6 bits (2 bits for
each player indicating her own previous actions and 4 bits
indicating the other players’ actions). The rest of the strategy
representation will be a lookup table of size 2nl where n is
the number of players. Each possible combination of a history
has a corresponding action.

Yao and Darwen [14] proposed another representation that is
more space-effective than Axelrod’s representation in n player
games. In their representation, the history portion in the strat-
egy representation will hold the players own history and the
number of players who cooperated in each of the considered
historical steps. This representation overcomes the drawbacks

of Axelrod’s representation like keeping unnecessary informa-
tion about each player’s action and the chromosome length
that is significantly affected by the number of players [14].
The rest of the strategy chromosome is also a lookup table.

Different ways for evaluating the fitness of the evolving
strategies were suggested. Axelrod [4], [5] used 8 represen-
tative strategies from his second tournament, similarly in [9],
six fixed strategies (ALLC, ALLD, TFT, TFTT, PAVLOV and
RANDOM) were used in evaluating the fitness, where these
six strategies provide a good mix of cooperators, defectors
and strategies utilizing memory. Darwen and Yao [7], [14],
[8] used co-evolution for evaluating the fitness, where each
strategy in the population plays against every other strategy
in the population, causing the environment to continuously
evolve.

Darwen and Yao [7] used a GA to investigate the time
needed for the population to converge and the effect of seeding
the initial population with well known strategies such as TFT.
Also in [14] the effect of the number of players and the
number of history steps taken into account on the evolution
of cooperation were discussed. Yao [13] studied evolutionary
stable strategies (Collective Stability [3]), where strategies are
called stable if they can’t be invaded by other strategies.

Vital features were neglected in the PD abstraction formu-
lation like the possibility of communication between players
and uncertainty about the other players’ previous actions [3].
Introducing new features to the PD game and considering
different scenarios for the game were very helpful to move the
PD game closer to modeling complex real world situations.
Introducing different levels of cooperation in the PD game
and investigating their influence on the emergence of full
mutual cooperation was investigated in [8]. The introduction
of multiple levels of cooperation into IPD helps in studying
the dynamics of real-world situations that offer intermediate
responses between full cooperation and full defection. Chang
and Yao [6] introduced noise to the IPD game, investigated the
effect of different (low and high) noise levels and how model-
ing mistakes in the players’ decisions influence the evolution
of cooperation and the behavioral diversity in the multiple
levels of cooperation (how different the played choices are in
the game). Also studied was the effect of reputation on the
dynamics of the game [15] where information about players’
past actions are available for future opponents.

III. EXPERIMENTS

We used GA for investigating the interplay of information
sharing and temptation level on the dynamics of IPD. A
population of 101 strategies is initialized randomly. Axelrod’s
representation [4], [5] is used (sufficient for 2-players PD
game). Each player is evaluated by playing against each other
player in the population; hence, each player plays (N − 1)
2-players IPD game. Each game lasts for a certain pre-defined
number of rounds equal to 100 in our experiments.

After all players finish playing against each other, each
player is awarded a cumulative payoff from the played games.
The fitness is calculated by dividing a strategy’s cumulative
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payoff by the number of games it participated in multiplied
by the number of rounds in each game to obtain the average
payoff per round for this strategy.

Linear ranking selection is used where a new fitness is
calculated for each strategy according to its position in the
population, with the smallest average payoff ranked at the first
position and the highest average payoff at the last position.
Equation 1 is used, with SP denoting the selection pressure.
We set SP to 1.25 in our experiments. We then apply
a one-point crossover and bit mutation for generating new
offspring with probabilities of 0.6 and 0.01 respectively. These
parameters settings were used by Yao and Darwen [14].

Fitness(Pos) = 2−SP +2∗(SP−1)∗ (Pos− 1)
(PopSize− 1)

(1)

We experimented with three different history lengths of
0, 1, and 2 for different temptation levels. To decide on
an appropriate temptation level, we need to maintain the
conditions of the PD game. If we substitute R + t for T ,
we can get a bound on t as 0 < t < R− S. Therefore, if we
use R = 3, S = 0 and P = 1, the temptation t is 0 < t < 3.
We experimented with 6 different values of t as follows: 0.1,
0.5, 1, 1.5, 2 and 2.5.

In the case of information sharing, there are 1010000
decisions taken per generation. If the total number of decisions
to cooperate was greater than the number of decisions to
defect, the extra bit will hold 0, otherwise 1. As this is a 2-
player game, there is no way to have an odd number to avoid
ties; hence our arbitrary choice of assuming that a 50-50 split
in number of decisions is interpreted as a global choice of
defect.

IV. RESULTS AND DISCUSSIONS

We used a zero-history with different temptation levels to
validate the code. The results shown in Figure 2 indicated, as
expected, that defection is the Nash-equilibrium in this setup.
The temptation level, regardless of how small it is, had no
impact on the level of defection.

We then tested a history length of one and two respectively,
with different temptation levels. Once more these experiments
were designed to validate our code and to establish the basis of
comparison against information sharing. The results were con-
sistent with the literature. Cooperation becomes the dominant
strategy with low temptation levels. As the temptation level
increases, the percentage of the population cooperating (as
being indicated by the average payoff) decreases. Interestingly,
at a high level of temptation (2.5), cooperation is still the
dominant strategy in the population despite the minority who
are trying to exploit the dominant cooperative behavior.

The effect of different temptation levels become clear in
one and two history step(s), where, as the temptation level
increases, the player’s temptation to defect becomes higher,
this makes the average payoff drop as the level of cooperation
decreases (Figures 3, 4). The decrease in the average payoff
in early generations is a normal behavior reported in the

Fig. 2. The average payoff in 30 runs for Zero history steps and temptation
level 0.1

literature, as at the first generations the defective strategies
exploit the cooperative ones until all the existing strategies in
the population become defective ones and no more exploitable
strategies exist, then cooperation starts to evolve as players find
that cooperating pays more than defecting.

By introducing information sharing, all players have access
to a shared view for what was the majority type of decision
in the last generation. This shared information represents the
public belief for a certain issue. In the real-world this belief
can be affected by several things like media or news coverage.
Our investigation of the effect of information sharing in PD
raises an important question about the effect of this on the
evolution of cooperation. We observed that the addition of
information sharing led the average payoff per-step to decrease
as shown in Figure 5 compared to Figure 3 and also in Figure
4 compared to Figure 6.

Several studies have been conducted to investigate the
effect of noise, whether this noise represents mistakes made
by players or the wrong (opposite) implementation for the
players’ chosen action. Here we considered noise acting on
the information shared among the players, the noise level
(probability) is evaluated per player. This mimics disinfor-
mation or mistakes in media coverage of events, affecting
the general public’s view of a certain issue. Investigating the
impact of noise on public opinion, and the results that stem
from such opinions, and in particular how the degree of noise
in information impacts decisions is an important area.

TABLE I

A SAMPLE OF THE BEST STRATEGY FOR DIFFERENT TEMPTATION LEVELS

AND HISTORY OF 1.

Temptation level Strategy
0.1 c d d d
1.5 c d c d
2.5 c d d d

In order to investigate what type of strategies evolved in
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Fig. 3. The average payoff in 30 runs for One history step and different
temptation levels: 0.1, 1.5 & 2.5

different scenarios, we analyzed the best strategy evolved in a
sample run. Table I shows the strategies’ structure neglecting
the history portion when information sharing is not used.
As we considered one of the best strategies (higher payoff),
this strategy is intending to defect to exploit the cooperative
strategies in the population. Although at temptation level 0.1

Fig. 4. The average payoff in 30 runs for Two history steps and different
temptation levels: 0.1, 1.5 & 2.5

in one history a higher cooperation level is obtained, the best
strategy just cooperates if the history was mutual cooperation
otherwise it defects. This means that the strategy is not
a forgiving one and will defect forever once the opponent
defects.

Adding information sharing (Table II) for the same pre-
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Fig. 5. The average payoff in 30 runs at One history step considering
Information Sharing and different temptation levels: 0.1, 1.5 & 2.5

vious scenario has no effect on the best strategy actions
for low temptation levels. The strategy gives priority to its
own game history, so if the shared information indicates that
the population was a cooperative one and the game history
holds any defection, the strategy will be to defect and if the
shared information was that the population is defective and

Fig. 6. The average payoff in 30 runs at Two history steps considering
Information Sharing and different temptation levels: 0.1, 1.5 & 2.5

the game history was mutual cooperation, the strategy will be
to cooperate.

But as the temptation level increases to 1.5, the information
sharing effect becomes more significant where if the shared in-
formation showed that the population is cooperative and there
is a mutual defection in the game history, the strategy action
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Fig. 7. The average payoff in 30 runs at One history step considering different
noise levels in Information Sharing and temptation level of 1.5

will be to cooperate giving a second chance for cooperation,
and also if the general impression was that the population
is defective and there is any defection in the game history,

TABLE II

A SAMPLE OF THE BEST STRATEGY FOR DIFFERENT TEMPTATION LEVELS

WITH INFORMATION SHARING AND HISTORY OF 1.

Temptation level Strategy
0.1 c d d d c c d d
1.5 c d c c c d d d
2.5 c d c d c d c c

the strategy will be to defect even if the player himself was
the one who defected in the last round and the opponent was
cooperative. This indicates why, with information sharing, the
cooperation level becomes lower.

At the highest temptation level of 2.5, the Information
sharing effect becomes lower as the direct payoff of the players
will affect their actions in a more significant way. So if the
shared information was that the population is cooperative, and
the game history was a mutual defection then the strategy
action is to defect.

TABLE III

A SAMPLE OF THE BEST STRATEGY FOR DIFFERENT TEMPTATION LEVELS

WITH DIFFERENT NOISE LEVELS IN SHARED INFORMATION, HISTORY OF 1

AND TEMPTATION 1.5.

Noise level Strategy
0.01 c d c c c d d d
0.1 c d c d c d d c
0.5 c d c d c d d d

By introducing noise to the shared information, the infor-
mation sharing began to lose its significance, so for temptation
level 1.5 and noise level of 0.1 (Table III), if the shared
information indicates that the population is cooperative and
the game history holds a mutual defection then the strategy
action will be to defect, neglecting what was announced about
the population nature and not providing an opportunity for
cooperation to evolve. Another noteworthy item is for mutual
defection of the player combined with prior information that
the population is primarily defective, yet the strategy action
selected is to cooperate. This may be a random mutation.
As the noise level increases, the impact of the information
sharing - which caused a drop in the cooperation level - is
reduced, and the cooperation level starts to increase again
as shown in Figure 7. However, we also tried a noise level
of 1 (reversing the information completely), the level of
cooperation is reduced (Figure 7). This scenario is symmetric
to the 0 noise level scenario, as such the information sharing
impact returns.

Overall, information sharing has its highest impact on the
dynamics of the IPD game when the temptation level is
medium. With low temptation level, the dynamics do not
change. With high temptation level, it seems that the short
term eagerness of players to maximize their immediate utilities
is more important than information sharing. When noise in
information sharing is introduced, it seems that there is a slight
gain in the level of cooperation.
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V. CONCLUSION AND FUTURE WORK

This paper introduced the concept of Information Sharing
to the Iterated Prisoner’s Dilemma Game. Information Shared
is the globally available information about the most common
action - cooperate or defect - pursued by the population in the
previous generation. Experiments were conducted to determine
the impact of information sharing on the evolution of strategies
and in particular the evolution of cooperation as a strategy.

Perhaps surprisingly, the addition of information sharing led
to a decrease in cooperation over the non-information sharing
case. Whether this is a global phenomenon or dependent on
parameters of the experiment is currently unclear. The infor-
mation sharing impact may differ by varying the population
size and/or the length of the games (number of rounds).
Moreover, changing the type of the shared information and
the basis on which this information is shared could also affect
the dynamics. Initial exploratory experiments have indicated a
coupling between information sharing and population size in
terms of overall player strategy.

The addition of noise to Information Sharing - effectively
uncertainty or error in the communication of what was the
previous generation’s most common strategy - was also ex-
amined. It was discovered that noise ameliorated the impact
of information sharing, such that at high enough noise levels
cooperation returned to its previous, pre Information Sharing,
high levels.

Considerable further work is possible in this area. A deeper
examination of the impact of information sharing and the
strategies that emerge for its exploitation, a richer or perhaps
more timely update of global information about the community
of player’s actions, as well as examining how information
sharing interacts with spatialised or graph structured versions
of the IPD, all appear fruitful avenues of pursuit. In particular
immediate emphasis is being given to the interplay of popula-
tion size and rounds played with information sharing; as well
as alternate mechanisms and criteria for information sharing.
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