
Adversarial Planning Through Strategy Simulation

Frantisek Sailer, Michael Buro, and Marc Lanctot
Dept. of Computing Science

University of Alberta, Edmonton
sailer|mburo|lanctot@cs.ualberta.ca

Abstract— Adversarial planning in highly complex decision
domains, such as modern video games, has not yet received
much attention from AI researchers. In this paper, we present
a planning framework that uses strategy simulation in conjunc-
tion with Nash-equilibrium strategy approximation. We apply
this framework to an army deployment problem in a real-time
strategy game setting and present experimental results that
indicate a performance gain over the scripted strategies that
the system is built on. This technique provides an automated
way of increasing the decision quality of scripted AI systems
and is therefore ideally suited for video games and combat
simulators.

Keywords: real-time planning, simulation, game theory

I. INTRODUCTION

Planning is the process of determining action sequences
that when executed accomplish a given goal. Main-stream
planning research focuses mostly on single-agent planning
tasks without adversaries who actively try to prevent the
agent from attaining its goal as well as try to achieve their
own – often conflicting – goals. The presence of adversaries
in addition to real-time and hidden information constraints
greatly complicates the planning process. The biggest success
in the area of adversarial planning has been mini-max game-
tree search whose application to chess and checkers has
produced AI systems on par with human experts or better.
Due to the tactical nature of these board games and their
relatively small branching factor, alpha-beta search can look
far ahead and often secure a victory by seeing a beneficial
capture earlier than human players. Many game-tree search
algorithms are based on exhaustive enumeration and evalua-
tion of future states. This precludes them from being directly
applied to more complex adversarial decision problems with
vast state and action spaces, which, for instance, players
of modern video games are often faced with when battling
opponents with hundreds of units in real-time. One idea to
solve such problems is to find suitable abstractions of states
and actions that allow us to approach the adversarial planning
task by mini-max search in abstract space.

In this paper we investigate one of such abstractions that
considers whole strategies as the subject of optimization
rather than individual low-level actions. Our application area
of choice is real-time strategy (RTS) games, which will be
described in some detail in the next section. We then present
an algorithm for strategy selection based on simulation and
Nash-equilibrium [1] approximation, followed by a discus-
sion of implementation details when applied to an RTS game
army deployment task, and experimental results. A section on

future work on adversarial planning in RTS games concludes
the paper.

II. AI FOR RTS GAMES

One popular genre of computer games on the market today
is real-time strategy (RTS) games. In a typical RTS game,
players gather resources and build structures and units with
the ultimate goal of using those units to destroy the units
and structures of the enemy. Some examples of popular
RTS games are Red Alert [2], Age of Empires [3] and
StarCraft [4]. RTS games differ from classic games such as
Chess, Checkers and Go, in several respects. They usually
feature dozens of unit types, several types of resources and
buildings, and potentially hundreds of units in play at the
same time. Unlike most classic games, all players also make
their moves simultaneously. Furthermore, RTS games are
fast-paced; any delay in decision-making can lead to defeat.
Adding to these difficulties is a high degree of uncertainty
caused by restricted player vision which is usually limited to
areas around allied units and buildings.

Playing RTS games well requires skill in the following
areas:

1) Resource and Town Management. Decisions must be
made about how many resources to collect and where
to find them. Players must also decide when and where
to build which structures and when to train which units.

2) Combat Tactics. When opposing armies meet, indi-
vidual units must be given orders on who to attack,
where to move, and which special ability to execute.

3) Army Deployment. Once a player has built groups of
units, these groups need to be given orders on what
to do, e.g. defend a base, attack enemy encampment,
and/or move to location.

AI systems in today’s commercial RTS games are scripted.
For example, there is often a precise set of instructions that
the AI follows at the start of the game in order to develop
its base. Once this script achieves its goal condition, the AI
system will switch over to a new sequence of instructions,
and start to follow them, etc. While this approach does give
the AI the ability to play the game in a seemingly intelligent
manner, it does have several limitations. First, the AI has
a limited set of scripts, and thus its behaviour can quickly
become predictable. Also, because every script needs to be
created by experts and can take a long time to implement
and test, developing a scripted AI system for an RTS game
can be a major undertaking. Furthermore, scripts are usually

80

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

1-4244-0709-5/07/$20.00 ©2007 IEEE

inflexible and any situation not foreseen by the script creators
will likely lead to inferior game play.

To compensate for these shortcomings, current commercial
RTS game AI systems are often given extra advantages in
form of more resources or full knowledge of the game state.
While this approach seems to be acceptable in campaign
modes that teach human players the basic game mechanics,
it does not represent a solution to the RTS game AI problem
of creating systems that play at human level in a fair setting.

There are several reasons for which there exist no good
solutions to RTS AI thus far:

1) Complex Unit Types and Actions. Unlike Chess,
which has only 6 unit types, RTS games can have
dozens of unit types, each with several unique abil-
ities. Furthermore, units in RTS games have several
attributes such as hitpoints, move speed, attack power,
and range. In contrast, Chess units each only have one
attribute: their move ability. Due to the complexity of
RTS game units, traditional AI search techniques such
as alpha-beta search have trouble dealing with such
large state spaces.

2) Real-Time Constraint. Tactical decisions in RTS
games must be made quickly. Any delay could render
a decision meaningless because the world could have
changed in the meantime. This real-time constraint
complicates action planning further because planning
and action execution need to be interleaved.

3) Large Game Maps and Number of Units. Maps in
RTS games are larger than any game board in any
classical game. Checkers has 32 possible positions for
pieces, Chess has 64, Go has up to 361. By contrast,
even if the RTS game does not happen to be in
continuous space, it often has ten-thousands of possible
positions a unit could occupy. Furthermore, the number
of units in an RTS game is often in the hundreds.

4) Simultaneous Moves. Units in RTS games can act
simultaneously. This presents a problem for traditional
search techniques, because the actions space becomes
exponentially larger.

5) Several Opponents and Allies. Typical RTS game
scenarios feature more than one opponent and/or ally.
This presents yet another challenge to traditional AI
techniques. Though some work exists on AI for n-
player games, there are currently no solutions able to
run well in real-time.

6) Incomplete Information. RTS games are played with
mostly incomplete information. Enemy base and unit
locations are initially unknown, and decisions must be
made without this knowledge until scouting units are
sent out. Currently, there are no AI systems that can
deal with the general incomplete information problem
in the RTS domain. However, recent work on inferring
agent motion patterns from partial trajectory observa-
tions has been presented [5]. This, in addition to results
obtained for the classic imperfect information domains
of bridge [6] and poker [7] and the work presented

here, may soon lead to stronger RTS game systems.
Due to these properties creating a strong AI system for
playing RTS games is difficult. A promising approach is
to implement a set of experts on well-defined sub-problems
such as efficient resource gathering, scouting, and effective
targeting, and then to combine them. For example, there
could be an expert that solely deals with scouting the map.
The information gathered by the scouting expert could then
be used by an army deployment AI, or the resource manager
AI.

The application we consider in this paper is army deploy-
ment. The AI system for this task does not have to worry
about resource gathering, building, scouting, or even small-
scale combat. Instead, it makes decisions on a grander scale,
like how to split up forces and where to send them.

This paper builds on ideas presented in [8], where Monte
Carlo simulation was used to estimate the merit of simple
parameterized plans in a capture-the-flag game. Here, we
approach this problem slightly differently, by combining
high-level strategy simulation with ideas from game theory,
which is described next.

III. ADVERSARIAL PLANNING BASED ON SIMULATION

A. The Basic Algorithm

As discussed in the introduction, abstractions are required
before state-space search algorithms can be applied to com-
plex decision problems such the ones faced in RTS games.
The use of spatial abstractions, for instance, can speed up
pathfinding considerably while still producing high-quality
solutions. Likewise, temporal abstractions, such as time
discretizations, can help further reduce the search effort.
Here, we explore the abstraction mechanism of replacing a
potentially large set of low-level action options by a smaller
set of high-level strategies from which the AI can choose.
Strategies are considered decision modules, functions of state
to action. Consider, for instance, various ways of playing
RTS games. One typical strategy is “rushing”, whereby a
player produces a small fighting force as quickly as possible
to surprise the opponent. Another example of a typical
strategy is “turtling”, in which players create a large force at
their home base and wait for others to attack and get defeated.
It may be relatively easy to implement such strategies which,
for the purpose of high-level planning, can be considered
black-boxes, ie. components whose specific implementations
are irrelevant to the planning process. The task of the high-
level planner then is to choose a strategy to follow until the
next decision point is reached at which point the strategic
choice is reconsidered.

The aim of this scheme is to create a system that can
rapidly adapt to state changes and is able exploit opponents’
mistakes in highly complex adversarial decision domains,
just like chess programs do today. Having access to a number
of strategies, the question now becomes how to pick one
in a given situation. Assuming we have access to the set
of strategies the opponent can choose from, we can learn
about the merit of our strategies by simulating strategy pairs,

81

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

i j

max min

game end
result rij

c) “min-max” player

a) strategy pair simulation b) “max-min” player

rij

max

min

rij

min

max

j

i

j

i

Fig. 1. a) Simulating pairs of strategies b) max-min player chooses move
i which leads to the maximum value c) min-max player chooses the best
counter move i

R

P

S

R P S
−10 +1

0 −1

−1

+1

+1 0

Player

Player B

 A

S

S

.

.

.

. . .

1

1S S S S S

Player B

2

3

3 4 5

S2

S4

Player
 A

Fig. 2. On the left, a simple payoff matrix for the game of Rock-Paper-
Scissors. On the right, a sketch of the payoff matrix used in the RTS
simulations. Si represents strategy i.

i.e. pitting our strategy i against their strategy j for all
pairs (i, j) and storing the result rij (Figure 1a). In the
simplest version, strategies would be simulated to completion
or timed-out, in which case a heuristic evaluation function is
necessary to estimate who is ahead.

In a zero-sum two-player setting with simultaneous moves
the natural move-selection choice then would be to determine
a Nash equilibrium strategy by mapping the payoff matrix r
into a linear programming problem whose solution is a prob-
ability distribution over strategies. In the Nash equilibrium
case, neither player has an incentive to deviate. Nash-optimal
strategies can be mixed, i.e. for optimal results strategies
have to be randomized — a fact which is nicely illustrated
by the popular Rock-Paper-Scissors (RPS) game. In RPS,
players select a move simultaneously between three possible
moves: Rock, Paper, or Scissors. Scissors wins versus Paper,
Rock wins versus Scissors, and Paper wins versus Rock.
The payoff matrix for Player A in a game of RPS is shown
in Figure 2. The Nash-optimal strategy is to choose each
action uniformly at random; in particular P (Choose Rock) =
P (Choose Paper) = P (Choose Scissors) = 1

3 . Here, the ac-
tions are instead strategies and the payoff values are obtained
via results of simulations into the future. Alternatively, one
could choose the mini-max rule, whereby one player (max)
maximizes its payoff value while the other player (min) tries
to minimize max’s payoff. The two variants with either player
max or min to play first are depicted in Figure 1 b) and c).
In these examples player max plays move i, which leads

to the best mini-max value. Only in case where there are
pure Nash equilibrium strategies do the payoffs coincide.
Otherwise, informing the opponent about the move choice
is detrimental like in Rock-Paper-Scissors, and the Nash-
optimal strategy may have advantages over max-min, or min-
max, or both. The following pseudo-code summarizes the
simulation approach to selecting strategies we just described:

1) Consider a set of strategies s of size n and compute
each entry of the n × n result matrix by assigning
strategy si to the simulation-based AI, and strategy
sj to its opponent, and executing these strategies until
either there is a winner, or a timeout condition is
reached. Once the simulation is completed, the terminal
game value or a heuristic evaluation is assigned to
result payoff matrix entry rij .

2) Calculate a Nash-optimal strategy with respect to our
player using the standard Linear Programming (LP)
based method [9], or alternatively a min-max or max-
min move.

3) In case of the Nash-optimal player, assign a strategy
randomly to our player, using the probability distribu-
tion returned by the LP solver, or play the min-max or
max-min move directly.

4) Repeat from step 1 as often as is desired while exe-
cuting the chosen strategies.

B. Implementation Considerations

Evaluation Functions. Although the evaluation function
is often something that must be designed by experts, our
algorithm actually simulates all the way to the end of the
game, or at least very far into the future in case both
strategies end up in a stalemate situation. Because we are
simulating to the end of the game in the vast majority of
cases, the evaluation function can be very simple. We just
check if we have won or lost, and return the result. We also
consider a few other factors, and these will be discused in
the experiments section.
Fast Forwarding. Our algorithm relies heavily on simula-
tions which can be very expensive, especially if we were
to simulate every single time step into the future. In order
to reduce this high cost, we instead calculate the next time
of interest, and advance directly to this time. This calculated
time is derived in such a way that there is no need to simulate
any time step in between our start time and the derived time,
because nothing interesting will happen. The derivation of
the time of interest is implementation specific, and will be
discussed in context of our application in the next section.
Simulation Process. The main loop of our simulator looks
as follows:
currTime = 0;
while (!isGameOver()) {

for (int i=0; i < players.size(); ++i) {
Strategy bestStrat;
bestStrat = calcBestStrategy(players[i]);
players[i].updateOrders(bestStrat);

}
currTime += timeIncrement;
updateWorld(currTime);

82

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Fig. 3. The simulation timeline
}
determineWinner();

In case of simulation-based AI players we perform forward
simulations to fill out the result matrix and return the new
best strategy. For other player types we call the corresponding
code to choose a strategy. Regardless of whether orders
were changed, the world advances forward in time by the
specified time increment. However, because calculating the
best strategy may be time consuming, we may have to
spread out computations over several world update intervals.
This means that the world will continue to advance at a
constant rate, even while strategy calculations are going on
(see Figure 3). For example, in a typical RTS game which
runs at 8 simulation frames a second, the simulator only has
1/8th of a second to perform simulation computations before
the world would advance. This is enough time to compute
a few entries of the payoff matrix, but not enough time to
compute all entries. Thus, all the work done up to that point
is saved, and resumed as soon as the real world advances.
Once the entire matrix is completed, we can finally determine
a strategy. It is at this point that actions are being updated.

Calculation of Best Strategy. The best strategy for our Nash
player is calculated in a fairly straightforward manner. First,
we need to fill out the payoff matrix. Each entry in the
matrix represents the result of one simulation in time between
competing strategies in which a winner is found or the time
limit has been reached. The basic algorithm is the following:

for (int i=0; i < numOurStrategies; ++i) {
for (int j=0; j < numTheirStrategies; ++j) {

if (!nextSimulationAllowed()){
return notDone

}
// simulate the competing strategies
r[i][j] = simulate(ourStrat[i], theirStrat[j])

}
}
return pickStrategy(r);

Notice that there is a check between each simulation to see if
there is time to run another simulation without violating time
constraints. This can result in the effect that our player is a
bit behind the action, because the world is changing while the
algorithm is still trying to fill out the payoff matrix in order to
determine the next strategy. However, in order for our player
to be able to play in a real-time setting, time constraints are
necessary, because filling out the entire matrix can take too
long.

IV. IMPLEMENTATION AND EXPERIMENTAL SETUP

A. Trial Description

There are several different RTS games on the market today.
Each game has different units, different abilities, different
resources, and other variations. Because we are creating
an algorithm that should work in general, ie. for all types
of RTS games, our scenarios will only have elements that
are common among all of them. A scenario is a trial
run involving a description of the initial setup of the map
paired with two particular AI players controlling each side.
All of our scenarios consist of bases and groups of units.
Bases only have two attributes: position and hitpoints. These
are abstractions of actual RTS bases, which are typically
composed of multiple buildings. Groups are composed of
several units of different types. Units have the following
properties: speed, attack power, armor, attack rate, position,
attack range and hitpoints. Units are treated as individuals
inside a group in all respects except for move speed. In
this case, groups move at the speed of the slowest of its
units. Furthermore, each scenario we create is symmetric
(geometrically, with respect to the map), giving no advantage
to any player. Although this symmetry does not accurately
represent real world RTS games, it does decrease variance,
which is useful for our experimentation.

Every map used has a continuous coordinate system with
infinite size. There are two major reasons for this choice: to
avoid unnecessary collision-checking and to encourage the
development of strategies that are independent of the map
size. However, opposing bases and units start near each other
in order to better approximate real world scenarios. Orders
given to groups are very simple. Group orders are composed
of a target location, and the speed at which to travel to that
location. The group then attempts to move in a straight line
towards its goal from its current position restricted only by
its maximum speed.

Because we are creating an AI for the general, who deals
with army deployment, we abstract individual units into
groups. Not only does this reduce the number of objects that
need to be dealt with, but it also more closely matches the
way a human thinks when playing an RTS. A human often
sends out groups of units, and usually deals with individual
units only when in direct combat. Our method does not deal
with combat tactics, instead it has a fairly simple combat
model that generally favours numerical advantage. Ideally,
the AI for combat would be supplied by a separate algorithm.

It should be noted that none of our scenarios contain
obstacles. Consequently, pathfinding is irrelevant in this
particular application and therefore no sophisticated path-
finding algorithm is included in the simulator. However, the
subject of pathfinding is not ignored entirely. In fact, our
algorithm is meant to work in parallel with any type of
pathfinder. In the setup described here, a pathfinder would
examine the terrain and find a path composed as a set of
waypoints. These waypoints would then be passed to the AI
player as orders to be executed sequentially by the groups.
Essentially, pathfinding is abstracted in order to minimize

83

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

the interference with other factors inherent in strategic game
play.

Victory in a scenario is achieved by one side in three
different ways. Either all of the enemy’s bases or units
are destroyed before the simulation-based AI agent’s, or the
simulation runs past a predetermined time limit. In the latter
case, the time at which to stop the simulation is 1000 game
seconds, and the method used to break ties is the following:
the winner is the one who has more bases. If the number of
bases is equal then the winner is the player with the higher
number of remaining units. If either all the bases or units
were killed at the same time, or the material is identical
when time runs out, the result of the scenario is declared a
tie.

B. Strategies

All of our simulations currently involve the following 8
strategies:

1) Null. This is more like a lack of strategy. All groups
stop what they are doing, and do not move. They do
however still attack any groups or bases within range.

2) Join up and Defend Nearest Base. This strategy
gathers all the groups into one big group, and then
moves this large group to defend the base that the
enemy is closest to.

3) Mass Attack. In this strategy, all groups form one large
group which then goes to attack the nearest enemy base
until no enemy bases remain. There are two versions
of this strategy. Given the choice of attacking a base
and group, one chooses to attack the base first and the
other chooses to attack the group first.

4) Spread Attack. In this strategy, all groups attack the
nearest enemy base, and this repeats until all enemy
bases are destroyed. There are two versions of this
strategy; the versions are analogous to those of the
Mass Attack Strategy.

5) Half Base Defense Mass Attack. This is a split
strategy. Units are divided into two halves. One half
defends their nearest bases, while the other executes
the Mass Attack strategy.

6) Hunter. In this strategy, groups join with their nearest
allied groups in order to make slightly larger combined
groups. After the joining, all of these newly formed
groups join into one large group which attacks the
nearest enemy group.

Note that strategies which require examination of the game
state (for example, to determine nearest enemy group) do so
periodically. In our case, the examination is done every 5
game seconds. This choice is due to the fact that we are
fast-forwarding via simulation and thus cannot examine the
game state continuously.

C. Fast-Forwarding of Strategies

The simulation algorithm requires a large amount of
forward simulations. More specifically, each simulation for-
wards all the way till the end of the game or to some point

in the far future (eg. 1000 world seconds), Therefore, it is
crucial that the simulations of future states are computed
quickly. In order to meet this requirement we introduce the
concept of fast-forwarding. The basic algorithm for fast for-
warding in our RTS simulation environment is demonstrated
by the following pseudo-code:
// start with maximum value of a double
double minTime = DOUBLE_MAX;

// next time opposing groups are in shooting range
double collideTime = getNextCollideTime();
if(collideTime < minTime) minTime=collideTime;

// next time a group’s order is completed
double orderDoneTime = getNextOrderDoneTime();
if(orderDoneTime < minTime) minTime=orderDoneTime;

// if units in range, earliest time they can shoot
double shootingTime = getNextShootingTime();
if(shootingTime < minTime) minTime=shootingTime;

// next time strategy gets to reevaluate game state
double timeoutTime = getNextStrategyTimeoutTime();
if(timeoutTime < minTime) minTime=timeoutTime;

return minTime;

Each function is implemented differently.
nextCollideTime() is calculated by solving a
quadratic equation with input being the direction vectors of
the two groups in question.

The quadratic equation may not be solvable (no col-
lision) or it may produce a time of collision. This
is similar to what is used for collision calculations in
ORTS[10], another continuous-space RTS environment.
getNextOrderDoneTime() is a simple calculation. Be-
cause all units travel in straight lines, we can just divide the
distance to the goal for a group by its maximum velocity. We
do this for every group, and return the time at which the first
group reaches its goal. Next, getNextShootingTime()
applies to groups that are already within range of an enemy
group and are recharging their weapons. This function re-
turns the next time at which one of these groups can fire
again. Finally, the getNextStrategyTimeoutTime()
function returns the next time that any one of the strategies
in question is allowed to re-evaluate the game state in order
to give out new orders if necessary.

Fast-forwarding allows the algorithm to safely skip all
the times during which nothing of importance occurs. In-
stead, fast-forwarding jumps from one time to the next,
greatly improving simulation speed. As mentioned earlier,
this method would also work with a parallel implementation
of a pathfinder, as long as that pathfinder provides a series
of waypoints as orders to our groups.

V. EXPERIMENTS

This section explores the effectiveness of our simulation-
based planning algorithms when applied to the RTS game
previously described. We ran several tournaments to first
determine the best evaluation function to use and then to
compare the simulation-based strategy to single static strate-
gies. Games were run concurrently on several computers.

84

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

(a) Starting position and orders (b) Opponents attack bases while we gather

(c) We eliminate part of the enemy force (d) We eliminate the rest of the enemy

Fig. 4. Snapshots of a typical map and the progression of a game. Light gray is a static player playing the Spread Attack strategy, dark gray is the Nash
player.

To make the experimental results independent of specific
hardware configurations, the simulator used an internal clock.
Thus, processor speed did not affect our experimental results.

All references to seconds in this section refer to this
internal clock. Seconds in our case are not related in any
way to real-world seconds. We use them merely because the
speed of the groups, and other attributes are specified in this
time reference.

All of our experiments have the following parameters:
1) simulation length: This parameter sets how many

simulator seconds we fast-forward into the future be-
fore evaluating the given state. When set to a large
value, simulations are likely to end early (when the
game is finished). In the reported experiments this
value is set to 1000 seconds, thus effectively allowing
all simulations to run until the game ends.

2) max simulation time: This parameter sets the amount
of real simulator seconds that are allowed to pass
before we determine a winner based on the tiebreaker
criterion. The value is set to 1000 seconds as well,
meaning that it is likely that only true stalemates will
be subject to tiebreak.

3) pairs per interval: This parameter determines how
many pairs of competing strategies we run before the
world time advances.

4) time increment: This value determines by how much
time the world advances during every interval (time
between each tick in Figure 3). This parameter is set
to 0.1 seconds which means that time in our simulation
advances by 0.1 seconds for every number of pairs we
simulate(number specified by pairs per interval).

In most of our experiments, we use either sets of 50 or 100
maps which are similar to the one shown in Figure 4.

The map shown is a snapshot of only a part of the total
scenario in midgame. In our experiments, we use two sets of
maps. The larger maps have 5 bases, with each base starting
off surrounded by 4 groups of the same side. The smaller
maps have only 3 bases, with 3 groups at each base.

A. Evaluation Functions

The evaluation function used in the experiments was chosen
by testing several candidates and choosing the most suitable.
Each evaluation function ran against a static opponent that
used one of the strategies described earlier. Each map ran our
evaluation function vs. every strategy, for every one of the
50 randomly generated symmetrical maps. Thus, because we
had 8 defined strategies, there were a total of 400 separate
games played for each evaluation function. Each evaluation
function used a basic Nash player, and the pairs per interval
was set to 8. This meant that the Nash player experienced

85

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

TABLE I
DIFFERENT PLAYER COMPARISON

Row vs. Col (W-L-T) % Random Static Nash
Random - 22-77-1 15-84-1
Static 77-22-1 - 8-73-19
Nash 84-15-1 73-8-19 -

a 0.8 (64/8 ∗ timeincrement) second delay in its reaction
time, because we had a total of 64 entries to fill out the
payoff matrix. We awarded 2 points for a win, and 1 point
for a tie, and the win rate is based on the total number of
possible points obtained.

The first evaluation function was just a simple evaluation
function that returned a either a 100 for a win, -100 for a loss,
and 0 for a tie. Its win rate was 70.4%. Our second evaluation
function added a time parameter, which gave a slight bonus
to quick wins, and to long losses. Thus it would prefer to
win quickly, and if losing, to prolong the game as long as
possible. Its win rate was 75.2%. Finally, our last evaluation
function appended a further material difference bonus. Thus,
preserving our units and destroying enemy units leads to a
higher score. This modified evaluation function obtained win
rate of 80.7% and, due to the significant improvement, is the
one used in all of our further experiments.”

B. Nash vs. Strategies

Next, we tested the performance of our Nash player vs. all
of our individual strategies played one at a time, and also
against a “random” player (Random) that switched randomly
between strategies every 5 game seconds. Once again, this
was run over a set of 50 randomly generated symmetrical
maps, with the Nash player and the Random player com-
peting against all 8 strategies one at a time for every map.
Thus, there were 400 games played for every player match-
up. It should be noted that although the Random player did
not stick to one static strategy, we still played it 8 times for
every map, just like for the static player. The only difference
was which strategy the Random player played in the first 5
seconds, before it randomly switched.

The results in Table I clearly show that our Nash player
beats individual strategies in the majority of cases. This is
despite the fact that it operates at the same 0.8 second delay
as we have seen in the evaluation function experiments. In
the cases when the Nash player does lose, it is most often
due to the particular map situation, where a slight delay can
mean the difference between victory or defeat. Because maps
are symmetrical, this happens frequently.

The results for the Random player are interesting as well. It
gets beaten fairly handily by both the static strategies and the
Nash player, which is not surprising, because it essentially
switches strategies blindly, while even the static player at
least has a strategy which knows how to play out the entire
game. However, it does defeat the Nash player more often
than the static player does. Because it switches strategies
every 5 seconds, the final strategy for the Random player is
a mix of our 8 defined strategies (similar to what the Nash
player does). Our forward simulations do not currently allow

TABLE II
NASH PLAYER VS INDIVIDUAL STRATEGIES

Strategy Wins Losses Ties
Null 26 0 24
Join Defense 1 2 47
Mass Attack(base) 36 12 2
Mass Attack(units) 36 12 2
Spread Attack(base) 49 1 0
Spread Attack(units) 49 1 0
Half Defense-Mass Attack 48 1 1
Hunter 46 4 0

TABLE III
JOIN DEFENSE VS INDIVIDUAL STRATEGIES

Strategy Wins Losses Ties
Null 2 1 47
Mass Attack(base) 21 0 29
Mass Attack(units) 21 0 29
Spread Attack(base) 49 1 0
Spread Attack(units) 49 1 0
Half Defense-Mass Attack 48 2 0
Hunter 47 3 0

for the switching of strategies mid-simulation, and thus they
cannot foresee some of the erratic movements of the Random
player. This means that the Random player can get “lucky”
and catch our Nash player off guard with an unforeseen
move.

C. Nash vs. Individual Strategies

Although we know that the Nash player can beat the in-
dividual strategies overall, it is also useful to know how
it performs against the static strategies individually. These
results are shown in Table II.

From these results, it is clear that Nash player soundly
defeats every strategy with the exception of the Join Defense
strategy. Thus, we need to determine how well Join Defense
performs against all the other strategies. These results can
be seen in Table III.

In order to compare the performance of this strategy to our
Nash player, we calculate the win rate of both. This is done
by converting the results into points, with a score of 2 points
of for every win, and 1 point for every loss. According to
this evaluation metric, the Nash player scored a maximum
of 609 out of 700 points, while the Join Defense strategy
scored 579 points. Thus, the win rate of the Nash player is
87.0%, and 82.7% for the Join Defence strategy.

These results indicates that the Join Defense strategy is
very strong overall. This is due to the fact that there is
no proper counter-strategy to it in our strategy set. Ideally,
we would want a strong counter-strategy that avoids the
defended base, and attacks undefended bases. In the end,
however, the Nash player still has a higher win rate than the
Join Defense strategy. We suspect that the difference between
these win rates would be even higher with inclusion of a
proper counter-strategy.

D. Nash vs. MinMax and MaxMin

Our Nash simulation player generally defeats single strate-
gies. In order to address the question how important strategy

86

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

TABLE IV
SIMULATION PLAYERS COMPARISON

Row v.s. Col (W-L-T) MinMax MaxMin Nash
MinMax - 6-8-86 0-21-79
MaxMin 8-6-86 - 6-19-75
Nash 21-0-79 19-6-75 -

TABLE V
EXECUTION TIMES (MILLISECONDS) PERCENTILES AND MAX TIME

Map Size 10th 25th 50th 75th 90th Max
3 bases(each) 1.13 2.08 3.34 5.42 9.16 71.39
5 bases(each) 2.26 4.72 7.83 21.93 38.92 194.85

randomization is in our game, we created two other players
that also use simulation but treat the games as alternating
move games, in which moves of the first player are made
public and the second player can respond to them. We call
these players MinMax and MaxMin.

Naturally, we expected the Nash player to defeat both the
MinMax and MaxMin players, because the game we consider
is a simultaneous move game. To see this, consider Rock-
Paper-Scissors. In an alternating and public move setting
the second player can always win. We ran the players
against each other on a set of 100 randomly generated
symmetric maps of 3 bases per player, with 3 groups per
base. pairs per interval was set to 64, thus allowing the
full payoff matrix to be computed before advancing time in
the simulation. The results can be seen in Table IV.

As expected, the MinMax and MaxMin players were
almost equivalent, while it is clear that the Nash player is
the better player.

E. Execution Times

In order for our algorithm to be useful in an RTS setting,
our computations must be able to conclude in a reasonable
amount of time. After all, RTS games make many other
demands on the CPU. Table V shows the executions times,
with various percentiles, for the time it takes to perform one
single forward simulation. All results were executed on a
dual-processor Athlon 1666 Mhz computer.

Even though some slight spikes in performance are exhib-
ited, as can be seen in the max value, generally the execution
time of a simulation is quite low. These results show that even
while computing several forward simulations every frame,
we can still run at a real-time frequency, with the number
of simulations run per frame determined by available CPU
time.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents preliminary work on the development of
simulation-based adversarial planners for complex decision
domains. We have described an algorithm that uses results
obtained from strategy-pair simulations to choose which
strategy to follow next. Initial results show that with proper
abstraction and fast-forwarding, simulation into the far future
is efficient and feasible. Furthermore, in our RTS game
application we have demonstrated that by approximating a
Nash-optimal strategy we can produce a player that uses

a mix of the strategies to consistently defeat individual
strategies. Using this technique can help video game com-
panies to improve their AI systems with minimal changes
because most of these systems are already based on scripted
strategies.

To determine the true potential of our approach, we need
to test the performance of our Nash player against some
highly complex scripted strategies, or against human players.
Furthermore, we also need to perform more experiments,
especially with larger sets of strategies, which will invariably
result in a better player. We also intend to add opponent
modelling to our framework in order to exploit our oppo-
nents (something our Nash player currently does not do).
Incorporating opponent modelling in this algorithm would
consist of keeping track of our opponent’s moves and then
matching up their actions to the set of strategies. This match-
up could help determine which strategy is most likely being
played and could influence adjustments to our result matrix
accordingly.

We plan on tackling the problem of incomplete informa-
tion with a combination of Monte Carlo sampling and the
maintenance of a belief state of the locations of our enemies.
Finally, in order to increase the skill of our players, we plan
on looking at the feasibility of introducing choice points to
our simulation framework. That is, points in time which
allow the players to change strategies in mid-simulation
instead of simply playing each strategy for each player for
the entire forward simulation. This would result in a better
player, but at the cost of an increased computational load.

ACKNOWLEDGMENTS

Financial support was provided by the Natural Sciences and
Engineering Research Council of Canada (NSERC) and Al-
berta’s Informatics Circle of Research Excellence (iCORE).

REFERENCES

[1] J. Nash, “Equilibrium points in n-person games,” in Proceedings of
the National Academy of the USA 36(1), 1950, pp. 48–49.

[2] Westwood, “Red Alert,” 1996. [Online]. Available: http://www.ea.
com/official/cc/firstdecade/us/redalert.jsp

[3] Ensemble Studios, “Age of Empires,” 1997. [Online]. Available:
http://www.microsoft.com/games/empires/default.htm

[4] Blizzard, “Starcraft,” 1998. [Online]. Available: http://www.blizzard.
com/starcraft

[5] F. Southey, W. Loh, and D. Wilkinson, “Inferring complex agent
motions from partial trajectory observations,” in Proceedings of IJCAI,
to appear, 2007.

[6] M. Ginsberg, “GIB: Steps toward an expert-level bridge-playing,” in
International Joint Conference on Artifical Intelligence, 1999, pp. 584–
589.

[7] D. Billings, L. Pena, J. Schaeffer, and D. Szafron, “Using Probabilistic
Knowledge and Simulation to Play Poker,” in AAAI National Confer-
ence, 1999, pp. 697–703.

[8] M. Chung, M. Buro, and J. Schaeffer, “Monte Carlo Planning in RTS
Games,” in Proceedings of the 2005 IEEE Symposium on Compu-
tational Intelligence in Games. New York: IEEE Press, 2005, pp.
117–124.

[9] M. Buro, “Solving the Oshi-Zumo Game,” in Proceedings of the
Advances in Computer Games Conference 10. Graz, 2003, pp. 361–
366.

[10] M. Buro, “ORTS: A Hack-Free RTS Game Environment,” in Pro-
ceedings of the International Computers and Games Conference,
Edmonton, Canada, 2002, pp. 280–291.

87

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

