
A Comparison of Genetic Programming and

Look-up Table Learning for the Game of Spoof

Mark Wittkamp, Luigi Barone, and Lyndon While
School of Computer Science & Software Engineering

The University of Western Australia
{wittkamp,luigi,lyndon}@csse.uwa.edu.au

Abstract— Many games require opponent modeling for op-
timal performance. The implicit learning and adaptive nature
of evolutionary computation techniques offer a natural way to
develop and explore models of an opponent’s strategy without
significant overhead. In this paper, we compare two learning
techniques for strategy development in the game of Spoof, a
simple guessing game of imperfect information. We compare
a genetic programming approach with a look-up table based
approach, contrasting the performance of each in different
scenarios of the game. Results show both approaches have
their advantages, but that the genetic programming approach
achieves better performance in scenarios with little public
information. We also trial both approaches against opponents
who vary their strategy; results showing that the genetic
programming approach is better able to respond to strategy
changes than the look-up table based approach.

Keywords: Imperfect Information Games, Spoof, Oppo-
nent Modeling, Genetic Programming, Look-up Table

I. INTRODUCTION

In games of imperfect information, players do not have

complete knowledge about the state of the game and must

make value decisions about their relative strength using only

the public information available to them. Due to their non-

deterministic nature, the task of programming satisfactory

artificial opponents for these types of games is extremely

difficult. The large branching factors result in significant

combinatoric explosion in their game trees, rendering stan-

dard search techniques (e.g. minimax) less useful.

Spoof is a simple game requiring players to guess an

unknown number using only partial knowledge about the

number and publicly announced guesses by other play-

ers. Like the games of Roshambo and Iterated Prisoner’s

Dilemma (IPD), opponent modeling (construction of a model

of an opponent’s playing style, typically in order to exploit

inherent weaknesses in their play) in the game of Spoof is

crucial. Given a model of an opponent’s strategy, the model

can be analysed to discover weaknesses and predictabilities

in the opponent’s strategy and a counter-strategy determined.

Evolutionary computation is the term used to describe the

different computational techniques that employ the principle

of neo-Darwinian natural selection as an optimisation tool

to solve problems with computers. The inherent learning

capabilities of natural selection, capable of learning and

adapting in dynamic and noisy environments, make evolu-

tionary approaches well-suited to the application of strat-

egy development for play against differing and potentially

adapting opponents in games. Indeed, the application of

evolutionary computation techniques for opponent modeling

in games of imperfect information has led to some notable

successes [1], [2], [3], including the game of IPD [4], [5].

Genetic programming is one such form of evolutionary

computation. Introduced by Koza [6], this paradigm defines

genetic operators (crossover, mutation, and fitness propor-

tionate selection) directly over tree-like computer programs,

thus offering practitioners the opportunity to evolve complex

programs without having to define the structure or size of

the genetic material in advance. Nodes in the tree represent

functions in the evolving computer program, and terminals

(leaves of the tree) represent either variables, constants, or

zero argument functions with side-effects. Genetic program-

ming has been used for a myriad of problems [7], [8], [9],

including strategy development in games [10], [11].

In our previous work [12], we proposed the use of genetic

programming to create computer Spoof players capable of

learning and exploiting weaknesses in different opponent

playing styles in order to develop successful strategies for

play. In this paper, we compare the performance of our ge-

netic programming approach to an approach based on look-

up tables — learning via observation of the correct action

for the different possible game states a player may face. In

doing so, we also present extensions to our original genetic

programming approach, allowing strategies to be developed

for all guessing positions. Additionally, we examine the

choice of fitness function used during evolution, comparing

a fitness function based on win ratios versus one based on

how well a learned model that of the opponent.

The rest of the paper is structured as follows. Section II

introduces the game of Spoof in more detail, explaining

the mechanics of how the game is played. In Section III,

we introduce our adaptive approaches for building computer

Spoof players through genetic programming and look-up

table learning. Section IV compares the performance of these

learning techniques, contrasting the advantages and disadvan-

tages of both. Section IV also examines choices regarding the

number of fitness samples used in the evaluation of individual

strategies and different forms the fitness function may take.

Section V concludes the work.

II. THE GAME OF SPOOF

Spoof is a game of imperfect information played by two

or more players. The game begins by each player selecting

63

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

1-4244-0709-5/07/$20.00 ©2007 IEEE

a number of tokens (typically coins) from 0 to 3 (called

the player’s selection), which remain hidden from all other
players. In turn, each player attempts to guess the total

number of coins held by all players (called the player’s guess)
with the constraint that no player may repeat a previous

player’s guess. The winner of the game is the player who

correctly guesses the total number of coins. If no player

guesses the correct total, the game is deemed a draw and

is typically repeated (with the guessing order altered).

At first thought, the game may seem purely random and

little can be done other than to guess the maximum of

the probability distribution of possible totals. However, as

players announce their guesses, they may well be providing

information about the number of coins they have selected.

For example, consider a two player game where the first

player guesses a total of 5. Assuming rational play, this

player must have selected either 2 or 3 coins, otherwise

a total of 5 would be impossible. The second player can

now use this information in making their guess, and should

announce a total of 2 or 3 plus their own selection. Using this

approach, the player improves their chances of immediately

winning the game (without replay) from 25% (with no

information about the first player’s selection) to 50% (with

knowledge that the first player’s selection is one of two

possibilities). Similar analysis is possible for other game

states in Spoof [13], but the analysis becomes exceedingly

more complex as the number of players increases.

Observe that the position in the game a player acts
(announce a guess) induces a trade-off between what infor-

mation is available and opportunity to guess a total. Being

first to act means all possible totals are available to be

guessed, but no information about the number of coins each

player has selected is available. Being last to act provides

maximal information about the selections of the other players

(and, assuming rational play, may well mean the total can

be determined with a high degree of certainty), but the

correct total may well have already been announced by

another player. A clear trade-off arises — acting first provides

minimal information, but maximal opportunity; acting last

provides maximal information, but minimal opportunity to

guess the correct total.

Opponent modeling in the game of Spoof is crucial for

optimal performance. For example, consider the problem

of acting first in three player Spoof. A general strategy

for acting in this position is to guess the number of coins

one is holding plus 3 (as 3 is probabilistically the most

likely outcome for the total of the remaining players’ coins).

However, this strategy is only sound if both opponents choose

their hidden coins uniformly randomly. Consider instead, if

both opponents tend never to hold 2 or 3 coins. The previous

strategy now performs poorly, and a better opponent-specific

strategy should be used instead (a better strategy will be to

guess 1 or 2 more than the number of coins being held).

Indeed, our experience has shown that human players often

do not select their coins randomly (preferring certain coin

choices or patterns over others), and more typically, provide

information about their selection in the way they guess (it is

especially the case that human players use the same guessing

algorithm time and time again).

III. BUILDING ADAPTIVE SPOOF PLAYERS

This section will provide a brief overview of how we

develop artificial computer Spoof players using both learning

methods — genetic programming and look-up tables.

As the focus of our investigation is on the examination of

learning techniques, we do not attempt to build a complete

Spoof playing strategy in this work. In particular, we ignore

the problem of coin selection, instead forcing our computer

players to select uniformly randomly from the range [0 .. 3].

This of course may be a poor choice (being able to alter the

probability distribution of totals may well be advantageous),

but since our test players will be non-responsive, allowing

our computer players to select non-randomly would provide

them with an unfair advantage. We instead force our com-

puter players to select uniformly randomly, requiring them to

use their intelligence to learn countering strategies in order

to maximise performance instead of simply exploiting the

non-intelligence of its opponents.

A. Genetic Programming

Genetic programming maintains a population of potential

solutions which can be ranked in terms of their efficacy

through an evaluation function which provides selection

pressure. The population goes through a number of genera-

tions, whereby the population of program-trees evolve toward

optimality as a result of selection pressure.

In our approach, guessing strategies take the role of

individuals in our evolving population. Guessing strategies

are represented in the form of a program-tree, consisting of

both float and boolean types with a float at the root node.

The evaluated program-trees are cast to an integer when the

strategies are called upon to produce a guess. Invalid guesses

(guesses having already been announced by a previous

player) are automatically converted to the nearest available

guess. This allows for less complex program-trees, as they

need not be burdened with the additional task of ensuring

unique guesses. Recall, coin selection is made uniformly

randomly within the allowable range (0 to 3 inclusive).

We allow the genetic programming system the use of

four numerical constants (0, 1, 2, and 3 to represent the
four possible coin-held values), standard arithmetic operators

(addition, subtraction, multiplication, and division), standard

comparison operators (greater-than, less-than, and equal-

to), and boolean operator nodes (negation, conjunction, and

disjunction). Also, a conditional selection mechanism (the if
function) is included to select between sub-programs of the

genetic programming player (GP Player). Note that the if
function expects three arguments, the first a boolean condi-

tion, and the second and third two sub-programs (the second

parameter sub-program is evaluated if the first parameter

evaluates to true, otherwise the third parameter sub-program

in evaluated). To enable our evolving player to make an

informed guess, we equip the genetic programming system

64

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

with a number of game-specific terminals that can be used in

a candidate solution’s program-tree. These are: the number

of players in the game, the number of coins that the player

has selected, and the announcements of each player prior to

the GP Player. The depth of a program-tree is limited to 10.

To reduce the effects of noise (recall the information-

opportunity trade-off inherent in the game), we use a fitness

function based on the accuracy of the player’s desired guess,
not the actual number of wins scored by the strategy (all

players must reveal their secret selections at the end of game

in order to determine the winner). This means fitness is

not a direct measure of success in the game, but instead

measures how well the implicit model of the opponent (via a

countering strategy) fits. In Section IV-E we experiment with

a fitness function based on the actual number of games won

instead of this pseudo-success measure. Should the genetic

programming system need to choose between solutions with

the same fitness, the solutions are ranked in order of program-

tree size, with preference given to solutions with a smaller

(parsimonious) program-tree size.

B. Look-up Table Learning

Look-up table learning is a form of reinforcement learning

that can be used for learning state-action pairs from previous

observations, effectively learning how to play a game by

remembering the outcome of previous games. For Spoof,

look-up table players (LU players) maintain a table of
weights, one for every permissible guess that can be made
for every possible game state (i.e. the player’s own selection

along with the announced guesses of all opponents that have

already guessed). For example, when guessing third in three

player Spoof, a look-up table player will maintain a table of

400 weightings — one for every possible game state: every

possible total for the announcements made by the first and

second players (0 through 9), every possible personal coin

selection (0 through 3), and each possible guess that could

be made (0 through 9). One obvious disadvantage of look-up

table learning is scalability — the required table size grows

rapidly with increasing game size, influenced both by the

number of players and the guessing position of the player.

All weights in a LU player’s table are initialised to zero

and are incremented by one when that particular guess was

found to be correct. When asked to make a guess, the LU

player checks its weight table, selecting the response with

the highest weight. If no such guess exists, a guess is chosen

uniformly randomly from the set of all permissible guesses.

Should a player’s desired guess be unavailable, the nearest

available guess will be chosen automatically. As with the GP

player, only the accuracy of the guess is taken into account

— the fitness of a player is entirely based on its desired

guess regardless of whether or not that guess is unavailable

due to it having already been guessed.

We have made the learning of the LU player as close

as possible to that of the GP player in order to make

comparisons fairer and their results more meaningful. Both

the GP and LU players are able to learn only implicit oppo-

nent models of all opponents as a single entity, rather than

developing individual opponent models for each opponent it

plays against. Like the GP players, LU players make their

selection uniformly randomly. As a baseline, the GP system

is given 5000 generations to learn, each of which involves

playing 1000 games for each of its 50 individuals. For equity,

LU players are given the same total number of games to learn

an appropriate opponent model.

IV. EXPERIMENTAL RESULTS

In our previous work [12], we applied the genetic pro-

gramming paradigm to the construction of computer Spoof

players to evolve guessing strategies that maximise winnings

against its opponents. We demonstrated through experiments

that very effective guessing strategies were evolved, obtain-

ing theoretically optimal strategies in most test cases, and

near-optimal strategies otherwise. Our approach was for a

game of simplified Spoof, considering only games of three

players with our learning player guessing last (i.e. maximal

information) and most of the hand-coded players used in

training had deterministic guessing strategies.

In this paper, we compare the learned strategies of com-

puter Spoof players constructed using genetic programming

with those using a look-up table approach. In comparing the

two learning players, we revisit our earlier work and consider

a less restricted game environment, with our adaptive players

playing in all different guessing positions. We also consider

a broader range of fixed-strategy computer opponents for our

adaptive players to play against, with particular emphasis on

more players with non-deterministic guessing strategies.

We experiment with how our adaptive players are able to

adjust to new environments, having already converged on a

strategy for play in a different environment. We also recon-

sider our original means of evaluating our learning player’s

fitness, experimenting with the number of fitness samples

used in player evaluation, and also the actual function used

to measure success. With the latter, we contrast two different

fitness functions — a direct-success fitness measure, based on

the number of actual games won, and secondly, the pseudo-

success measure we used previously that measures how well

the learned model of an opponent fits reality.

A. Computer Opponents

To test how well our approaches are able to learn different

opponent strategies, we create a number of fixed-strategy

Spoof players for our learning players to play against. All

players cast their guess values down to an integer before

submitting them to the Spoof game engine as their guess.

In the event of a desired guess already being taken, the

game engine will automatically choose the closest integer

to the desired value, checking first above and then below

the desired value by ever increasing amounts until a unique

value is selected.

The selection and guessing strategies for these players are

detailed in Table I. This table uses the following terminology:

c denotes the selected number of coins held by the player,

n denotes the number of players in the game, and x is the

player’s guessing position. With exception to I and O, all

65

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

TABLE I

SPOOF OPPONENTS USED IN THIS STUDY

Table Opponent Selection Guessing Strategy
1 Peak (P) Randomly from [0 .. 3] The maximum of the probabilistic distribution of possible totals

assuming all players have selected randomly (i.e. 1.5n).
2 Better Peak (BP) Randomly from [0 .. 3] The maximum of the probabilistic distribution of possible totals

assuming all players have selected randomly, factoring in its own
number of coins (i.e. c + 1.5(n − 1)).

3 Low Peak (LP) Randomly from [0 .. 3] The same as BP except it assumes the lower average of 1 for each
player rather than 1.5 (i.e. c + 1(n − 1)).

4 High Peak (HP) Randomly from [0 .. 3] The same as BP except it assumes the higher average of 2 for each
player rather than 1.5 (i.e. c + 2(n − 1)).

5 Inside (I) 1 or 2 The same as BP.
6 Outside (O) 0 or 3 The same as BP.
7 Responsive (S) Randomly from [0 .. 3] Assumes previous opponents have guessed the maximum of the

probabilistic distribution of possible totals after factoring in their own
coins (i.e. like BP and its derivatives) and “reverse engineers” their
guess in order to infer the number of coins held by the player (cx),
using 1.5 if the inference suggests an infeasible amount. Assumes also
that the total for all the remaining players will be the maximum of
the probabilistic distribution of possible totals. Final guess is then:
(
P

x−1

1
cx) + c + 1.5(n − x), where x is integer position of the

player. Behaves like BP when first to act.
8 Random (R) Randomly from [0 .. 3] Uniform random guess in the feasible range of totals, factoring in its

own number of coins (i.e. [c .. 3(n − 1)] inclusive).
9 Uniform Better Peak

(UBP)
Randomly from [0 .. 3] The same as BP except this player returns a randomised guess by

adding a uniform random value between [-n .. n] inclusive.
10 Gaussian Better Peak

(GBP)
Randomly from [0 .. 3] The same as BP except this player returns a randomised guess by

adding a random Gaussian value with a mean of 0 and a standard
deviation of n/2.

11 Uniform Responsive (US) Randomly from [0 .. 3] The same as D except this player returns a randomised guess by adding
a uniform random value between [-n .. n] inclusive.

12 Gaussian Responsive (GS) Randomly from [0 .. 3] The same as S except this player returns a randomised guess by adding
a random Gaussian value with a mean of 0 and a standard deviation
of n/2.

fixed players select their number of coins uniformly ran-

domly within the allowable range [0 .. 3]. Players P, BP, LP,

HP, I, O, and S all use deterministic guessing strategies based

on the information available to them (their own selection, the

number of players in the game, and the announced guesses

of each opponent that is guessing beforehand). Players R,

UBP, GBP, US, and GS all use non-deterministic guessing

strategies. Non-deterministic guessing strategies are more

difficult to counter due to the additional noise involved when

attempting to build a model of the opponent strategies.

Many of our experiments are concerned with training our

adaptive players to play in a certain table. We define the term
table to represent a game of Spoof where a single adaptive

player plays in a fixed guessing position against its opponent

players (each of which being identical opponents taken from

table I). Our adaptive players build collective models of

all its opponents, and as such, the individual components
are irrelevant. Although not reported here, experiments with

mixed opponents have shown results consistent with the

findings reported here.

The notation for players evolved for play in these tables is

in the form GPxy where x indicates the table of opponents

used in training, and y indicates the guessing position of

the evolved player. As an example, GP42 represents a GP

player trained against two High Peak (HP) players, playing

(guessing) in second position. This numbering convention

also applies to our look-up table players except that GP is

TABLE II

THE EFFECTS OF THE NUMBER OF GAMES PER FITNESS EVALUATION ON

PERFORMANCE FOR THE GENETIC PROGRAMMING SYSTEM FOR THREE

PLAYER SPOOF, GUESSING THIRD

Table 100 games 500 games 1000 games 2000 games
2 45 47 46 47
4 51 50 55 28
7 45 47 47 40
8 45 45 45 33
12 40 40 44 38

replaced with the LU prefix.

B. Number of Games Per Fitness Evaluation

In our first series of experiments, we experiment with

varying the number of games played in order to evaluate

individual strategies per generation of the genetic program-

ming system. As the results of games are stochastic, multiple

games must be played in order to get a reasonable measure

of the “goodness” of a strategy. From this series of games,

a strategy’s fitness can then be determined by counting the
number of times the strategy returns an incorrect total. We

experiment with varying the number of games played in

determining evolutionary fitness.

The evolution of GP43 is shown in Fig. 1 with varying

numbers of games used in evaluating the fitness of an

individual: 100, 500, 1000 (as in our previous work), and

66

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000

F
itn

es
s

(%
)

Generation

average of generation
best of generation

best of run

(a) 100 games

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000

Generation

average of generation
best of generation

best of run

(b) 500 games

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000

Generation

average of generation
best of generation

best of run

(c) 1000 games

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000

Generation

average of generation
best of generation

best of run

(d) 2000 games

Fig. 1. The effects of the number of games per fitness evaluation on the evolution of GP43

2000. As expected, due to the increased level of noise, Fig. 1

shows that the best of generation plots are more erratic and

differ by greater amounts from the average when using less

games per fitness evaluation.

While at first glance it might seem that the 100 game

scheme produces the best individual, it is important to re-

member that the fitnesses reported in Fig. 1 do not reflect the

“true” fitness of an individual, but instead report the fitness

from a limited number of samples. A fairer comparison of

the performance of GP43 (and other evolved strategies) using

varied numbers of games per fitness evaluation is shown in

Table II. This table reports the percentage of winning games

(with drawn games repeated) for the best solution found in

each experiment played over one million games.

Table II shows there is not a lot of difference between

the 100 and 500 game evaluation schemes. However, the

stronger selection pressure of 1000 game scheme seems

to be advantageous, as can be witnessed by the improved

performance at tables 4 and 12. This of course comes at the

obvious cost of playing more games.

Table II shows one other interesting result. While one

would expect that using more games per fitness evaluation

would benefit learning (the amount of noise in the evaluation

process is reduced by the greater sampling), the opposite is

indeed observed for the 2000 game scheme. When using

2000 fitness samples, a distinct disadvantage is witnessed;

the resultant players are typically significantly worse than

those evolved using a lower number of games per fitness

evaluation. The reason for this result is that with too much

selection pressure, the lack of diversity among the population

limits exploration. The lack of noise in the evaluation scheme

causes the population to prematurely converge, becoming

“trapped” in inferior regions of the solution space. This

finding supports the conclusions made by Darwen, where he

showed that it is possible to “over-sample” in the game of

Backgammon [14]. A trade-off is indeed induced; with lower

selection pressure the evolving population has more diversity

allowing for a more diverse search of the solution space, but

we also increase the likelihood that promising individuals are

not included in the following generation.

One final observation can also be made concerning the

complexity of solutions. With a fewer number of games

per evaluation there is a greater chance that individuals

will finish with the same overall fitness. When this occurs,

secondary selection pressure (parsimony) will have a greater

effect, resulting in simpler program-trees in these cases. This

is confirmed by analysing the complexity of the resultant

solutions. For GP43 using the 100 game scheme, the final

evolved program consists of 32 nodes. However, strategies

evolved for the same table using 1000 and 2000 games per

evaluation produced strategies containing 62 and 205 nodes

respectively.

C. Performance Comparison for Three Player Spoof

In this section, we compare the learning and achieved

win rates for both learning techniques for three player

Spoof, playing in first, second, and third guessing positions.

Drawn games are repeated with the guessing order remaining

unchanged. In our previous work [12], we showed that our

genetic programming approach was able to evolve strategies

equal to or better than any of the hand coded non-adaptive

strategies. Furthermore, by comparing each evolved strat-

egy to the corresponding theoretically optimal countering-

strategy, we showed that the strategies developed by the

genetic programming system achieved optimal performance

in most cases and near-optimal performance otherwise.

Table III reports the percentage of games won from one

million games (draws are replayed) by the best solution found

by both learning techniques at each of the tables for the

different guessing positions in three player Spoof. Consistent

with our earlier work, analysis of these experiments reveal

that the adaptive methods produce the most successful play-

ers across all tables, reaffirming that specialisation is required

for optimal play in Spoof. For brevity, results relating to the

performance of the fixed strategies, as reported in [12], are

not shown here.

In comparing the two learning approaches, Table III re-

veals that when guessing in first position for three player

Spoof, GP players outperforms LU players. When playing

in second position, GP players still outperforms LU players,

but only by a marginal amount. However, Table III shows

that in third position, the strategies learned by the LU players

surpass those evolved by the GP players, allowing the LU

players to obtain a higher level of performance (games won)

than the GP players.

Recall that the later that a player is to act, the more

potentially useful information there is to consider in making

a decision (the announced guesses of the previously acted

67

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

TABLE III

PERFORMANCE OF BOTH LEARNING TECHNIQUES AT EACH TABLE FOR

THREE PLAYER SPOOF

Table (x) LUx1 GPx1 LUx2 GPx2 LUx3 GPx3

1 36 43 39 41 35 37
2 31 36 31 35 48 46
3 39 40 39 41 58 57
4 39 43 43 41 60 55
5 61 62 50 61 47 47
6 73 73 62 67 56 56
7 27 27 29 40 47 47
8 42 49 45 47 47 45
9 48 50 46 48 49 46
10 41 43 42 42 44 44
11 45 48 47 48 47 49
12 39 40 41 42 49 44
Avg 43 46 41 42 49 47

opponents), and hence the more complex the guessing algo-

rithm will potentially need to be. Given the restricted size

of the program-trees that can be evolved by a GP player

(the depth of a program-tree is limited to 10 in our genetic

programming system), we suspect that in these situations the

GP players are unable to produce a program-tree of sufficient

complexity to encode all required responses. In contrast, LU

players maintain a separate action for every possible game

state, allowing for a full mapping from every game state to

desired action without affecting other game states. Perhaps

the limit on functional complexity for our GP players account

for the relatively weaker performance when compared to the

LU players.

Further experiments have confirmed this theory. In Ta-

ble III, we see that GP43 has the lowest relative performance

compared to its look-up table based equivalent, winning only

55% of games played compared to the 60% achieved by

LU43. Extending the maximum tree depth to 15 changes the

result — GP43 now achieves a 60% win ratio of games,

equal to that of the LU player. Indeed, all GP players match

the performance of the LU players with this new maximum

program-tree depth.

D. Strategy Analysis

It is often quite difficult to understand the expressions

produced by the genetic programming system by inspection

alone. Simplification helps, however some evolved strategies

still remain quite complex even after removing redundant

sub-expressions. As an alternative to inspection of the resul-

tant algorithm, we can instead choose to analyse a strategy

visually by examining the guesses made by the strategy for

every possible game state (every combination of the variables

potentially making up a player’s strategy) — for three player

Spoof guessing last, this is the first player’s guess, the

second player’s guess, and the number of coins selected by

the player. This graphical form also allows us to visualise

the behaviour of our look-up table players, which have no

associated function that controls their guessing algorithm.

Figs 2 and 3 visually depict the learned strategies for play

at table 6 trained when guessing third for the genetic pro-

gramming and look-up table approaches respectively. Despite

their drastically different strategy plots, these two strategies

are in fact both optimal players for table 6 (achieving the

maximum number of wins possible for that position at the

given table; again, see our earlier work [12] for a definition

of optimality in this context).

Recall, the GP system bases its guess on the result of

evaluating a program-tree, hence explaining the “regular”

pattern for the resultant guessing algorithm. LU players

amend their playing strategy on a case-by-case basis, thus

resulting in the erratic landscape seen in Fig. 3.

E. Comparison of the Different Fitness Functions

In past experiments, we evaluated our evolving strategies

based on the accuracy of the learned model of their op-

ponents (i.e. how well the opponent is able to predict the

correct total), instead of simply just the number of games

won by a strategy (note that these two may differ due to

correct guesses already being taken). This was done in hope

of minimising the effects of “luck” (due to the stochastic

nature of the game), which may hinder the learning process.

In this section, we revisit this choice, exploring the use of

a more direct (but more noisy) fitness function based solely

on the actual number of wins scored by a strategy.

While the pseudo-success measure has it advantages (it

is less susceptible to noisy outcomes), it also suffers its

own problems. For example, when using a pseudo-success

measure, there is no distinguishing between a false guess that

results in the loss of a game and a false guess that merely

requires a game to be replayed. Also, as an artifact of using

a pseudo-success measure, a correct guess that leads to a win

is weighted the same as a correct guess in a game scenario

where losing was inevitable anyway. These instances induce

their own version of noise in the learning process.

Obviously if a learning player is to learn based on the

number of times it wins, then drawn games must also

be accounted for. We decided to disregard drawn games

completely, and simply replay draws until a winner emerged.

Of course, to be fair, these games are counted amongst the

1000 game training set. The reason we choose to disregard

drawn games is that the true “value” of a draw would vary

from strategy to strategy; for example, replaying in a situation

where we win 50% of games is much better than replaying

in a situation where we win only 10% of the time.

Fig. 4 compares the fitness evolution for GP23 for

three player Spoof using both direct-success evaluation and

pseudo-success evaluation, reporting the number of games

lost by the best of generation individual. Note that while

these values can not be compared directly (the two evolving

strategies, by definition, use different fitness measurements),

we plot in Fig. 4 the number of games lost for both players,

even though the pseudo-success measure is actually used for

evaluating one of them.

For the direct-success measure, a rapid decrease in fitness

is realised in the first 100 or so generations of Fig. 4,

followed by a gradual decrease until about generation 2300.

After this time, no notable improvements occur. In contrast,

using the pseudo-success measure, the development of a

68

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

 0 1 2 3 4 5 6 7 8 9
g1 0 1 2 3 4 5 6 7 8 9

g2
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

GP63’s Desired Guess

(a) Selection = 0

 0 1 2 3 4 5 6 7 8 9
g1 0 1 2 3 4 5 6 7 8 9

g2
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

GP63’s Desired Guess

(b) Selection = 1

 0 1 2 3 4 5 6 7 8 9
g1 0 1 2 3 4 5 6 7 8 9

g2
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

GP63’s Desired Guess

(c) Selection = 2

 0 1 2 3 4 5 6 7 8 9
g1 0 1 2 3 4 5 6 7 8 9

g2
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

GP63’s Desired Guess

(d) Selection = 3

Fig. 2. Visual representation of strategy GP63

 0 1 2 3 4 5 6 7 8 9
g1 0 1 2 3 4 5 6 7 8 9

g2
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

LU63’s Desired Guess

(a) Selection = 0

 0 1 2 3 4 5 6 7 8 9
g1 0 1 2 3 4 5 6 7 8 9

g2
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

LU63’s Desired Guess

(b) Selection = 1

 0 1 2 3 4 5 6 7 8 9
g1 0 1 2 3 4 5 6 7 8 9

g2
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

LU63’s Desired Guess

(c) Selection = 2

 0 1 2 3 4 5 6 7 8 9
g1 0 1 2 3 4 5 6 7 8 9

g2
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

LU63’s Desired Guess

(d) Selection = 3

Fig. 3. Visual representation of strategy LU63

 450

 500

 550

 600

 650

 700

 750

 800

 850

 0 1000 2000 3000 4000 5000

Lo
ss

es
 P

er
 1

00
0

G
am

es
 (

B
es

t o
f G

en
er

at
io

n)

Generation

pseudo-success evaluation
direct success evaluation

Fig. 4. Performance of the direct-success and pseudo-success fitness
measures for the evolution of GP23

relatively good strategy is much slower, with the corre-

sponding learning player making all of its progress at three

“milestones” at roughly generations 100, 500, and 1000.

There is no real improvement made after this point, with

the player’s performance remaining effectively constant until

finishing with a win percentage roughly equal to that of the

direct-success measure (at about 47%).

We observe that while the direct-success player learns at a

much faster rate initially, its performance stagnates after the

initial improvement, only gradually improving to its optimum

at around generation 2300. In contrast, the pseudo-success

player obtains its optimum performance much sooner, some

1300 generations prior to the direct-success player at around

generation 1000. Indeed, Fig. 4 shows that the direct-success

approach learns much faster earlier in the run, gaining the

initial advantage before being surpassed by the pseudo-

success measure in the early-to-middle stages of the run,

until eventually catching up again towards the middle of the

run, finishing with equal performance to the pseudo-success

measure. Although only reported for GP23, this pattern

is consistent for the other tables; direct-success evaluation

having the initial advantage, but taking longer to reach the

eventual optimum win rate.

The reason for the initial divergence in performance of

the two schemes is due to the requirements imposed by

each. Using the pseudo-success measure, a player needs to

learn to guess correctly for all possible game states, not only
the game states the player can win (as is the case using

direct-success evaluation). With direct-success evaluation,

a player can realise a rapid improvement in performance

by learning the correct actions of only a subset of the

game states required by the the pseudo-success measure, in

essence allowing a player to build up successful functionality

faster. The extra “burden” imposed by the the pseudo-success

measure impedes the initial performance (measured only

by wins) of a player using this scheme, but the additional

information gained from the inevitable losses allows players

using this scheme to obtain their optimal performance much

sooner than the direct-success approach. The training process

is longer because the learning player must consider a greater

body of knowledge, however it is from this that it is able to

more accurately model its opponents.

One may expect that because of this, players evolved

using a direct-success measure will consistently perform

better. However as Table IV shows, the two schemes produce

strategies that are usually about equal in performance. Ta-

ble IV reports the percentage of wins achieved by strategies

evolved by the genetic programming system using both

fitness measurement schemes. The percentages are based on

69

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

TABLE IV

PERFORMANCE OF THE DIRECT-SUCCESS AND PSEUDO-SUCCESS

FITNESS MEASURES FOR DIFFERENT TABLES

Table GPx3 GPx3

(x) Direct success Pseudo-success
1 37 37
2 46 46
3 55 57
4 57 55
5 47 47
6 53 56
7 47 47
8 45 45
9 46 46
10 43 39
11 49 49
12 41 44
Avg 47 47

the results of playing one million games.

Both direct and pseudo-success approaches commonly

achieve the same win rate despite the more accurate opponent

model held by the pseudo-success player. The direct-success

player does not need to determine the correct guess for games

where the total is unavailable (the fitness measure does not

reward doing so), and hence is still able to achieve the same

win rate. The equivalent strategy as produced using pseudo-

success evaluation contains a more accurate opponent model

because it “wants” to guess correctly in unwinnable game

scenarios (when the desired guess has already been taken).

It is of course, in these situations, unable to win the game

and thus the achieved performance remains unchanged.

One possible benefit of a direct-success approach is the

saving that can be made by not wasting effort in building

“fruitless” functionality to accurately predict the result of

unwinnable games (a pseudo-success player will still attempt

to learn the correct response in these cases). As our evolving

program-trees have limited complexity, it seems wasteful

to maintain parts of the tree dealing with these situations;

complexity that could better be utilised to provide greater

functional when dealing with winnable game states. Inter-

estingly, this superfluous functionality that a pseudo-success

player develops seems to indeed be useful when considering

adaptation, as we show in Section IV-F.

Our results suggest that each scheme has its own strength,

and neither dominates on the whole. But perhaps a combi-

nation of the two evaluation techniques would be beneficial

in improving the learning rate of our genetic programming

system. For example, against static opponents one might

use a direct-success measure until the rate of improvements

falls below some threshold, switching then to a pseudo-

success measure for further refinement. This would allow

a basic functionality to be established much quicker than

using purely pseudo-success evaluation, and near-optimal

functionality to be learned faster than using only direct-

success evaluation. A similar approach could be used against

adapting opponents, with perhaps a sudden decrease in wins

over a certain number of games triggering the system to

return to direct-success evaluation.

F. Learning Against Changes in Opponent Strategy

In this section we experiment with how both the GP and

LU players are able to adapt to changes in opponent playing

strategies. We take a number the evolved players from Table I

and attempt to continue their evolution against a new set

of opponents, thus simulating the scenario where opponents

modified their behaviour during a run.

Table V shows the adaptive abilities of our GP and LU

players. The column labelled “starting table” indicates the

table the learning players were originally trained to play

on. The “achieved fitness” column lists the corresponding

fitness of each learned strategy on its own table. The “starting

fitness” column lists the fitness of this same strategy in

its new environment before any new learning takes place

(i.e., immediately after its opponents switch strategies). The

“ending table” column indicates the new opponent strategy

the learning players now must compete against. “Ending

fitness” is the achieved fitness after 5000 generations (for

GP players) and after 250 million games (for LU players) of

re-learning against these new strategies.

Table V shows that the starting fitnesses of the LU players

are generally much higher than that of the GP players,

suggesting that the strategies employed by the GP players are

more widely applicable to other opponents than the strategies

employed by the LU players. This is due to the GP players

learning a function that maps over the entire set of game

states, whereas look-up table players learn about individual

game states by experience, with no effect on any other game

states. The relatively erratic nature of the LU player’s strategy

visualisation can be seen in Fig. 3, as opposed to the more

“regular” strategy observed for the GP player in Fig. 2.

The more regular functionality of the GP player seems

to be what gives the GP player its advantage over the LU

players after the change in opponent strategy. Since the

GP player is represented as a function, game states which

have not yet been encountered by the learning player may

still have yield “reasonable” guesses. Contrast this with LU

players, who having never witnessed correct responses for

the unused game states, revert to random guessing. These

“unseen” games states may be realised when playing against

different opponents and hence, having a general idea of what

to guess seems better than having no idea whatsoever. It is

this effect that gives the GP players a “head start” on adapting

toward its new opponents.

Table V also shows that the ending fitness of the GP

players are considerably lower than those of the LU players

(recall that fitness is measured in terms of the number of

incorrect guesses), indicating that the GP system is more

effective in adapting to new strategies. The main reason

for this is that the structure of an evolving program-tree is

much more easily manipulated than the huge look-up table

employed by the LU players. The LU players can only update

one entry per game, whereas the GP players can totally

augment its behaviour with one small change to its program-

tree design. This is obviously an area where LU players have

70

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

TABLE V

PERFORMANCE OF BOTH LEARNING TECHNIQUES AGAINST CHANGES IN STRATEGY FOR THREE PLAYER SPOOF, GUESSING THIRD

Starting Achieved Achieved Ending Starting Starting Ending Ending

Table Fitness Fitness Table Fitness of Fitness of Fitness of Fitness of

LUx3 GPx3 LUx3 GPx3 LUx3 GPx3

7 575 493 8 855 748 760 492

8 769 707 4 779 735 746 501

8 769 707 7 749 748 548 492

12 713 675 8 779 832 759 675

trouble. Even though a number of approaches are possible to

speed up the LU player’s ability to adapt (such as resetting

the entire look-up table after a number losses, or perhaps

altering weights by varying amounts), this approach still

falls far short of the adaptability inherent with a modifiable

program-tree representation. Furthermore, such approaches

require the application of domain-specific knowledge, which

we have chosen to minimise due to the restrictions that such

assumptions place on the system.

V. CONCLUSIONS

In this paper, we compare the use of look-up table

players with genetic programming for strategy development

in the game of Spoof. We had previously shown that ge-

netic programming could be used to construct automated

computer Spoof players which evolved guessing strategies

that consistently outperformed all of our hand-coded, non-

adaptive players. Our look-up table players did not fair

as well as the genetic programming players, especially in

earlier guessing positions. Look-up table players had their

greatest success when guessing last, where it matched and

occasionally outperformed the genetic programming players.

However, upon increasing the maximum allowable depth for

program-trees, we found that the GP player was able to match

this level of performance, indicating that a greater level of

functional complexity is required in these situations.

While often achieving similar performance as our evolved

strategies, we found the LU players to be less adaptable to

changes in opponent strategies. The GP players consistently

outperform the LU players when forced to adapt for play

against a new fixed-strategy opponent (simulating opponents

which have altered their strategy).

The ability of an evolving population to achieve optimal or

near-optimal play is influenced by the amount of selection

pressure it is subjected to. We found that it is possible to

use too many samples (games) in evaluating the fitness of an

individual, resulting in worse performance when compared

to players evolved using less games per fitness evaluation.

Also, a side-effect of lowering the number of samples is that

parsimony has a greater influence on selection, resulting in

solutions with a smaller program-tree size than those evolved

using more games per fitness evaluation.

Our experiments with the two different fitness evaluation

schemes show that both measures are capable of develop-

ing optimal guessing strategies, however the pseudo-success

measure reaches its optimum level sooner. The direct-success

approach takes longer to develop the same level of ability,

however it is much better at rapid improvement from a

neutral starting state. The pseudo-success measure minimises

the effect of noise, but this results in extraneous functionality

being developed which, due to complexity restraints of the

GP system, could potentially limit the functionality of areas

that require it. It is also interesting to note that when

experimenting against opponents who change their strategies,

we found such “fruitless” functionality (which LU players do

not develop) to be beneficial.

REFERENCES

[1] L. Barone and L. While, “Adaptive learning for poker,” in GECCO
2000: Proceedings of the Genetic and Evolutionary Computation
Conference. Morgan Kaufmann Publishers, 2000, pp. 566–573.

[2] Y. Azaria and M. Sipper, “Using GP-gammon: using genetic pro-
gramming to evolve backgammon players,” in Proceedings of the 8th
European Conference on Genetic Programming. Springer, 2005, pp.
132–142.

[3] D. Fogel, “Evolving strategies in blackjack,” in Proceedings of the
2004 Congress on Evolutionary Computation (CEC ’04). IEEE
Publications, 2004, pp. 1427–1432.

[4] ——, “Evolving behaviors in the iterated prisoner’s dilemma,” Evolu-
tionary Computation, vol. 1, no. 1, pp. 77–97, 1993.

[5] P. Hingston and G. Kendall, “Learning versus evolution in iterated pris-
oner’s dilemma,” in Proceedings of the 2004 Congress on Evolutionary
Computation (CEC ’04). IEEE Publications, 2004, pp. 364–372.

[6] J. R. Koza, Genetic Programming: On the Programming of Computers
By Means of Natural Selection. Cambridge, MA: MIT Press, 1992.

[7] J. Lohn, G. Hornby, and D. Linden, “Evolutionary antenna design for
a NASA spacecraft,” in Genetic Programming Theory and Practice II.
Springer, 2004, pp. 301–315.

[8] A. D. Parkins and A. K. Nandi, “Genetic programming techniques for
hand written digit recognition,” Signal Processing, vol. 84, no. 12, pp.
2345–2365, 2004.

[9] J.-Y. Potvin, P. Soriano, and M. Vallee, “Generating trading rules
on the stock markets with genetic programming,” Computers &
Operations Research, vol. 31, no. 7, pp. 1033–1047, 2004.

[10] S. Luke, C. Hohn, J. Farris, G. Jackson, and J. Hendler, “Co-
evolving soccer softbot team coordination with genetic programming,”
in RoboCup-97: Robot Soccer World Cup I. Springer-Verlag, 1998.

[11] E. Burke, S. Gustafson, and G. Kendall, “A puzzle to challenge genetic
programming,” in Proceedings of the 5th European Conference on
Genetic Programming. Springer-Verlag, 2002, pp. 238–247.

[12] M. Wittkamp and L. Barone, “Evolving adaptive play for the game
of spoof using genetic programming,” in Proceedings of the 2006
IEEE Symposium on Computational Intelligence and Games. IEEE
Computational Intelligence Society, 2006.

[13] “Spoof strategy,” Wikipedia — The Free Encyclopedia, October 2005,
URL: http://en.wikipedia.org/wiki/Spoof_Strategy.

[14] P. Darwen, “Computationally intensive and noisy tasks: co-
evolutionary learning and temporal difference learning on Backgam-
mon,” in Proceedings of the 2000 Congress on Evolutionary Compu-
tation (CEC ’00). IEEE Publications, 2000, pp. 872–879.

71

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

