
 

 

 

 

Abstract — Transposition tables are one common method 

to improve an alpha-beta searcher. We present two 

methods for extending the usage of transposition tables 

to chance nodes during stochastic game tree search. 

Empirical results show that these techniques can reduce 

the search effort of Ballard’s Star2 algorithm by 37 

percent. 
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I. INTRODUCTION 

Decades of research into the alpha-beta algorithm have 

resulted in many enhancements which dramatically improve 

the efficiency of two-player deterministic game tree search. 

In contrast, stochastic game tree search has received 

considerably less attention. Hauk et al [1] recently re-

introduced an updated version of Ballard’s almost forgotten 

Star2 algorithm [2], showing how the fail-soft alpha-beta 

enhancement can be adapted to chance nodes, and extending 

the algorithm to games with non-uniform chance events. In 

the present work, we further explore how existing alpha-beta 

enhancements can be adapted to improve the performance of 

stochastic game tree search.  

One important enhancement - widely used in Checkers 

and Chess programs - is a transposition table, which is 

employed to improve the move ordering of alpha-beta 

searchers and to allow the algorithm to reuse previous search 

work. While transposition tables have been used at min and 

max nodes of a search tree [3,4], their usage at chance nodes 

has not previously been addressed in the literature. 

In the present work, we show in detail how the 

transposition table improvement can be extended to chance 

nodes. We introduce two complementary methods that use 

the information present in the transposition table to reduce 

the overall search effort at chance nodes. 

II. STAR1 AND STAR2 

Expectimax is a brute force, depth first game tree search 

algorithm that generalizes the minimax concept to games of 

chance, by adding a chance node type to the game tree. Star1 

and Star2 exploit a bounded heuristic evaluation function to 

generalize the alpha-beta pruning technique to chance nodes 

[2]. Alpha-beta pruning imposes a search window [α,β] at 

each min or max node in the game tree. The search through 

successor nodes can be terminated as soon as the current 

node’s value is proven to fall outside the search window. 

Star1 and Star2 generalize this pruning idea to chance nodes, 

but an important distinction needs to be borne in mind. At 

min and max nodes, a single successor is sufficient to 

terminate the search. However, at chance nodes it is 

necessary to prove that the weighted sum of all successors 

will fall outside the search window. Star1 achieves this by 

starting with a wide search window and narrowing it for each 

successive node, to a range that would be sufficient to 

terminate the search, even assuming worst-case values for 

the remaining unsearched nodes. The narrowed search 

windows for each successor allow us to prune more heavily 

at nodes further down the game tree. 

 
Figure 2.1 illustrates the operation of the Star1 algorithm 

at a chance node with three equally likely successors. We 

assume that the values returned by the heuristic evaluation 

function always lie in the range [-1.0, +1.0]. If the search 

window of the chance (root) node is [-0.4, +0.1], then we are 

only interested in obtaining an exact score if it lies within 

this interval. If the score falls outside this window, we only 

need to establish an upper or lower bound. The intervals 

shown under each successor node indicate the Star1 search 

window for that node. Once the left hand node has been 

computed to have an exact value of 0.8, any value ≥0.5 for 

the middle node will imply that the expectimax value for the 

chance node is ≥0.1, thus allowing the search to be cut off 

without exploring the right hand node. 
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If the stochastic game tree is regular, the Star2 algorithm 

can be used [2]. Star2 further enhances the Star1 algorithm 

by augmenting it with a preliminary probing phase that 

searches one child of each successor node. This cheaply 

establishes a lower bound on the score of each successor. 

These lower bounds can be used to either prove that the 

node’s score falls outside the search window, or to further 

narrow the search windows of each successor for the Star1 

part of the search. 

Detailed analysis of Expectimax, Star1 and Star2 is given 

by Ballard in [2] and by Hauk et al in [3] and [1]. 

III. TRANSPOSITION TABLE USAGE AT CHANCE NODES 

A. Transposition Cutoffs for Chance nodes 

In many games, there are multiple paths to the same node 

in the game tree. In these games, it is possible to save search 

effort by caching previous search results. This information 

can allow us to either directly return a score, or narrow the 

search window before searching any successors of a node. 

We can apply these same techniques at chance nodes, 

provided we have a suitable representation of the 

information present at chance nodes. 

A standard transposition table implementation contains 

two procedures - store and retrieve. Typical transposition 

table implementations for alpha-beta based searchers store 

only a single score, and a flag to indicate whether this score 

is an upper, lower or exact bound. This is insufficient to fully 

capture the information that is present at chance nodes. This 

is because we can have both upper and lower bound 

information on the expectimax value of a node when we 

terminate the search of its successors. Figure 3.1 shows a 

graphical depiction of this situation.  

 

 
 

At a node n, we have searched some number of successors. 

The search window for this node is [α,β]. The information 

gained from the already searched successors has narrowed 

the expectimax score x for this node to the interval [a,b]. 

Since we know that x must be less than α, the Star1/Star2 

algorithms will stop searching the remaining successors, 

leaving us with upper and lower bounds for x. So that we do 

not lose information about node n, we need to store both of 

these bounds. 

We can solve this problem by modifying the store 

operation to record both an upper and lower bound on the 

score for each position, along with their associated depths. 

This new scheme allows us to store the usual upper, lower or 

exact bound information at min/max nodes, whilst letting us 

store independent upper and lower bounds at chance nodes. 

The retrieve procedure simply returns all of the information 

about a node from the transposition table. 

These two modified routines are sufficient to implement 

the transposition table cutoff idea. The associated 

modifications to the Star2 algorithm are described in section 

IV. 

B. Successor Probing 

The Enhanced Transposition Cutoff idea augments a 

normal alpha-beta search with a preliminary transposition 

table probing phase [5]. The transposition table is probed for 

each successor. If any one of these entries has enough 

information for us to exceed beta, we can terminate the 

search immediately. 

We can augment the Star2 algorithm with a similar 

probing phase. The details for the stochastic case are more 

complicated, since any bound information we get will be 

useful, even if it doesn’t allow us to directly cutoff. 

The algorithm is implemented as follows. If we are at a 

chance node n that we are trying to search to depth d, we 

look for all of the information contained in the transposition 

table for each successor that is based on at least a depth d-1 

search. Any information that the entry contains is either used 

to immediately prove that the expectimax score is outside the 

search window for this node, or stored and then used to 

tighten the successor search bounds during the subsequent 

Star2 and Star1 parts of the search. 

 
Figure 3.2 gives an example where this additional probing 

enhancement can help in practice. Suppose we are at the root 

node, with a search window of [α,β]. Since we are using a 

transposition table, we have a cache of previous search 

results. Suppose that there exists an entry in the transposition 

table for the third successor, and that this entry contains the 

exact score for the successor node. If the expectimax value 

of the root node is going to be less than alpha, then we 

would like to prove this as early as possible. Retrieving 
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information from the table is much less expensive than doing 

a full search, and this information from the transposition 

table could save us from having to search some successors. 

The probing enhancement ensures that we retrieve all useful 

information from our transposition table before searching 

any successors. 

In practice, the probing enhancement could be relatively 

computationally expensive. A simple way around this 

problem is to limit the probing enhancement to chance nodes 

with sufficient depth. This limit will of course be domain and 

implementation dependent. 

IV. IMPLEMENTATION 

Figure 4.1 presents pseudo-code for the transposition table 

enhanced Star2 algorithm, which we shall denote Star2-TT. 

The additions required to employ transposition cutoffs at 

chance nodes are shown in bold. The changes that are also 

italicized constitute the probing phase used to implement our 

stochastic analogue of the Enhanced Transposition Cutoff 

idea. 

The negamax function called in the Star1 component of 

the code refers to a negamax formulation of an enhanced 

alpha-beta search. The negamax-probe function called in the 

Star2 component is the same as negamax, but with an 

additional ProbingFactor argument which limits the number 

of moves searched at the root. Because of this limiting 

factor, the score returned and stored by negamax-probe is 

only a lower bound. 

We use the constants U and L to denote the absolute upper 

and lower bounds on the scores returned by the heuristic 

evaluation function. In our implementation, U=+1.0 and 

L=-1.0. 

 It is important to distinguish how we compute the search 

window for each successor, compared to the pseudo-code 

given by Ballard [2] and Hauk [1]. They are able to compute 

the window incrementally, with a simple update rule. We 

cannot use such a rule because we can never be sure of what 

successor information will be determined from the 

transposition table before we begin searching the successors. 

At the beginning of Star2-TT, we initialize an array that 

stores our current bound information for each chance event. 

We denote this array as cinfo in the pseudo-code. Each 

element in the array contains an upper bound, a lower bound 

and the probability of that particular chance event occurring. 

The upper bound for each successor is initially set to U, 

whilst the lower bound is set to L. As we gain more 

information about the successors throughout the various 

stages of the algorithm, the corresponding entry in the array 

is updated. At any time, we can compute the lower and upper 

bounds, LB(n) and UB(n), on the current expectimax value of 

a chance node n with N successors by computing: 
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Figure 4.1 Star2-TT Pseudo-code. 

Score star2-TT(Board brd, Score alpha, Score beta, int depth) { 
      
  if (isTerminalPosition(brd)) return TerminalScore(brd) 
  if (depth == 0) return evaluate(brd) 
 
  EventInfo cinfo[numChanceEvents()]  // for successor bounds 
  generateChanceEvents() 
 
  // transposition cutoffs 
  if (retrieve(board) == Success) { 
     if (entry.ubound == entry.lbound &&  
         entry.udepth == entry.ldepth && 
         entry.udepth >= depth) return entry.ubound 
     if (entry.ldepth >= depth) { 
        if (entry.lbound >= beta) return entry.lbound 
        alpha = max(alpha, entry.lbound) 
     } 
     if (entry.udepth >= depth) { 
        if (entry.ubound <= alpha) return entry.ubound 
        beta = min(beta, entry.ubound) 
     } 
  } 
 
  // successor probing using the transposition table 
  for (i = 0; i < numChanceEvents(); i++) { 
     applyChanceEvent(brd, i) 
     if (retrieve(brd) == Success) { 
        if (entry.ldepth >= depth-1) { 
            cinfo[i].LowerBound = entry.lbound 
            if (LB(cinfo) >= beta) { 
                 store(brd, depth, LB(cinfo), UB(cinfo)) 
                 return LB(cinfo) 
            } 
        } 
       if (entry.udepth >= depth-1) { 
            cinfo[i].UpperBound = entry.ubound 
            if (UB(cinfo) <= alpha) { 
               store(brd, depth, LB(cinfo), UB(cinfo)) 
               return UB(cinfo) 
            } 
        } 
     } 
     undoChanceEvent(brd, i) 
  } 
 
  // Star2 probing phase 
  for (i = 0; i < numChanceEvents(); i++) { 
     Score cmax = childMax(cinfo, beta, i) 
     Score bx = min(U, cmax) 
     applyChanceEvent(brd, i) 
     Score search_val = negamax-probe(brd, 
        cinfo[i].LowerBound, bx, depth-1, ProbingFactor) 
     undoChanceEvent(brd, i) 
     cinfo[i].LowerBound = max(cinfo[i].LowerBound,search_val) 
     if (search_val >= cmax) { 
        store(brd, depth, LB(cinfo), UB(cinfo)) 
        return LB(cinfo) 
     } 
  } 
 
  // Star1 phase 
  for (i = 0; i < numChanceEvents(); i++) { 
     Score cmin = childMin(event_info, alpha, i) 
     Score cmax = childMax(event_info, beta, i) 
     Score ax = max(L, cmin) 
     Score bx = min(U, cmax) 
     applyChanceEvent(brd, i) 
     Score search_val = negamax(brd, ax, bx, depth-1) 
     undoChanceEvent(brd, i) 
     cinfo[i].LowerBound = search_val 
     cinfo[i].UpperBound = search_val 
     if (search_val >= cmax) { 
        store(brd, depth, LB(cinfo), UB(cinfo)) 
        return LB(cinfo) 
     } 
     if (search_val <= cmin) { 
        store(brd, depth, LB(cinfo), UB(cinfo)) 
        return UB(cinfo) 
     } 
  } 
 
  store(brd, depth, LB(cinfo), UB(cinfo)) 
  return LB(cinfo)  // LB(cinfo) == UB(cinfo) here 
} 
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where Pi(n) denotes the probability of the i
th

 chance event, 

and LBi(n)/UBi(n) denotes our current lower/upper bounds 

on the expectimax value of the i
th

 successor. 

We know the exact expectimax value of a node n if LB(n) 

= UB(n). A straightforward implementation optimization, 

that could be worthwhile if the number of chance events is 

large, is to incrementally maintain the LB(n) and UB(n) 

quantities. 

Whenever we recursively call the negamax procedure 

from a chance node n with a search window of [α,β], we 

derive the search window from our current successor 

information. This can be done by computing: 
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Thus the i
th

 successor has a search window of 

[Max(L, ChildMin(n,i)), Min(U, ChildMax(n,i))].  

 

These bounds are chosen so that if the negamax search call 

returns a value in excess of ChildMax(n,i) or less than 

ChildMin(n,i), then: 

 

β≥)(nS  or  α≤)(nS  

 

respectively, where S(n) denotes the expectimax value of 

node n. For a derivation of these equations, see Hauk [1].  

It is important to note that during the Star2 probing phase, 

only the ChildMax routine is used in computing each 

successor’s search window. This is because the negamax-

probe procedure can only return lower bounds on the 

expectimax score of each successor. 

V. EXPERIMENTAL SETUP 

Our experimental framework used the game of Dice 

created by Hauk et al [3]. Dice is a two player stochastic 

game where players take turns placing checkers on an m by 

m grid. Before each move, a die is rolled to determine the 

row or column into which the checker must be placed. The 

winner is the first player to achieve a connected “run” of k 

checkers (horizontally, vertically or diagonally). In our 

experiments, m=5 and k=4. The game of Dice is a prime 

candidate for the transposition table improvement, since 

many different lines of play can lead to the same position. 

For deterministic game tree search, any monotonic 

transformation of the evaluation function will result in the 

same line of best play. However, for stochastic game tree 

search, the evaluation function must estimate a value directly 

proportional to the expected final reward (in our case, +1 for 

win, -1 for loss, 0 for draw). With this in mind, a 2-layer 

feed-forward neural network with 10 hidden nodes was 

trained by self play in the same manner as Tesauro’s TD-

Gammon [6]. The network had 50 inputs for the raw board 

encoding plus 4 inputs to store the number of “runs” of 

length 2 and 3 for each player. 

Our search algorithm incorporated several well known 

move ordering techniques at min/max nodes. We used a 

combination of transposition tables, the killer move heuristic 

and the history heuristic in conjunction with iterative 

deepening [7]. These move ordering techniques increase the 

efficiency of the alpha-beta component and the Star2 probing 

phase. 

We used a Zobrist hash function [8] to map the Dice game 

states to entries in the transposition table. The results were 

generated with a 2.6 gigahertz AMD AthlonFX CPU, using 

only one processor. 256Mb of memory were used for the 

transposition table. 

VI. RESULTS 

We compared Expectimax, Star1, Star2 and Star2-TT. Each 

of these four algorithms was evaluated on the same set of 50 

test positions collected from self-play games. These 

positions include a representative range of opening, middle 

and end-game positions. 

 

The results are summarized in Tables I and II: 

 

TABLE I 

NUMBER OF NODES SEARCHED TO DEPTH 13 (MILLIONS) 

 

 Expectimax Star1 Star2 Star2-TT 

Min 0.02 0.01 0.01 0.01 

Median 13.93 3.99 3.24 1.79 

Max 273.8 136.7 31.69 22.81 

Mean 37.78 14.76 6.12 3.85 

Std 54.67 24.38 7.01 4.70 

 

TABLE II 

TOTAL TIME FOR SEARCH TO DEPTH 13 (SECONDS) 

 

 Expectimax Star1 Star2 Star2-TT 

Min 0.44 0.27 0.31 0.27 

Median 211 62.25 45.14 28.26 

Max 4669 2326 487.8 374.1 

Mean 609.1 238.1 88.55 60.83 

Std 913.5 408.3 104.6 75.9 
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Figure 6.3 – Total nodes searched for each depth. 

 

Figure 6.3 shows the average number of nodes searched 

over our test positions, as the depth is increased. 

Star2-TT shows on average a 37% improvement over 

Star2 using depth 13 searches, in terms of nodes searched. 

This is a significant performance improvement, and well 

worth the implementation hassle for any competitive 

stochastic game playing program. 

Although it is theoretically possible in degenerate cases 

for Star2 and Star2-TT to search more nodes than Star1, in 

practice this does not happen. The savings given by the extra 

probing phase more than outweigh the associated overhead. 

The performance results on the time to depth metric are 

strongly correlated with the number of nodes searched. This 

is because the leaf node evaluation function takes up almost 

all of the CPU time. Reducing the number of nodes in the 

game tree means that fewer calls to the evaluation function 

need to be made. The overhead associated with using the 

transposition table is worthwhile. On average, it takes 31% 

less time for Star2-TT to reach depth 13 compared to Star2. 

Although our results generally agree with those found by 

Hauk in [3], we noticed a larger difference between the 

performance of Star1 and Expectimax. This could be due to 

our evaluation being constrained to return scores from a 

different interval, or due to differences in the alpha-beta 

implementation.  

VII. CONCLUSION  

We have described how to effectively use transposition 

tables at chance nodes in two-player stochastic game tree 

search. This addresses an important gap in the stochastic 

game tree search literature. We have shown that these 

procedures, in combination with the Star2 algorithm, give a 

37% reduction in nodes searched over plain Star2 for the 

game of Dice at a search depth of 13. These techniques will 

be useful for stochastic game tree searchers when applied to 

games where many different lines of play can lead to the 

same board state.  

 

VIII. FUTURE WORK 

A. Parallel Search 

It is possible to parallelize the negamax algorithm [9]. It 

would be interesting to investigate methods of splitting up 

the search work at chance nodes, since the risk of performing 

redundant work at chance nodes might be much lower than 

for min/max nodes. 

 

B. Search Window Adjustments 

At some nodes, we might strongly suspect that we are going 

to fall outside the search window for the current node. In 

these cases, it could prove worthwhile to try to use narrow 

window searches to prove that the node’s evaluation falls 

outside the current search window. This has the potential to 

save search effort because in general it is easier to prove that 

a successor lies above or below some bound than it is to find 

its exact score. If we can skip finding exact scores at some 

nodes, we expect a performance improvement so long as we 

can reliably determine where to use these narrow window 

searches. 
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