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Abstract— The use of memory in coevolutionary systems
is considered an important mechanism to counter the Red
Queen effect. Our research involves incorporating a memory
population that the coevolving populations compete against to
obtain a fitness that is influenced by past generations. This
long term fitness then allows the population to have continuous
learning that awards individuals that do well against the
current populations, as well as previous winning individuals. By
allowing continued learning, the individuals in the populations
increase their overall ability to play the game of TEMPO, not
just to play a single round with the current opposition.

Keywords: Computational Intelligence, Adaptive memory,
TEMPO

I. INTRODUCTION

This paper discusses applications of memory to address
the ‘forgetfulness’ of the coevolutionary processes [1]. The
issue with the system forgetting previous good solutions is
well documented in coevolutionary research, and in the case
of this research it lead to the creation of strategies that were
not highly competitive. By introducing memory we have
attempted to increase the aptitude of the TEMPO players
to play against all strategies, not just the current opposition.
We also discuss other improvements made to the system,
particularly the change from a Gaussian membership function
for the fuzzy rules, to a triangular one.

Using coevolution, the evolutionary process can ‘lose’
the best found solution, as the goal of each individual is
to beat the opposition for the current generation only. As
discussed by Cliff and Miller [2], a later generation individual
should be able to beat an early generation opponent but this
is not always the case. Ancestors of the opposition could
have strategies that the later generations have forgotten about
and have no way of beating. One solution to this is to
incorporate some form of memory into the coevolutionary
process, one that helps the populations to remember previous
solutions[3][1].

The use of memory in coevolution to retain previous
winning (best of generation) solutions has been researched
using different memory mechanisms. Some involve retaining
the best of generations for insertion or replacement into
populations in latter generations [4], while others use the
historical memory to compete against and influence the fit-
ness [3]. Whichever mechanism used, there remain the same
questions regarding the historical population’s representation
and selection. These questions can be summarized as [4]:
how should individuals be selected for insertion into the
history, what size should the history be, and how should

an individual from the history be selected for use in the
evolution.

Most systems choose to use best of generation individuals,
however this is not the only option as discussed by Bader-
natal and Pollack [5]. However, the purpose of using history
for this research is to remind current generations about the
successful strategies of past generations, so only the best will
be stored. Having decided which individuals to be inserted,
the next step is to decide when the individuals should be
selected and stored. The selection of individuals directly
affects the question relating to the size of the population, and
the selection of an individual from the historical population
for use in the evolution. For example, storing the best
individual from both populations at every generation can
cause the historical population to grow rapidly, and the
selection of individuals will be influenced by the larger scale.

We examined a variety of methods for the representing
the historical population. One particular choice was whether
to periodically remove older (and perhaps less efficient
individuals) or constantly grow the population until program
termination. We chose the latter for the experiments, due
to possible relevance of older individuals. A number of
experiments on the effectiveness of this method is discussed
in section IV. We also performed experimentation to demon-
strate that forgetting was happening, and to experiment with
the most beneficial memory mechanism.

For the case of this research, we use the term “memory”
and “history” interchangeably, as our metaphor for the mem-
ory was that it was a recording of history for the individuals
to learn from.

The paper is organized as follows. Section II gives a
background of the main topics of this paper, including a
description of the TEMPO game and the previous research
performed by Johnson et al., and a discussion on the way
the human memory system works. Section III discusses the
different methods we have used to investigate and test the
addition of memory to the system. Section IV outlines the
results of the experiments performed, and a discussion of
observations from the results. The final section concludes
with a discussion on the overall findings.

II. BACKGROUND

For a background to the research described in this paper,
we discuss the game used; the TEMPO military planning
game. The discussion includes the game play involved in
TEMPO, and the previous computationally intelligent system
developed for the game.
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Following this, a background is given into the psychology
of human memory. This gives a very brief introduction into
how the human memory system works, and in particular
focuses on the way humans use short and long term memory.

A. The TEMPO military planning game

TEMPO is a zero sum game played between two opposing
parties by allocating resources in a cold war style simulation.
The goal of the game is to acquire more utilities than
the opposition before war breaks out. The decision making
process requires allocating a yearly budget resource between
offensive and defensive weapons of various strength and cost.
The purchase of intelligence is also provided to give insight
into opponent’s tactics. Lastly, investment in research and
development is available to provide for future weaponry.

The resource allocation involved in the game is in con-
cept relatively simple; determine who needs what and then
allocate accordingly. The reality is however very different,
as the number of different combinations of allocation plans
can be high due to the amount of areas to allocate to. This
complexity is then magnified by the changing environment
that occurs yearly, such as the increase in the chance of
war breaking out, and the addition of new weaponry. This
situation is representative of a number of real world situations
in the corporate and defense world alike, where resource
allocation can be a very complex and difficult task to manage.
As a result the TEMPO game provides a training facility for
staff to practice and refine their skills, as well as test bed for
the development of computer systems to tackle the allocation
issue.

The TEMPO game was used in a coevolutionary system
by Johnson et al. [6][7] to test the use of evolving a self-
learning artificial player for the game. The system followed
similar work done by Chellapilla and Fogel [8][9] where a
computer player developed its own method of play through
coevolution. Instead of using the neural network approach
done by Chellapilla and Fogel however, the player was
developed by coevolving a set of fuzzy rules.

The system developed in [7] used a Mamdani fuzzy logic
system with Gaussian membership functions. The individuals
consisted of a rule base that were randomly initialized and
then coevolved to create a strategy of play. The coevolution
occurred by using two populations that competed against
each other, with a fitness calculated from the average net
offensive utilities and average wins over all the games played.
A linear penalty deduction was then applied to minimize the
rule set.

The chromosomes of the coevolutionary process are rule
bases with each individual comprising a number of concate-
nated rules up to a maximum of m rules where m is made
up of w weapon rules and q intelligence rules. Each of these
rules are built from data relating to: whether the rule is to be
used, whether each of the input values for the rule are to be
used, the corresponding fuzzy membership function for each
input, and the output membership function of the rule. These
are then used to decide if a particular intelligence category or
weapon should be bought when the yearly budget allocation

is performed, using the production operation rule for fuzzy-
AND. After each generation the populations are evolved with
a chanced crossover and mutation operation (for more details
see [7]).

The research presented in this paper used the system from
[7] as a baseline for the research, and conducted further
experiments to refine and improve the former computer
player. There were a number of issues that were observed
by the research from [7] relating to the ability of the player
to compete against humans, and this research is intended
to further this work. One particular observation was that
the rules being developed by the coevolution process were
difficult for a human to beat initially, but easy to overcome
with practice. We felt that a large reason for this situation was
due to a lack of memory on behalf of the computer player.
Without being able to remember previous games, the player
was only focusing on the strategy of the moment, instead of
developing generic rules of play.

B. A discussion on the psychology of human memory

In our experimentation it was decided to investigate the
use of two types of memory for selection, one as a long
term memory (LTM) and one as a short term memory (STM).
The approach was to simplistically mimic the way the human
brain stores and uses memory. The concept of applying STM
and LTM to heuristics has been widely used over the years,
and the use with tabu search has been thoroughly documented
by Glover and Laguna [10]. In this research however, we
seek to mimic the human mechanism of STM and LTM in
a coevolutionary process.

Early theories of human memory consisted of one large
memory system. However, in the 1960’s researchers recog-
nized that the memory consisted of two parts: a short term
memory that acted as a temporary storage mechanism, and
a long term memory that was a permanent memory storage
[11]. This was re-examined in the 70’s and the two mem-
ory systems broken down into further levels of processing
[12]. The STM was re-termed the working memory, and
broken down into articulatory and visuospatial components.
The LTM was broken into explicit and implicit memory.
Implicit memory involves learning that does not involve
active recollection of information, but rather retrieval through
indirect performance. Implicit memory includes information
associated with: skills and habits, priming, conditioning and
non-associative learning [12]. Explicit memory on the other
hand is the active recollection of past incidents, and the
semantic memory representing general knowledge of the
world. Explicit memory includes storage and retrieval of facts
and events.

The actual linking between short and long term memory
was originally thought to happen serially; that the informa-
tion being taken in by our sensors was processed in the STM
and then if it stayed in the STM long enough, it would be
transferred into LTM [13] [12]. This was then challenged
by Craik and Lockhart [14] who introduced the concept
of a levels-of-processing framework. This framework had a
sequence of analytic stages that show how memory is set.
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The idea is that memory is not a separate faculty, but instead
reflects the outcome of attempts to perceive and comprehend
information. Thus, the ability to affect long term memory
is directly related to the comprehension or ability to relate
the knowledge with the meaning (semantic understanding).
In this way, the retrieval of information is not done in a
‘brute force’ search mechanism, but instead the memories
are encoded into the whole cognitive system, and there is an
increased potential for the same pattern to be repeated on a
subsequent occasion [13].

The understanding of how the STM and the LTM work,
both independently and together, is still a wide area of
investigation. However, the knowledge that the memory is
divided into two forms: a short term memory aimed at
recalling recent and relevant information, and a long term
memory to store necessary information in the long term, are
fundamental theories for human memory.

III. METHODOLOGY

We have addressed several of the issues mentioned by
Johnson et al. [7] regarding system performance, and also
investigated memory mechanisms used in addition to the
original system. The following section is broken into the
improvements we made to the system to increase the pro-
cessing speed, the method we used to seed the populations
with human strategies, and what methodologies were used in
the experiments we performed.

A. Processing improvements

To address the speed of the system, the process of coevolv-
ing with fuzzy logic rules was evaluated. It was decided that
while the general concept of the system was well founded,
changes to the fuzzy logic system and the representation of
the genes could possibly improve the performance of the
system.

The original TEMPO fuzzy logic system was based on
the Mamdani fuzzy logic system with Gaussian membership
functions (see [7] for further details). The use of a Gaussian
membership function with floating point precision resulted
in the evolutionary process fluctuating over small variations
that did not improve very much. To counter this, we decided
to change the Gaussian membership function to a triangular
membership function with integer precision. It was thought
this would stop the minor fluctuations observed with the
floating point precision, and the system would spend the
time looking at a larger area of the search space. The change
was implemented at the start of the experimentation, and the
results showed that the processing time was cut down to a
third of the previous speed, and the results against the static
expert were also marginally improved.

The new representation of the fuzzy logic system meant
that the chromosome structure used in [7] needed to be
updated. The new structure can be seen in figure 1. As
per the old system, there are m = w + q rules (where
w is the maximum number of weapon rules, and q is the
maximum number of intelligence rules). Each rule is built
from the following (Figure 1 expands rule 3): U3 is a Boolean

Fig. 1. New structure of a chromosome

defining if the rule is used, Bi3 are Booleans defining if
input i is used, MFi3 is the membership function used for
the input i, and Y3 is the output in range [0,1] for Rule3.
The membership functions were created for each input value
and were a variable number of functions for each input. For
further information on how the rules are used, refer to [7].

B. Seeding the populations

One suggestion made by [7] was to seed the population
with hand crafted individuals to determine how more human-
like individuals would fare in the co-evolutionary process.
We decided to investigate this area, and provided a simple
experiment to determine the reaction of the co-evolutionary
process. The existing base-line measurement of the system
consisted of a static expert that used static rules to represent
the strategy of; buy weapons based on their utilities per
operation cost. The higher the ratio, the more of the weapons
would be bought. The term “expert” is used loosely here, as
the strategy is a simple concept. However, the strategy has
proved capable of winning against novice human players of
the tempo game, and can be considered a good base-line
player for measurement of the system performance.

When using the expert for performance measurement, it
was noted that the best individuals from the generations
performed relatively poorly on average against the expert.
This was to be expected to some degree, in that the popula-
tions were focused on beating each other, and they had no
incentive to find strategies to beat the expert. We decided
to insert the static expert as an individual into each of
the population and record how it fared in the evolutionary
process. We already had the measurement abilities in place,
as the best individuals from each generation would play the
static expert at the end of the generation, and the alien expert
would be seen in the results from the static game play. To
differentiate between the two functions of the same expert,
we named the base-line measurement use of the expert as
the “static expert”, and the seeded expert the “alien expert”.

The alien expert mechanism worked by placing the static
expert as another individual in each of the populations. The
individual would be subject to the same variation operators
as all the other individuals. The base-line static expert
measurement system remained the same. At the end of each
generation, the best individual from each population would
play 100 games against the static expert and the amount of
times the individual won would create the won ratio against
the individual for that population.
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C. Use of a history

An effect of coevolution has been described as the Red
Queen effect [15][2], where two or more populations are
constantly changing their traits to compete with the other
players. This can lead to cyclic evolution, where previous
strategies are constantly forgotten and rediscovered. After
experimenting with the alien expert, we realized that the
coevolutionary strategy did just this. The populations were
focused only on outdoing each other, and even after expert
knowledge was seeded, as soon as the populations had beaten
the expert in the other population, they then developed new
strategies, which the other population focused on beating,
hence ignoring the expert strategy. Occasionally they might
rediscover bits of strategies that would beat the expert, but
as they were not rewarded for these discoveries, they were
promptly forgotten.

We wanted to provide a player that would be competitive
against all strategies, not just the strategy of the moment.
This meant developing players that could beat the current
opposition, as well as previous opposition; an ancestral tree
where the progeny learn from the ancestors. Following this
line of thought, we decided to incorporate a memory structure
that would act as a record of historical strategies. We decided
to store the best individuals of each population into a separate
population that we called the History Bank. We then used
the History Bank in the evolution of the individuals of the
population, where at the end of the generation, the fitness
of each individual would be created by playing against the
opposition and the individuals from the History Bank. We
wanted this to act as a trigger so that old winning strategies
would not be lost in the time line, but would help in
developing the future generations.

As discussed before there are a number of different ways
we could implement and use this History Bank. We started by
implementing a separate History Bank for each population,
and each generation the best of the opposition was stored
in the other population’s associated History Bank. This was
intended to remind Population A of Population B’s winning
strategies, and vice versa. After further experimentation and
analysis however, we came to the conclusion that to create
a truly competitive individual it should be able to beat the
opposition, as well as any previous strategies of it’s own. We
decided to experiment with having a single combined (and
decidedly larger) History Bank that both populations would
add to and play against.

The mechanism used to remind the current players of the
history, was to use the History Bank as opposition against
the current populations. At the end of each generation, each
individual would play a defined number of games against
the opposition population, followed by a defined number
of games against the individuals in the History Bank. The
fitness we use is calculated as the won ratio of the individual
(the number of games won divided by the number of games
played) plus the total net utilities divided by the times played,
with a penalty applied to minimize rules and inputs used
for the fuzzy rule base. Because the fitness is calculated

against totals of all games played, it is directly influenced by
each game it plays. The strategy uses this by playing each
individual against random individuals from the opposition
r1 times. By using random selection, each individual plays
a different sample from the opposition population and may
play more games than other individuals (if chosen to play
by the opposition’s random game selection). This is slightly
countered in the fitness however, as the win ratio is calculated
as an average of all games played. The individual is then
played an additional r2 times against individuals from the
history, where the selection mechanism changes as explained
in section IV and it’s subsections. So the total games played
to assign the fitness for the individual is r1 + r2.

We decided to include every generation’s best individual
from each population into the History Bank, as we wanted
to keep a full history of the past winning strategies used.
Initially we implemented the History Bank as only containing
unique entries, and later experimented with the inclusion of
all individuals regardless of uniqueness.

The History Bank is a continually growing population,
with an increase of two individuals every population (when
uniqueness is not applied). This means that whatever se-
lection mechanism we apply, it will always be effectively
a time based probability distribution. The more generations
that pass, the larger the population will become and the less
probability an individual will have of being selected for game
play. We have included different mechanisms to bias this
selection probability, but it can be said that all are still a
probability of time. The three probability distributions ex-
perimented on are: random uniform selection, selection with
a linear distribution and selection with a Laplace distribution
probability curve.

After experimenting with the History Bank, we decided to
investigate the use of a system mimicking the way humans
use memory. As discussed before, humans have a current
short term memory, and a larger long term memory. We
wanted to replicate this ability, as it is the short term memory
that humans use to determine the current situation, and the
long term memory to bring past knowledge on how to act
given the situation. This is precisely what we wanted the
players to do. The short term memory function was done
by identifying the top ten individuals in the History Bank
and playing an additional amount of games against them.
The long term memory was then applied by playing another
set of games against the entire history. So where previously
the fitness was created by playing r1 + r2 games, now the
games against the history is split into r2S for the games
played against the short term memory, and r2L for the games
against the long term memory. The History Bank individuals
selected for the long term memory game play are selected
with a linear time based probability, so the more recent
individuals have a higher chance of being selected. The short
term memory is also selected from with the same linear time
based probability, but as the size is a static 10 individuals,
as the entire population grows, the probability becomes more
uniform.
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The last experiment performed was to further mimic the
way the long term memory worked in the human brain.
Instead of every single bit of information ever learnt being
stored in long term memory, the human brain would sift
the information and only store relevant information. We
attempted to mimic this by using a ranked long term history.
When adding a new individual to the History Bank, the
individual would play the top individual from the ranking
and if it won it would be ranked above, otherwise it would
continue down the ranking until it found it’s appropriate rank.
This was only performed for the top 1000 ranked individuals.
If the individual was not in this top 1000, it would not be
used in the long term memory. We nicknamed the 1000 top
ranked individuals the “gladiators”.

This mechanism provided a very loose ranking, and it was
likely that the ranking would be incorrect in some cases. To
address this issue, we included a mechanism where at each
generation a random individual would be chosen from the
gladiators and played against the surrounding 20 neighbours,
and adjusted in ranking where required.

The fitness calculation process was then modified as
follows. After playing r1 games against the opposition, the
individual would be required to play against the short term
memory as before (r2S). They would then be required to play
an additional number of games against the gladiators (r2G).

IV. EXPERIMENTS AND RESULTS

This section gives a record of the experiments performed
to investigate the different memory mechanisms we used.
All the graphs of results in this section depict how well the
best individual from each generation performed against the
static expert player, which was the baseline measurement.
The graphs show the won ratio against the expert on the y
axis, and the generations on the x axis. The results depicted
show the average of ten runs, all with the same environmental
and evolutionary configuration. The system was run each
time for 50,000 generations with a population size of 100
for both populations.

Each experiment had the following evolutionary parame-
ters. The ratio of individuals to be replaced in each generation
was 90%. The variation operators applied were mutation and
crossover. Mutation was applied with a 70% probability of
occurrence, where if applied each gene had 50% chance of
mutation, with a 10% chance of a large mutation, or other-
wise a small mutation occurred. The crossover applied was
two point crossover with a 30% probability of occurrence.
For further details please refer to [7].

Following the discussion of the experiments and their
results is a table summarizing all the experiments and the
different mechanisms used in each one.

A. Experiment 1

As a baseline measurement, we ran the system without
any of the memory or seeding mechanisms with the fitness
calculated solely from game play against the opposition
(r1 = 20). The results can be seen in Figure 2. The results
show that the players were not doing overly well against the

expert, they were achieving an average of 36% win ratio.
The results also showed that there were no trends to beating
the expert, just occasional jumps in performance followed
by decreases (this is not visible in the results, as the results
show the average of 10 runs). This was to be expected, as
the coevolutionary process was not training the individuals
against the expert, only against the other population.

(a) Population A (b) Population B

Fig. 2. Success ratio against the expert for the Original System

To try and encourage the system to include the expert
in the process, we included the ’alien expert’ discussed
previously. The expert was inserted as one of the individuals
for each population A and B. The results from the insertion
looked much the same as the original results. After the
addition of the alien expert, there was a very brief increase in
the won ratio followed by a sharp drop back to the previous
average won ratio. Once again, this was mostly expected, as
the nature of coevolutionary systems is to focus on beating
the opposition in it’s current form, and promptly forgets any
previous opponents once they have been beaten. The system
was only concentrating on beating the opposition, and so the
next experiment aimed to include the expert and other past
strategies in the whole evolutionary process.

B. Experiment 2

For the next experiment, we decided to implement a
mechanism to allow the individuals to remember past win-
ning opponents, by including another population of historical
individuals. The logic behind this, was that to begin with the
expert is the best individual, so it will be placed in the history.
When the history is then used in the evolutionary process,
there is a chance that there will be repeated promptings to
continue to beat the expert.

The initial memory experiments consisted of randomly
selecting individuals from the History Bank, and playing a set
number of games against them. The fitness was calculated by
playing a number of games against the opposition (r1 = 20)
and re-adjusting after each time. To include this strategy
of evolving against the History Bank, we then provided
a mechanism for playing an additional number of games
(r2 = 20) against the History Bank, and adjusted the fitness
of the current individuals in the same manner as that for the
opposition games.

The graph of the won ratio against the expert can be seen
in Figure 3. The use of a History Bank gave us the better
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results we were looking for. We were now achieving an
average of around 50% won ratio, and were achieving an
over 90% top win ratio against the expert for single runs as
well as longer trends of winning.

(a) Population A (b) Population B

Fig. 3. Success ratio against the expert using random selection from History
Bank for population A

These results were promising, but we noted that the
populations were still not tending overall towards beating
the static expert and were instead regularly staying around
the average to below average won ratio. The populations
were still ’forgetting’ previous solutions and focusing more
on beating the current opposition. We reasoned that the cause
of this was the random nature of the selection from the
History Bank. By selecting at random, we were increasing
the potential for larger amounts of the earlier, and presumably
simpler, individuals from the history to be chosen. What we
actually wanted, was for the populations to mainly grow
against the harder (more recent) individuals, and then be
occasionally prompted not to forget older strategies and so
address the Red Queen effect. To create this scenario, we
decided to include a probability distribution for game play
selection from the History Bank.

C. Experiment 3

The initial probability distribution was a simple linear
time distribution, where the latest historical individuals had a
higher probability of getting chosen then the older individuals
(see Figure 4).

Fig. 4. Probability Distribution by Function of Time P(t) (with the time
function represented with N as the maximum generation number)

This distribution would force a higher playing ratio against
the more recent individuals, but would still encourage play

against the older strategies. The results of this experiment
can be seen in Figure 5, and showed a slight increase in the
win ratio average against the expert, but was still not to a
satisfactory standard.

(a) Population A (b) Population B

Fig. 5. Success ratio against the expert using Single History Bank with
Linear Distribution

D. Experiment 4

The next question following on from the previous results,
was whether the linear probability distribution was the best
distribution, and if perhaps a curved distribution might
provide better results. To test this theory, we replaced the
linear distribution with a Laplace (otherwise known as Dou-
ble Exponential) probability distribution function. We were
expecting that by introducing a curved distribution function
with a sharp regression, we would force the populations to
play more against the most recent players in the history. The
results of this experiment can be seen in Figure 6.

(a) Population A (b) Population B

Fig. 6. Success ratio against the expert using Laplace Probability Distri-
bution

The individual results showed a slight improvement with
more trends towards winning against the expert. However,
there was still a lot of fluctuation and the results were still
lacking. What we really wanted was to see an overall increase
over time in the statistics against the expert.

E. Experiment 5

The inclusion of a history to evolve against had produced
some nice peaks, however even with the probability selection
distribution it still seemed to average around a 60% win ratio
with a lot of variation. The time function probability selection
we were utilizing allowed a biased selection mechanism,
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but it was still allowing a higher play rate against the
older solutions than we wanted. Even though the time-based
probability selection was biased towards the top of the scale,
as the History Bank grew, the chances of playing against the
top end decreased. To address this we decided to introduce
a specified top end window to the probability selection - the
short term memory window. This window would be evolved
against a set number of times prior to evolving against the
whole history - the long term memory.

The experiments included a window of the top ten indi-
viduals and played against individuals from the short term
memory (r2S = 10) followed by games against the long term
memory - the entire History Bank (r2L = 10). The games
played against the opposition remained the same (r1 = 20).
The results were very promising, with a higher ratio for both
populations against the expert as depicted in Figure 7. We
were now seeing trends towards beating the expert, which
was exactly what we were after.

(a) Population A (b) Population B

Fig. 7. Success ratio against the expert using Short and Long Term Memory

F. Experiment 6

One of the decisions made early on in the process was
to make the History Bank unique and then increase their
probability of getting chosen if the same individual was
repeatedly added to the population. We decided to test this
decision and performed a run with no uniqueness checking,
and instead all the best individuals for all the generations
were automatically added to the history.

Although there was not much of a difference, this was ac-
tually the first time the populations had achieved an outright
100% win ratio against the ‘expert’. We were not expecting
this, as we thought the unique population would have fared
better due to the forced diversity of the populations. It
occurred to us that this higher achievement might actually
be caused as the short term memory would be filled with the
best strategy, and therefore we are forcing the populations to
find a solution to that single strategy.

G. Experiment 7

The gladiator long term memory system was used in this
final experiment, and followed along the same lines as the
previous history experiments. The fitness was calculated by
playing first against the opposition (r1 = 20), then against
the short term memory (r2S = 10) and finally against the

gladiator long term memory (r2G = 10). The results can be
seen in Figure 8.

(a) Population A (b) Population B

Fig. 8. Success ratio against the expert using Gladiator System

The interesting thing about this system is the individual
results for the system, as almost every run had one population
performing better that the other. An example of this can be
seen in Figure 9 where a distinct trend of high performance
is recorded. The other population however averaged around
40-50% win ratio. This observation is still being analyzed,
however it is thought that this is caused when one population
fills its gladiator ranking with similar strong individuals and
the result is similar to the unique and not unique phenomena
described in section IV-F.

Fig. 9. Success ratio against the expert for single run of Population B

H. Comparisons

A summary of the different experiments and the difference
in parameters can be found in Table 1. The information
depicted is as follows. The type of History Bank mechanism
used is single for the initial case, then split into short
and long, and lastly gladiator. The Probability Selection
Distribution depicts the type of distribution used to select an
individual for game play from the History Bank. The Game
number shows the number of games each individual from
each population must play to calculate the fitness: r1 is the
games played against the opposition, r2 is games against the
History Bank, r2S is games against the short term memory,
r2L is games against the long term memory and r2G is games
against the gladiator long term memory. The History Bank
lengths show what size each of the history bank mechanisms
are, where L is the single History Bank length, Ls is the short
term memory length, Ll is the long term memory length and
Lg is the gladiator memory length. The unique field is a
Boolean field representing whether the History Bank applied
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uniqueness of individuals or not. Finally, the Alien Expert
field depicts if the populations were seeded with the Alien
Expert for the experiment.

TABLE I

SUMMARY OF THE EXPERIMENTS

Exp. History Prob. Game No. HB Length Unique Alien
Bank Select Expt.

Dist.
1 ∅ N.A. r1 = 20 N.A. N.A. no
2 Single Uniform r1 = 20, L = ∞ yes yes

r2 = 20

3 Single Linear r1 = 20, L = ∞ yes yes
r2 = 20

4 Single Laplace r1 = 20, L = ∞ yes yes
r2 = 20

5 Short, Linear r1 = 20, Ls = 10, yes yes
Long r2S = 10, Ll = ∞

r2L = 10

6 Short, Linear r1 = 20, Ls = 10, no yes
Long r2S = 10, Ll = ∞

r2L = 10

7 Short, Ranked r1 = 20, Ls = 10, yes yes
Gladiator r2S = 10, Lg = 1000

r2G = 10

V. CONCLUSIONS AND FURTHER WORK

The experimentation of memory in a coevolutionary sys-
tem has shown that the short and long term memory ap-
proach was beneficial. We demonstrated that the sorting and
selection mechanism for the history population affects the
usefulness of the memory, and that by including a specialized
memory selection mechanism represented by the short term
memory, the system could make better use of its memory.

The short term memory mechanism works like the human
memory mechanism for learning; it allows a person to
overcome information overload and use the most useful and
recent memory rather than their large long term knowledge
base. The long term memory is still there for prompting his-
torical memories and reminding the person of past successes
and mistakes, and allows the person to grow overall. We have
attempted to replicate this in the TEMPO system, allowing
the system to have reminders of past strategies, while still
giving the best information for the current situation.

The inclusion of more than one selection mechanism from
a history based on long and short term memory has many
different areas that could still be investigated. The idea of an
even more biased history, where the current situation could
affect which strategies from the history to play against based
on environment and ranking could be one area to investigate.
There are also areas involving different ways to rank the
individuals in the gladiator system, which is currently a
very simple stochastic mechanism. There are many ways that
the evolutionary parameters could be experimented with to
determine what the optimum values for the games played
against each memory should be.

One area we have begun to investigate is to have an
adaptive number of games played against each memory
set dependent on the environment and the current stage of
evolution. At the moment there are user defined parameters
representing each set of games to be played to get the fitness,

including games against the opposition and the history. It
might be that a better alternative would be to let the system
itself decide what number of games to play. To this end,
investigation has begun into the use of a fitness threshold,
where the number of games played adjusts itself as the size
of the fitness variation increases or diminishes.

We will also be investigating further into the ways the
long term memory is stored and retrieved. As mentioned in
section II-B, the long term memory in a human is divided
into explicit and implicit areas. It might be beneficial to try
and find a way to mimic this. In particular, this involves
looking at the linking of relevant information for retrieval
from the long term memory. One possibility is to categorize
the rules in the long term memory into the areas they effect,
for example, if a rule set is focusing on a low budget then
that might be relevant to other current rules that are also
focusing on a low budget. Another possible mechanism could
follow the case-based memory technique used by Sushil
and Johnson [16]. Lastly, we shall investigate possibilities
to incorporate some generic semantics into the system to
represent ‘social’ learning for the whole population.
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