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Abstract— In this paper, we use a simple poker game to
investigate Bayesian opponent modeling. Opponents are
defined in four distinctive styles, and tactics are developed
which defeat each of the respective styles. By analyzing the
past actions of each opponent, and comparing to action
related probabilities, the most challenging opponent is
identified, and the strategy employed is one that aims to
counter that player. The opponent modeling player plays well
against non-reactive player styles, and also performs well
when compared to a player that knows the exact styles of each
opponent in advance.
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[.INTRODUCTION

Poker is a card game believed to have existed since the
sixteenth century in Germany as a bluffing game called
“Pochen” [1]. It developed in the 1830’s into the game now
known as Poker and since has been a relatively popular
game in casinos and private houses. During recent years,
poker has seen a large popularity boost, partially due to
regularly televised tournaments, and the availability of
online play, despite recent problems due to new US
legislation banning banks from processing internet
gambling transactions [2].

The basis behind all games of poker is relatively simple;
each player is dealt a set number of cards (varies for
different styles of poker, usually between one and five), and
then a betting round commences, within which each player
tries to convince their opponent that they have the best
hand; the strength of the hand being inversely related to the
probability of receiving that set of cards. There can be few
or many of these betting rounds, in the case of Texas Hold
‘Em, there are 4 rounds (pre-flop, post-flop, turn, river), but
other forms vary. Three actions can be taken in the game
which apply to all forms of poker, these are

1. Bet/Raise: Add money to the pot, and increase the
monetary risk for the player and the opponents

2. Check/Call: Take no action if the player’s current bet
is equal to the minimum required bet, or put in a bet
equal to the current bet.

3. Fold: Take no further part in the proceedings of the
hand.

These basic actions are an essential staple of all poker
games. It is the general uncertainty of not knowing if the
opponent’s actions represent a truth or a lie that makes the
game of poker one of the most skilful card games in the
world.

Poker has driven numerous research efforts, although less
so than some other games, arguably due to the difficulty in
modeling with imperfect information. Games such as chess
have a fully available state of information meaning that
every possible move can be predicted and modelled,
spurring many research developments, most famously being
the interest and controversy surrounding Deep Blue [3].
Poker is different in the sense that the only piece of
information held by a player of the game’s state is that of
their card(s) held, and that of any past actions the opponents
have made. This paper investigates the creation of a player
for a simplified form of poker, which analyses and reacts to
opponents’ play.

The scientific investigation of poker has always been an
extremely complex field, and with the number of
possibilities that each hand can hold, there is no real
analytical way to cover all possibilities in a suitable
timeframe. Koller [4] states that standard techniques (such
as a minimax search algorithm) are not reliable for
accurately determining the reasoning required due to the
prospective use of bluffing; an opponent’s bet could
represent a bluffing move, or a show of confidence, this
being difficult for any player to determine. Koller then
explains the Gala system, which uses a language similar to
Prolog to describe and solve imperfect information games
such as poker, using a three-card deck with one card dealt
per player. Several approaches to understanding the
mechanics of imperfect information games have been based
upon simplified variants of poker: such as [5], where three
simple versions of poker are used to investigate
recommended changes in players’ actions dependent upon
the number of opponents. Billings [6] has considered means
of reducing the complexity of the gaming situation,
reducing betting rounds by defining 19 possible sequences
that each round can take. The paper also covers the
elimination of multiple betting rounds, to simplify the
problem somewhat, but maintaining the fundamental nature
of poker. Billings also created a statistics-based opponent
modeling system, where each opponent action is used to
generate a simple probability of each action, and the player
uses the probability to guess the opponent’s next action [7].
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The modeling system uses a neural network based system
that, when given a set of inputs of an opponent’s previous
actions and the current state of play, will produce a
probability distribution of the opponent’s next action.
Schaeffer [8] identified and defined some ground
requirements for creating a ‘world class poker player’,
which are not independent, but altogether form an integral
part of the Loki system. These requirements are Hand
Strength, Hand Potential, Betting Strategy, Bluffing,
Unpredictability and Opponent Modeling. One other rule
that is inferred from the paper, but not explicitly cast as a
rule, is that of adaptability; a good player who analyses the
opponent’s playing style would easily exploit a
deterministic means of decision making.

Opponent modeling has been seen as having a greater
impact on success in games of poker than most other
games, indeed poker may be seen as a testbed for opponent
modeling research In the case of [9], modeling is
implemented by adjusting weights in relation to actions
made and the success of the opponent as a result of those
actions. Eric Saund explained an approach that captures
and analyses betting actions in relation to inferring the
downcards held by an opponent in seven-card stud poker
[10]. Saund uses several game situations, one in which all
cards are viewable, and one in which some cards remain
hidden. Despite having card information that would be
unseen in a real life game, Saund shows that using betting
actions to ascertain how an opponent will play is much
better than approaches that do not use such information.

I1.ONE CARrD PokEer

We use a simple version of poker, which still
maintains some useful parts of the ‘flavour’ of a full-scale
poker game. The deck consists of ten cards, labeled from 2
to A (Ace being the strongest card, but names and suit are
arbitrary, only the strength order of the cards is important).
The game consists of four players; each player has an initial
credit of 10 chips, and each hand entered requires a one-
chip ante from each player, after which each player is dealt
one card, similar to the approaches of [11], which uses an
8-card deck with each player having only one card and one
chip each, and [12] in which each player is dealt a card
classed as ‘high’ or ‘low’, but can reach the situation of a
‘draw’ where each player holds a card of the same strength
as it’s opponent and the pot is shared. The winner of the
hand is the player with the highest valued card; the initial
difference between any other variation of poker and this
simplified one is that of the case where a player holds an
Ace; the player knows that the contents of the pot are theirs
as no card can beat an ace implying a definite win. This
means that damage limitation must be employed by players
to make sure that an opponent with an Ace does not fleece
the other players of all their chips.

After the cards are dealt, the players take turns in a
clockwise direction, and make a decision whether to bet,

fold, or check, given the value of their card. Betting (which
is equivalent to a ‘raise’ action), and each subsequent raise
costs one chip. Once all players have matched one another’s
bets, or all but one player has folded, the showdown is
reached, and the player with the highest card (or only
player remaining) receives the pot contents. The players
continue playing further hands until there exists a
tournament winner who possesses all of the chips. The
game itself has no maximum bet; so entire tournaments
could theoretically end in one hand, dependent upon the
play style of the players.

II1. ExpERIMENTAL DESIGN

A. Design of the Distinct Style Players

Poker players may usefully be categorized into four main
styles, these are explained in [13] to be:

e Loose Aggressive (LA): A loose aggressive player is
one that is loose (over values card(s) held, and even
stays in hands it is unlikely to win) and is also
aggressive (when given the opportunity to stay in the
hand, will bet or constantly re-raise forcing the pot
higher).

e Loose Passive (LP); A loose passive player will also
over value their cards, but take very little action apart
from checking/calling, and will only bet in a rare
situations in which they will believe that winning has a
very high probability.

o Tight Aggressive (TA): A tight aggressive player
accurately values their card in terms of win
probability, and will more often fold (which is mainly
attributed to tightness), but due to the player’s
aggressive nature, any hand that it is determined that
the player should stay in, then the player will bet to
force the pot value higher.

e Tight Passive (TP): A tight passive player plays very
few hands, and even when doing so will very rarely
make a betting action.

Each of these styles of player was modeled using a simple
deterministic design [fig 1]. A player’s style is
characterized by the probability pair [a, B], where a
represents the minimum win probability required for a
player to remain in the hand, and [ represents the
minimum win probability for the player to bet. It should be
appreciated that o is responsible for whether a player is
tight or loose, and B for whether a player is passive or
aggressive. If the win probability is less than a, the player
will make a checking action if there is no additional
monetary risk (i.e. no money needs to be placed in the pot
to remain in the hand), and fold otherwise.
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Fig. 1. Layout of a general player

A pair [o, B] represents a deterministic player, with a
distinct play style. The o and B values for each playing style
is defined in Table L.

noted, however, that the usage of tight and passive play is
somewhat exaggerated.

TABLE II
O AND B VALUES FOR EACH STYLE OF ANTI-PLAYER
o B WiN %
ANTI - LA 0.6 0.8 76
ANTI-LP 0.8 0.9 63
Anti - TA 0.0 0.7 71
A~ - TP 0.0 0.8 75

TABLE I
0L AND [ VALUES FOR EACH STYLE OF DETERMINISTIC PLAYER
o p
LA 0.1 0.2
LP 0.1 0.9
TA 0.5 0.6
TP 0.5 0.9

B. Design of the Anti-Players

“Anti-Players” were created as a ‘nemesis’ to each of the
LA, LP, TA, and TP players. The values of o and B for an
“Anti” Player are dependent upon the number of opponents,
and the respective styles of those opponents. [a, B] pairs
were tested in increments for 0 < o < 8 < 1 to determine the
best value. Each [a, B] pair was tested in a 100-game four-
player tournament, with all players starting each
tournament with 10 chips. For example, fig. 6 gives the
performance of different [a, B] pairs against three LA
players. Table II gives the [0, B] values for the Anti-LA,
Anti-LP, Anti-TA, and Anti-TP players, with the success
rate of these values against the four distinct styles. Against
loose players, the o and § values represent a rationally tight
style of play, as loose players will often squander chips
when facing a tight opponent that holds a strong card.
When playing against tight players however, a loose
strategy is adopted to remaining in play, and a tight one in
relation to betting/raising. This appears rational, as many
tight players will fold when holding a weak card, possibly
leaving the pot to a looser player that may hold a weaker
card. The tightness in relation to betting is also rational,
staying in hands where the pot is small is wise, but when a
strong card is held, the player should try to raise the pot as
high as possible. When against loose players, the win
percentage cannot reach 100% due to the situation where
the loose player has the highest card and each player bets,
ultimately costing the Anti Player all of its chips.
Conversely, when facing tight players, the win percentage
cannot reach 100% due to the Anti Player remaining in all
hands, meaning that in some circumstances, the player will
run out of chips due to the ante per hand. It should be

C. MobpELING THE OPPONENT WITH THE ANALYSIS PLAYER

Having a means of defeating each style of player raises
the question as to whether we can combine them to create a
player that could defeat all types and combinations of
opponent. This player, the Analysis Anti-Player would need
to use the past history of each player’s betting actions to
determine the style of each opponent. Bayes’ theorem could
be used to analyse the past play information of an opponent,
and aims to determine the style of each opponent The usage
of Bayesian probabilities to model uncertainties has become
popular in relation to imperfect information games, such as
Poker [15].

Bayes’ theorem relates conditional and marginal
probability distributions of random variables, which shows
that however different the conditional probability of event A
conditional upon event B is to that of B conditional upon A,
there is still a relationship between the two.

Pr(B| A)Pr(A)  Pr(B| A)Pr(A)
Pr(B) Y Pr(B|a)Pr(a)

a

Pr(A|B) =

The Analysis Anti-Player uses Bayes’ theorem to
calculate the probability of a player utilizing a specific play
style. Equation (1) gives Bayes’ theorem where A is a
random variable representing player type, and B is a
random variable representing player action. Pseudocode for
this analysis player is given in Fig. 2.
for All of Opponent i’s past moves
{

action = Players[i].PastMove;

// Multiply each action probability by the initial
// probability

tp = fTPPlayProblaction] * fInitialTPProb([i];
ta = fTAPlayProblaction] * fInitialTAProb([i];
lp = fLPPlayProblaction] * fInitialLPProb[i];
la = fLAPlayProblaction] * fInitialLAProb([i];

// Sum all the separate probabilities, to create the
// normalizing constant, Pr(B), and normalize each
// value so that the probabilities sum to 1

float prob = tp+tatlp+la;

if (prob < 1)

{

tp = tp / prob;
ta = ta / prob;
1p = 1lp / prob;
la = la / prob;

}
// Set all initial probabilities as the new value,
// Pr(A|B)

fInitialTPProb[i] = tp;
fInitialTAProb[i] = ta;
fInitialLPProb[i] = lp
fInitiallAProb[i] = la

Fig. 2. Pseudocode of the Bayes” Theorem predictor
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The calculation uses an initial probability of 0.25 as Pr(A)
for the first iteration, as each opponent style is assumed
equally likely when no actions have been analysed.

The values used to represent the probability of a player of
style A taking an action B were evaluated by analysing the
past actions of players of that style over thousands of games;
the probability that a loose aggressive player would make a
betting action, for example, was calculated by recording the
frequency of betting actions made per 100,000 games.

These probabilities can be seen in Table III. Actions that
could not be utilised in defining opponent type were
ignored, such as most actions taken when not under any
monetary stress.

TABLE III
ACTION PROBABILITIES FOR EACH OPPONENT STYLE
F CHECK Ber
OLP /CALL /RAISE
LA 0.36 0.05 0.59
LP 0.60 0.29 0.11
TA 0.73 0.02 0.25
TP 0.87 0.07 0.06

The updated initial probability represents the probability
that the player is of each of those styles. Fig. 3 gives an
example that shows how quickly the analysis player
probabilities converge.

If these new probabilities do not exceed a minimum
desired probability for an opponent to be defined as a
specific type (in these experiments, a value of 0.95 was
used), the probabilities are then re-used on the next cycle.
This raises an issue: if the probability of a player of type A
taking action B is set high, the “Learned” probability of
being type A could breach the threshold of certainty very
quickly, and possibly lead to an erroneous analysis.
Furthermore, setting the probabilities too low will leave a
lot of uncertainty about defining a player’s type, reducing
the convergence speed.

e b e e e e e
w = > o ~ o "3

Prebability of Oppenent Being of Type A
=
[
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-
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Number of Actions
‘ Loose Agg ive— =—Loose P —Tight Aggt ive ——Tight Passive]

Fig. 3. Graph displaying how player type probabilities alter given opponent
actions. In this case, the analysis player converges to the conclusion that the
opponent is a tight passive player.

D. Modeling Correct Responses for Opponents of Differing
Styles

The four Anti-Players combine to form the strategies of
the Analysis Anti-Player. After the analysis player learns
the opponents’ styles, it prioritizes its reactions in relation
to the most “dangerous” opponent type. For example, a
tight passive player’s actions would be taken more seriously
than that of a loose aggressive player. This risk analysis
leads to choosing a specific anti-player’s tactics dependent
on the greatest threat. A tight passive player has the
greatest priority, due to the tight risk-free nature of play.
After this, a tight aggressive player would be given priority.
When considering only loose style players, the greatest
popularity of a style is given precedence, pigeonholing the
entire set of opponents in relation to that specific style. Fig.
4 shows how the Analysis Anti-Player chooses its tactic.
The player analyses each of the opponents’ actions and
determines the opponents’ play style using the algorithm
defined in Fig. 2. It then analyses the assumed styles of all
the opponents, and chooses to play against the most
threatening style; tight passive and aggressive players take
priority as tight players are much stricter in their style of
play, if no tight players exist, then priority is given to the
loose style used by most players. When the Analysis Player
has decided which style of player to respond to, it will use
the relevant ‘Anti’ style of play.

Analyse Opponent [n]'s
Past Actions

€etermine Opponent [n]'s

For Each Player, n

Style of Play

L

Analyse the Opposition
Demographic

IF > 1 Tight
Passive Player

Perform Anti-Tight
Passive Actions

IF 2 1 Tight C Perform Anti-Tight
Aggressive Player Aggressive Actions
Mostly Mostly
Loose Loose
Aggressive Passive

Perform Anti-LA
Actions

Perform Anti-LP
Actions

Fig. 4. Diagram representing the flow of actions with an Analysis Anti-Player
to determine the opponents’ style and choose which tactic to employ
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E. The Simulation Player

The last player to be created was what is called the
Simulation Player. This player, on each of it’s turns is told
the style of each opponent, and it then runs a simulation of
the game within itself (loading a new instance of the game
class) with the current demographic of players, and runs
tests against the players over a discrete set of 66 o and B
values in increments of 0.1 where 0 < o < B < 1. These tests
consist of 100 games per [o, ] pair. It then utilizes what it
sees as the ‘best’ values of [0, ] to make subsequent
decisions against the opponents. The graphs in Figures 6 —
9 show a representation of the results that a simulation
player receives when playing different sets of opponents.

IV. ResuLts AND ANALYSIS

The comparison of the Analysis Anti-Player against the
Simulation Player [Fig 5] represents an average of the
percentage of tournaments won by each player against every
combination of opponents in a four-player environment. All
experiments are run on a Pentium IV 3.0 GHz HT with
1GB RAM using C#NET running under Windows XP SP2.

We observed that the averaged results were not sensitive
to the order of opponents around the table, and win
percentages had only a standard deviation of 3%. We can
see that the performance of the Analysis Anti-Player is
comparable to, and on occasion surpasses that of a player
that is already knowledgeable of the opponent’s styles. Due
to the random nature of the hands, it is not surprising that
the Analysis Anti-Player is occasionally the best. These
results show how successful the pigeonholing technique is
compared to a ‘custom built’ design that the Simulation
Player creates for the current demographic. There is a point
where the success rate of the Simulation Player reaches as
low as 40%. It should be appreciated however, that 40% is
not necessarily a failure as this is a four-player game, and
40% is greater than a ‘fair share’ of tournament wins.

/S

% of Tournaments Won
2

LA LA LA LA LA LA LA LA LA LA LP LP LFP LP LP LP TA TA TA TP
LA LA LA LA LP P LP TA TA TP LF P LF TA TA TP TA TA TF TF
LA LF TA TP LP TA TP TA TP TP LP TA TF TA TP TP TA TF TP TP

i Opponent Combination
|—Search 'Best — Analysis Player

Fig. 5. Graph displaying combinations of opponent styles against the
percentage of tournaments won by each player
One comparison between the two players is related to the
performance of each player against the groups of mostly
tight players on the right hand side of the graph. These
results show that the players are both quite competent

against these styles of play, and the Analysis Player has
nearly an 85% success rate. An explanation for the high
rate of success, even against four players is possibly due to
the tight nature of the opponents; any action that the player
takes which is not a folding action may steal the pot from a
tight player with a better hand: tight players are very
susceptible to bluffing.

The success against mostly loose players is slightly less
prominent, but still very impressive, averaging around 55%
of tournament wins. This is not surprising since a loose
player’s actions reveal relatively little about the card held.
This can lead to situations where a loose opponent will have
a very strong hand, and the Analysis Players will still
remain in the hand, resulting in an unsuccessful
tournament.
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Fig. 6. Graph displaying the tournament success of o against 3 (in % of
tournaments won) when playing a four-player tournament against LA/LA/LA
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a four-player tournament against TP/TP/TP opponents
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a four-player tournament against LA/LA/LP opponents

Figures 7, 8, and 9 provide some explanation as to why
the pigeonholing technique works; these figures show the
success of each possible value of o and B against a different
collection of opponents; the darker areas indicate a greater
concentration of large win percentages.

Fig. 6 shows the successful probabilities against three
loose aggressive opponents, a large area of high success
values can be seen, indicating that playing tightly, as well
as playing with a low amount of belief in the severity of the
opponent’s actions can bring a large number of wins. Fig 7
shows the successful probabilities against three TP
opponents, and the graph shows that the concentration of
wins is very low, mainly due to the low probability of a
large pot when playing a tight player, especially when
playing against a tight passive player. The graph indicates
that the best strategy is to participate in as many hands as
possible, but not to make a betting action unless completely
certain of a win. This appears to be a rational tactic, as
remaining in a hand increases the probability of stealing a
pot from a tight player.

Fig. 8 shows the effect of replacing one loose aggressive
opponent with a tight passive one. The transformation from
Fig. 6 to Fig. 8 is quite dramatic, and exemplifies the effect
that a tight passive player can have upon a game of three
loose opponents, in turn justifying the pigeonholing
technique, as the resulting graph is much more closely
related to the graph of three tight passive opponents than it
is for three loose aggressive opponents. The main
explanation of this is probably due to the order that a game
may take with this general demographic; the loose players
would have a tendency to risk many chips, and may get
removed from the tournament early, leaving only the Anti-
Player and the tight passive opponent, which would
probably dominate most of the games. It should also be
noted that the number of tournament wins in total across
the graph is relatively low compared to other graphs. This
is however, one of the points where the Analysis Player
greatly outperforms the Simulation Player (by nearly a 20%
margin). This is probably due to the Analysis Player
modifying its behaviour while playing to deal with the
greatest threat. When the loose players have been removed,
the main focus of play will be against the tight passive
player.

Fig. 9 shows how small an effect is brought upon the
same demographic of loose aggressive players by adding a
loose passive player. As can be seen, there is very little
difference between the graph in Fig. 9 and that of Fig. 6,
which is mainly caused by the loose nature of the
opponents, as the dark area of the graph (displaying an
‘area of believability’) shows how fragile a loose player is
against partially tight play.

V. ConcLusioN

A player is presented for a simplified game of poker,
which analyses the past actions of its opponents, and in turn
uses Bayesian probability ideas to learn what style of
opponents it is facing.

The player uses a system of ranking to determine the
greatest threat and acts as if all opponents are of that style
by ‘pigeonholing’. The performance of the learning player
compared to one that knows the opponent styles without the
need for probabilistic calculation is quite similar, and
demonstrates the effectiveness of both learning and
pigeonholing.

A single deterministic opponent proves simple to beat
when using the Bayesian predictor function. The quick
convergence shown in Fig. 3 illustrates the difficulty that
this current predictor would face when playing against a
dynamic opponent.

Future work will investigate the situation where the
predictor function is able to cope with partially randomised,
dynamic, or bluffing players. These future players would
use stronger play policies than the current insensitive, and
non-reactive opponents. In these cases, an opponent could,
accidentally or deliberately, hide its playing style, and make
the Bayesian approach to learning more difficult.
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