
Concept Accessibility as Basis for Evolutionary Reinforcement

Learning of Dots and Boxes

Anthony Knittel
Centre for the Mind

Main Quadrangle (A14)

University of Sydney

NSW 2006

Australia

Phone: +61 2 9351 5816

Fax: +61 2 9351 8534

email: anthony@centreforthemind.com

Terry Bossomaier
School of Information Technology

Charles Sturt University and

Visiting Fellow, Centre for the Mind

email: tbossomaier@csu.edu.au

Allan Snyder
Centre for the Mind

University of Sydney

email: allan@centreforthemind.com

Abstract— The challenge of creating teams of agents, which
evolve or learn, to solve complex problems is addressed in
the combinatorially complex game of dots and boxes (strings
and coins). Previous Evolutionary Reinforcement Learning
(ERL) systems approaching this task based on dynamic agent
populations have shown some degree of success in game play,
however are sensitive to conditions and suffer from unstable
agent populations under difficult play and poor development
against an easier opponent. A novel technique for preserving
stability and allowing balance of specialised and generalised
rules in an ERL system is presented, motivated by accessibility
of concepts in human cognition, as opposed to natural selection
through population survivability common to ERL systems.
Reinforcement learning in dynamic teams of mutable agents
enables play comparable to hand-crafted artificial players.
Performance and stability of development is enhanced when
a measure of the frequency of reinforcement is separated from
the quality measure of rules.

Keywords: Concept Accessibility, Evolutionary Rein-

forcement Learning, Dots and Boxes

I. INTRODUCTION

Micro and nanotechnology are driving the need to develop

software solutions using teams of intelligent adaptive agents.

Such teams may be large and entirely self-taught. Evolvable

systems are often robust, compared to explicit procedures,

albeit at the cost of some efficiency.

Games provide a very useful test framework, since they

can have relatively simple rule systems with simple easily

measurable rewards yet very complex dynamics as discussed

recently by Sato et al [1] for games such as Rocks Paper

Scissors. Conway and Berlekamp have studied a wide range

of seemingly simple games, showing that they can have very

deep strategies [2]. The childhood game of dots and boxes,

or its duel, strings and coins, is such a game. The game

dots and boxes is played on a grid of dots, players take

turns to complete an edge between two adjacent dots on the

board, receiving a point and an additional move if the edge

completes a box. When all edges have been filled the player

with the most points wins.

Previous systems have been developed using dots and

boxes as a test bed for exploring the development of rules that

capture features and principles of the game environment, and

use those rules to produce effective play [3] [4]. The main

goal of this research is not simply to develop the most effec-

tive game playing system, but rather to explore techniques to

efficiently capture structure in the observed environment and

use that structure to produce effective behaviour. Previous

systems have been able to produce effective play against a

basic artificial player in a restricted domain, playing as the

second player on a three by three size board, however with

some degree of instability or sensitivity to parameterisation

[3], [4]. An alternative approach is presented that produces

more stable behaviour and better performance, by avoid-

ing instabilities inherent in a performance-sustained agent

population. This approach no longer follows the analogy

of a growing/shrinking population common to Evolutionary

Reinforcement Learning, as the resulting behaviour of the

analogous system is no longer appropriate for the environ-

ment being explored. An alternative technique inspired by

cognitive behaviour, based on principles of limited but stable

cognitive resources is presented.

II. GAME PLAYING SYSTEM

The system used to play the game is an Evolutionary

Multi-agent System, using a form of Reinforcement Learn-

ing. Agents in the system represent rules, and are developed

using an evolutionary algorithm based on mutation, based on

the systems described in [3] and [4].

Strategies for playing the game effectively have been

described in detail by Berlekamp [5]. These strategies are

based on features of the game state and require recognition of

specific concepts, rather than detailed examination of quality

values of states as is common in artificial game learning. The

number of possible states and actions produced in game play

makes it impractical for a basic state-based reinforcement

learning approach, but regardless this research focuses on

examining the automated development of conceptual struc-
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Fig. 1. A state of the game of dots and boxes, with degree labels added
to squares on the board that are incomplete.

tures and rules to govern play, ideally based on rules related

to those described by Berlekamp.

A. Rule Encoding

In the strings and coins view of dots and boxes, strategies

can be represented in terms of connections of strings and

coins, which effectively represent states in the game, or

generalisations of states. Evaluating strategies to be used

requires matching template (move) graphs, which may also

contain generalisation symbols or other operators, against the

current state graph of the game being played. The recent

surge of interest in understanding networks [6], [7] and the

characterising of common network fragments [8], [9] makes

it of considerable interest to be able to evolve rule systems

on graphs. Basic rules such as leaving chains unfinished to

retain control may be represented using graph structures,

although more sophisticated rules would require a broader

rule encoding scheme.

B. Encoding Rule Graphs

In the following discussion we consider only the strings

and coins representation (which is in fact a superset of the

dots and boxes game [5]).

The pattern an agent uses to determine if it can make a

move is a set of one or more unconnected graph fragments.

Nodes in the graph represent boxes in the game state, labelled

with the symbols q, t, l, x, n to represent nodes of degree 4-1

respectively, and ”null nodes”, used to represent connections

at the edge of the board. An example of a game state

with matching identifying symbols for each box is shown

in Figure 1. Connected sequences of nodes of degree 2 are

labelled in the rule graph with a single node, l, with an

additional property describing the length of the chain. This

does assist the learner in recognising a priori that chains

are useful features to identify, and learning progresses from

this assumption. Chain symbols in rule graphs also use an

optional flag to allow the chain to match other chains of

equal or greater length. An additional node symbol is used

in rule graphs, w, which is a wildcard symbol to allow the

rule graph to match part of a larger graph, as restrictions on
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x

Fig. 2. A state graph produced from the game state in figure 1.
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Fig. 3. Rule described by a number of graph fragments.

the form of rule graphs enforce graphs to be complete- for

example that a node with symbol q is connected to exactly

four neighbours in the rule graph.

Rules also define an action to be conducted if the rule is

activated, represented using a pair of nodes in the rule graph

to be used as the action edge for the next move.

Figures 2 and 3 show a rule defined by a number of graph

fragments, and a matching state graph.

Rules can also be described in textual format using an

adjacency list representation. In this representation each node

in the graph is listed along with all the nodes that node is

adjacent to, for example the rule in Figure 3 can be described

as:

q2l1(1+)x3x4w : l1(1+)q2n : x3q2 : x4q2 : x5w => q2−x3

with the additional information of the edge to be completed

if this rule is activated (between q2 and x3). Further details

on the representation used are given in [3] and [4].
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C. Mutations

New rules are created by copying the state graph from an

existing state of the game, and child rules are created from

existing rules using a series of randomly chosen mutation

operations on the graph, including adding nodes, removing

nodes, changing the properties of chain nodes, joining and

separating graph fragments, and replacing symbols with

wildcards.

III. EXISTING SYSTEMS

Previous studies have examined the use of an artificial

economy to govern rule use and development [3], and

reinforcement learning in a biological paradigm [4], where

agents receive rewards for successful behaviour and die off

if insufficient rewards are received. These techniques have

shown good performance in the restricted game of playing al-

ways as the second player to move in the game, and adequate

performance with the starting position being interchanged,

winning up to 30% of games against a given artificial

opponent. A number of limitations in the system used to

maintain the rule population can lead to instability in on-line

play against a difficult opponent, and over specialisation and

niching (described following), such that rules that play well

in a limited range of situations are preserved, and other more

challenging game states are not addressed by the system,

or receive limited development. These systems are sensitive

to the degree of difficulty of the opponent- if the system

is receiving limited rewards as a result of limited success

against the opponent, the rule population is not sustained

and the best rules that have been developed can be lost, and

if the opponent is too easy and the system receives plentiful

rewards, rules that are not very good are maintained and the

system does not improve.

The instability of the agent population that has been shown

is due to the use of an analogy with biological evolution-

ary systems to guide agent development. Populations grow

according to input to the system and die off under poor

conditions, such behaviour is inherent in the analogy used

and practical problems that result from this show limitations

of the applicability of the analogy for the problem being

addressed, which is to develop concepts appropriate for

playing a game.

Comparable systems developed in the field of Learning

Classifier Systems (LCS) [10] and other Genetic Algo-

rithms [11] handle population dynamics by maintaining a

fixed population size, a useful abstraction of evolutionary

development without placing too much consideration on the

life span of individual units. This may be better for preserv-

ing population stability, however can still result in difficulties

with specialisation and generalisation of rules [12]–[14].

Finding a balance between specialisation and generalisation

has been addressed in a number of different ways and is a

common problem in similar evolutionary systems, typically

addressed through mechanisms such as selective deletion or

reproduction [15], rather than an inherent point of stability

of the underlying system.

A. Niching

A related problem, coverage versus niching, is influenced

by the generalisation / specialisation properties of the system,

an explanation of the terms used is presented for clarification.

a) Generalisation: refers to how reusable rules are, a

highly generalised system uses a limited number of rules to

cover a wide range of behaviour.

b) Specialisation: refers to rules with limited applica-

bility. This allows specific behaviour to be captured that may

be more appropriate for specific cases, but is not applicable

to a wide range of cases.

c) Coverage: refers to how much of the problem do-

main is able to be handled by the system.

d) Niching: is the convergence of a system or compo-

nents of a system towards a limited domain, typically such

that behaviour within this domain is effective.

The problem of niching is inherent in the use of a popu-

lation analogy where survival is based on a particular input.

Such systems are guided simply by population survival, and

in systems such as LCS where the domain of operation of

components is limited, effective survival can be produced by

restricting the domain of operation such that behaviour within

this domain is effective, leading to niching. The problem with

niching is that while components of the system are able to

function effectively, there may be elements of the domain not

effectively addressed by the system, such that the behaviour

of the overall system observed externally is poor.

Highly generalised systems tend to produce good coverage

and specialised systems tend to produce niching, however

distinction between the concepts is important as the princi-

ples are independent. A high degree of coverage is essential

for effective play in a game playing system, as a system

that is drawn towards specific niches may operate effectively

within those niches but poorly overall.

B. Specialisation of Rules

The problem of degree of specialisation of rules is im-

portant for the game of dots and boxes. It is possible

to develop highly specific rules that recognise a particular

action is useful or optimal in a particular situation, however

due to practical (or design) limitations, and requirements

of reusability in new situations, generalised rules are also

necessary.

Specialised rules can be useful for capturing useful actions

that occur infrequently, and special cases that are not appro-

priately captured by general rules. For example it is generally

a good idea to take boxes whenever they are available, using

a rule such as1:

x0w => x0 − w

(described in adjacency list representation). However in

specific cases, such as situations where it is beneficial to give

up boxes to the opponent in order to retain control, a more

specific rule, to play a different edge, can take precedent over

1This rule describes one open box connected to something else (wildcard),
the right hand side describes a pair of connected nodes in the graph
specifying the edge that should be completed as the action for the rule.
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the rule to complete an available box, for example the rule

fragment:

l0(1+)x1n => l0(1+)[0] − n

This rule describes a long chain symbol (l0) of length 1 or

greater (1+), connected to a box and the edge of the board

(x1 and n), and states the action to play is the edge between

l0 and n, at the end of the chain ([0] moves into the chain).

Further refinements would be needed to define the conditions

where the specific rule should take precedence.

1) Precedence: In order to implement an effective player

it is necessary for precedence between the rules to be

maintained, such that if a situation may be addressed by

a general and a specialised rule, the specialised rule takes

precedence. If the quality of rules is maintained using a

Temporal Difference learning (or similar) procedure and the

Q-value of the rule adequately represents the expected reward

for using a rule, use of this value for selecting acting rules

is sufficient for defining precedence.

Maintaining the population according to Q-values of rules,

or expected reward, is problematic as it places preference

on highly specialised rules which may occur infrequently,

placing emphasis on the learner to remember specific moves

in rarely occurring board states at the expense of general,

reusable rules.

An alternative technique is presented that takes into ac-

count the frequency of use of rules, to encourage a degree

of generalisation.

C. Reinforcement Algorithm

Existing evolutionary frameworks are commonly based on

an analogy with genetic systems or living entities that survive

according the presence of a given resource. The algorithm

we present is based on a related but independent analogy,

of the use and activation of concepts in the brain. Practical

differences for the purposes of this study are limited, however

the motivations of the design principles used are different.

Each agent in the system maintains a Q-value representing

the expected reward when the rule is used, similar to the

standard TD(0) learning procedure [16], [17]. An additional

variable is maintained, f , representing the accessibility of a

rule, or frequency of use. The purpose of this value is to

discriminate rules such that only a limited number need to

be assessed at a given time, even though new rules are being

created regularly.

This value is maintained independently of the quality

value, and reinforced according to how often a rule is

accessed, regardless of its quality. Every time a rule is

used its accessibility value is increased, and with time

gradually decreases. The total amount of accessibility value

in the system will stabilise, distributed amongst rules in a

manner representative of the distribution of activity niches

experienced by the system. This approach biases selection,

and subsequently reinforcement, of rules according to the

frequency of occurrence of states, providing a mechanism

to enforce wide coverage of the system, and to avoid nich-

ing (section III-A).

Maintenance of available rules for assessment is conducted

using the f -value, and selection using the Q-value. In this

manner the Q-value can be used to independently represent

the expected reward when a rule is used, allowing quality

to be preserved independent of frequency of occurrence,

and allowing precedence between rules to be developed as

described in section III-B.1.

IV. METHODS

A. Agent System

The game playing system is considered an Evolutionary

Multi-Agent System, as it is composed of a number of

independent units that perform actions (agents), which are

developed using an evolutionary process. The agent system

acts as a single player in the game, and the agents in the

system are rules that suggest actions at various stages of

play. This is a different structure to systems described in

existing literature on Multi-Agent Reinforcement Learning,

which commonly refer to the dynamics of a game being

played by multiple agent players, each using an independent

state-based reinforcement process [18], [19].

Reinforcement is performed on active rules using a pro-

cedure similar to TD(0) [16], for all rules that have acted

during a game, according to the following formula where r
is the reward according to the result of the game, and Qn is

the Q-value of agent n.

Qn = αr + (1 − α)Qn (1)

The accessibility measure of each rule is updated accord-

ing to:

fn = d + (1 − α)fn (2)

where d = 1 if the rule has been used, and d = 0
otherwise.

The agent population is limited to 1000 agents, restricted

according to the f value of each.

For each state in the game, each rule in the system is

tested if it matches the given state. From the matching rules

the best ten are selected, for the purpose of maintaining a

consistent selection probability according to the Q-value of

rules, which can otherwise be distorted by large numbers of

rules. The acting rule is selected probabilistically according

to the Boltzmann distribution:

Pn =
eβQn

∑J
j=1 eβQj

(3)

B. Refinements

To assist the search process in covering the range of states

experienced, new rules are added to the system probabilisti-

cally when few or no rules match a given game state. The

new rule is added as a mapping of the game state to a

random action. Generalisation and variation of the rule can

occur through mutations in offspring of the rule, according

to mutation rules that modify the graph describing the rule,

143

Proceedings of the 2007 IEEE Symposium on 
Computational Intelligence and Games (CIG 2007)



by adding, removing or reconnecting elements in the graph.

Further details of the mutation rules are described in [3] and

[4].

New rules are added to the system with Q-value equal

to the average reward value experienced by the system. As

a result rules which improve performance gain precedence

easily, and the initial value does not need to be determined

arbitrarily.

Reproduction is performed every 10 games, 4 agents are

selected from the available population according to the same

probabilistic distribution used for action selection described

previously, new agents are produced as mutations of these

agents. The rate of reproduction has been inherited from pre-

vious systems, where it was chosen to preserve an acceptable

population size, maintaining a similar value is beneficial for

comparisons between the systems.

Reward values are defined as the difference of scores at the

end of the game, such that games lost give a negative reward.

As selection of Q-values is determined using an exponential

function, winning rules easily take precedence over rules that

on average result in a loss.

C. Experimentation

Experiments are run by playing matches between the agent

system and an artificial player, using a board of 3x3 boxes.

The artificial player is a hand coded system following non-

trivial rules such as the chain-rule, and plays at a good am-

ateur level [20]. The starting player is determined randomly

for each game, runs progress with no initial training and

an initially empty set of rules. 106 games are played in an

on-line mode, selecting rules probabilistically using various

settings for the β parameter, and subsequently 104 games are

played with a greedy method to assess the best performance

of the existing rule set.

V. RESULTS

Initial runs were tested using population selection accord-

ing to the Q parameter of each rule, producing selection

according to quality only. This caused the system to be

highly niched, where each rule maintained by the system was

highly specialised and referred to highly selective cases. This

produced minimal overall performance (< 1% win rate) and

showed activity on a very small percentage of game states

(10%). Additional runs were performed using a combined

parameter, where Qn+1 = dαr + (1 − α)Qn, and d = 1
if the rule has acted, otherwise d = 0. This is identical to

the metric described by Sato et al [1], although implemented

in a different context. In this situation specialised rules that

occurred infrequently were not maintained, as the Q value

decreased over time when the rule was not being used. The

system acted on most game states, however performance was

limited at a consistent value of 10% 2. Subsequent results

describe the system operating using the parameters described

in section IV, which allow a balance between specialised and

generalised rules.

2Note that not all other conditions were the same in these experiments,
these initial results are provided as a guide only.

Using a constant value of β = 10, the system quickly and

smoothly increased performance over time, to a maximum

average value of about 0.4, indicating it won against the

artificial opponent 40% of games played, as shown in Fig-

ure 4. Using a fixed schedule to set the β parameter, starting

with β = 0.1 and increasing by increments of 0.2 every

104 games to a maximum value of 20, the system developed

more slowly but reached a higher average performance value

of 0.5, with a distribution of values between 0.45 and 0.55.

Using a schedule of values starting at β = 0.1 and ending

with β = 10, the system develops more slowly again and

reaches a maximum performance value close to 0.35.

The activity rate of the system increased to above 99%

after 1000 games, and remained close to 100% for the rest

of the run. The activity rate is a measure of the number of

unguided actions performed by the system, indicating how

well the rules used by the agent cover the range of situations

faced, showing that the rule set contained rules applicable

for almost every state experienced by the system.

Examination of the rules used shows a diverse range of

rules, some specific, some more general. The most common

rules are generic rules such as completing a box:

x0n => x0 − n

and playing into a long chain:

x45l48(2+) : l48(2+)nx45 => x45 − l48(2+)

A number of rules are also present in the system relating to

specific moves to play in particular states, defined by rules

with a range of degrees of specificity. An example of a highly

specific rule is:

t4l9l7t1 : l7(2)t4n : l9(4)t1t4 : l8(1)t1n : t1l9t4l8 => t1−t4

This rule3 has a Q-value of 8.99, indicating that if this rule

is able to act it will most likely lead to a large win. Other

specific rules such as double-crossing the end of a long chain

[5] were not seen in samples analysed, suggesting either

alternative strategies have been used, such rules were not

able to be supported with the given language, or those rules

were simply not found.

Stable development was shown in every observed run,

typically as a monotonically increasing level of performance,

this was different to observations of previous systems which

often collapsed to near-zero performance under difficult

conditions.

VI. CONCLUSIONS

A varied reinforcement technique has been presented that

is based on an analogy of accessibility of concepts in the

brain, instead of genetic selection according to a fitness

parameter. This reinforcement method has shown reliable

development of a population of rules that has a balance of

generality and specialisation. Instabilities in previous systems

according to the difficulty of the environment, in this case

3Parenthesised length-description elements have been removed from some
symbols for clarity
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Fig. 4. Average performance of system with various schedules for β.

the difficulty of the opposing player or current rate of

success against the player, are addressed, such that the best

performing rules are preserved regardless of difficulty.

The language used to represent rules allows effective

play against a basic opponent and versatile, reusable rules,

although development of more sophisticated strategies will

require a more versatile rule representation. Overall the

system was able to develop a level of performance equal

to the artificial system over a period of more than 2 times

105 games, being played on-line, showing the system has

developed a strategy and level of play as good as the

opponent it is trained against.

The most significant result is that the system produces

stable and consistent development of rules, showing the

Concept Accessibility technique to be more effective than

previous implementations using an Artificial Economy or

Evolutionary Reinforcement Learning with a dynamic agent

population. The performance of the system is restricted

by the capacity of the rule language, and reaching equal

performance with the artificial opponent may be optimal with

the given language. The Concept Accessibility technique

provides a means to balance generalisation and specialisation

and provide good coverage using streamlined principles, and

may be valuable to other domains.
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