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Abstract— This paper introduces Tournament Particle
Swarm Optimization (PSO) as a method to optimize weights
of game tree evaluation functions in a competitive environment
using Particle Swarm Optimization. This method makes use
of tournaments to ensure a fair evaluation of the performance
of particles in the swarm, relative to that of other particles.
The empirical work presented compares the performance of
different tournament methods that can be applied to the
Tournament PSO, with application to Checkers.

Keywords: PSO, machine learning, game playing, tourna-
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I. INTRODUCTION

The optimization of weights to improve the performance
of an individual in a competitive environment is a general
problem that is independent of the representation scheme in
which the weights are found. Typical representation schemes
are the linear evaluation function, first used for learning by
Samuel [1], and neural networks that gained popularity as a
method to represent non-linear knowledge. The optimization
for competitors, such as game playing agents is different
from many other optimization problems because these agents
need good opponents for effective training. This difference
leads to the need for innovative optimization methods geared
for competitive optimization problems. Tournament PSO ex-
ploits the well-established methods used to identify the best
team or the best individual in human competitive endeavours.
This paper evaluates different tournament methods using
Checkers.

Section II describes Particle Swarm Optimization (PSO).
Special attention is given to the factors that influence the
trajectory of a particle. Section III discusses the Competitive
PSO, provides a review of the different tournament methods,
and introduces the Tournament PSO. Section IV describes
the aspects that are common to the experiments that follow.
Section V describes an experiment that determines whether
it is best to include a particle in its own neighbourhood.
Section VI compares the performance of various tournament
methods, and Section VII considers the behaviour of the best
performing methods during the PSO run.

Section VIII summarizes the findings and contains some
concluding remarks.

II. PARTICLE SWARM OPTIMIZATION

Kennedy and Eberhart [2] introduce Particle Swarm Op-
timization (PSO) as an algorithm that searches through a
multi-dimensional problem space for an optimal solution.
An optimal solution is a vector in the search space that

maximizes (or minimizes) a given function. This function,
called a fitness function, maps a real-valued vector to a
real value. During the search, a constant number of search
locations, called particles are kept current. The search is
conducted by changing the velocity of every particle at each
iteration. An iteration is referred to as an epoch, and the
collection of particles form a swarm. PSO is distinguished
from other searches that keep multiple locations current by
the dynamic influence other locations have on the trajectory
of a particle [3].

A particle, identified by a search location, has a few key
properties: a velocity, a fitness value, a personal best, a
neighbourhood and a local best. A particle is assigned a
velocity at the start of each epoch. This vector is added to the
current location of the particle to determine the new location.
The fitness value of a particle is the value of the fitness
function at the current location of the particle. The personal
best is a location on the path of a particle at which the best
fitness value was achieved. The neighbourhood is a static
property of a particle; it is the subset of all the particles in the
swarm that exert an influence on its velocity. The local best
is the personal best of the best particle in the neighbourhood.

The outline of the PSO algorithm is shown in Figure 1.
The notation for the location vector of particle p is ~p. The
personal best of p is pbest(p). The ith component of ~p is
denoted as ~p[i]. The velocity of p is denoted as v(p), with
the ith component of the velocity, denoted as v(p)[i].

A. Particle trajectory

The trajectory of a particle p is influenced by its personal
best, pbest(p) and its local best, lbest(p) [4]. These two
locations to which a particle is attracted are fundamental
to the hypothesis from which PSO originates. According
to this hypothesis, the survival of a species depends on the
ability of its individuals to gain information from personal
experience and share it through social interaction [2]. This
social information is represented in PSO by the local best,
and the personal experience, called cognitive information,
is captured by the personal best. The strong relationship
between the two elements is highlighted by the following
definition:

Definition 1: Local Best. For particle p with neighbour-
hood N(p), and maximising fitness function f , lbest(p) is
an arbitrary selection from the local best set L(p), where

L(p) = {pbest(q) | q ∈ N(p) ∧ ∀x∈N(p)f(pbest(x)) ≤
f(pbest(q))
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The movement of a particle is controlled by the velocity
update function (line 2 in Figure 1). This function calculates
the new velocity by adjusting each component of the velocity
vector separately. Two constants regulate the magnitude of
the velocity change: the cognitive acceleration constant, c1,
constrains the change towards the personal best, and the so-
cial acceleration constant, c2, constrains the change towards
the local best. In addition, Shi and Eberhart [5] introduced
an inertia weight, w, that restricts the influence the current
velocity has on the new velocity. Choosing different values
for c1, c2 and w has a measurable effect on the performance
of PSO [6], [7], [8].

The two components, r and s, are the stochastic elements
of the velocity update function. The values of these elements
influence the rate of change toward personal best and local
best respectively. This brings about an uncontrolled explo-
ration of the search space.

The state of particle p at epoch t can be denoted as pt. The
velocity at epoch t+1, v(pt+1) is determined from the state
of the particle at the preceding epoch using the following
formula:

v(pt+1)[i] = w × v(pt)[i]+
rt × c1(pbest(pt)[i] − pt[i])+
st × c2(lbest(pt)[i] − pt[i])

(1)

where rt, st ∼ U(0, 1). Note that these random values are
also time-dependent.

Clerc and Kennedy [9] define constraint equations that
improve the probability of convergence. These equations are
combined with Equation 1 to derive the constricted function:

v(pt+1)[i] = χ × (v(pt)[i]+
rt × c1(pbest(pt)[i] − pt[i])+
st × c2(lbest(pt)[i] − pt[i]))

(2)

Algorithm Particle Swarm Optimization
Input The fitness function, f that takes m argu-

ments and the size of the swarm n
Output A vector ~p encountered during the search

where f(~p) had the best value.

PSO(f,n)
Create a swarm S such that S = {~p1, ~p2, . . . , ~pn}.
For each ~p in S

For 1 ≤ i ≤ m
~p[i] = r | r is a random value
v(p)[i] = 0

pbest(p) = p

1: While not end of search
For each ~p in S

2: Update v(p)
For 1 ≤ i ≤ m

~p[i] = ~p[i] + v(p)[i]
3: If f(~p) > f(pbest(p))

pbest(p) = ~p

Fig. 1. Outline of the PSO algorithm

The value of the constriction factor, χ, is determined as
follows:

χ =
2

|2 − φ −
√

φ2 − 4φ|
(3)

where φ = c1+c2. Clerc and Kennedy [9] found that φ must
be greater than 4.0 to promote convergence.

III. COMPETITIVE ENVIRONMENTS

A fitness function in a competitive environment has no
absolute optimum. Consider the use of a random moving
player as opponent to introduce an objective function. For the
fitness function, f , let L(f) denote the number of matches
lost and W (f) denote the number of matches won out of a
total of N matches played against the random player using
f . The performance of f can be calculated as follows:

F (N, p) =
N + W (f) − L(f)

2 × N
× 100 (4)

Using Equation 4 as the fitness function provides the abso-
lute maximum. Unfortunately, the random player is a weak
player, and once this optimum is achieved, the PSO cannot
make further improvements to the weights of the fitness
function.

A better approach it to exploit the competitive nature of the
optimization problem and use the individuals in the swarm
as opponents during the optimization process. Angeline and
Pollack [10] define a competitive fitness function as any
calculation that is dependent on the current population to
some degree.

Co-evolution is a learning process in which the learning
environment changes as the process continues [11]. An
algorithm that optimizes a fixed fitness function is not co-
evolutionary, even though the individuals evolve by interact-
ing with each other. Co-evolution requires a dynamic fitness
function. The dynamic nature of a fitness function can be
achieved by introducing a different set of individuals (or
species) that has a cooperative or competitive relation with
the original individuals. However, a species also co-evolve
with its environment; as it becomes more adept in changing
its environment, it needs to become better at adapting to the
changed environment. Even if no other species are available,
co-evolution of this kind can occur while the individuals
compete. In order to separate related concepts, the term
’competitive co-evolution’ is used when the fitness of an
individual is determined by the fitness of other individuals
in the population [12]. Therefore, a PSO that employs a
competitive fitness function is an example of competitive co-
evolution.

As a variation of self-play, competitive co-evolution is
likely to suffer from the two problems that are associated
with self-play that lead to strategies that perform poorly.
The first problem is that it is likely to get stuck on a
self-consistent but a non-optimal strategy [13]. Secondly,
there is no guarantee that the portions of the strategy space
searched are the most significant ones [14]. These problems
are addressed by ensuring that the population diversity is
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adequate to avoid local minima and to cover a larger search
space.

A simple way to increase the diversity is to use a larger
population. However, Tesauro’s work on self-play learning
illustrates that the learning of BACKGAMMON does not re-
quire a large population [13]. In this case, and with stochastic
games in general, the source of the diversity is the stochastic
element present in the game rules. This diversity is a primary
contributor to the success of Tesauro’s BACKGAMMON player
[11].

Angeline [10] observes that the stochastic elements present
in the genetic algorithm population, such as the application
of the mutation operator and the probabilistic selection of
parents, bring about a level of non-determinism that can be
exploited to create a population that is diverse enough for
learning through self-play. A similar argument can be put
forward for PSO: it also has stochastic elements, and as such
it has the potential to maintain the required level of diversity
to mitigate the problems related to self-play.

A. The Competitive PSO algorithm

The competitive PSO algorithm optimizes a competitive
fitness function using the particles in the PSO swarm as op-
ponents. The first application of competitive PSO, described
by Messerschmidt and Engelbrecht [15], is an analysis that
compares PSO to the Evolutionary Program (EP) described
by Fogel [16]. This analysis indicates that competitive PSO
obtains better TIC-TAC-TOE players than those obtained by
competitive EP. Franken and Engelbrecht [17] extended the
work of Messerschmidt and Engelbrecht on TIC-TAC-TOE by
analysing the effect of different PSO structures and neural
network topologies on the learning performance. This work
was also applied to CHECKERS [18], [19].

The competitive PSO extends the original PSO outlined
in Figure 1 by introducing a competition stage at the start
of each epoch. During this competition stage, the fitness of
every particle is determined using the competitive fitness
function.

The competitive fitness function used by Messerschmidt
and Engelbrecht selects a constant number of opponents ran-
domly from the swarm for each participant. The participants
include all the current locations as well as the personal best
of each particle. For each participant a score is kept. At the
start of the competition stage, all the scores are initialized
to zero. During the competition, the score increments when
the participant beats an opponent, and decrements when the
participant loses. In the same manner, the opponent’s score
is also adjusted. The number of matches played during the
competition stage depends on the swarm size, n and the
number of opponents, k. The number of matches is 2×n×k.

The Messerschmidt and Engelbrecht competitive function
is not fair and it produces fitness values that are too coarse.
Depending on the quality of the randomly selected oppo-
nents, a good participant could be assigned a bad fitness
value, and vice versa. The coarseness comes from the limited
range of the fitness function and many individuals are bound
to take the same fitness value. Consequently, the local best

becomes more often than not, an arbitrary choice between
seemingly equal candidates in the neighbourhood.

A solution to this problem (of fairness and coarseness) is to
allow the personal bests to compete in a tournament that aims
to be a fair assessment of the participant’s ability. In such a
tournament, the fitness value is not a tally of match outcomes;
it is a ranking. By using the results obtained by previously
matched participants, the number of new matches conducted
during the competition step to determine the ranking, is kept
to an absolute minimum.

When ranking is used, particle p is considered better than
particle q if and only if p has a higher rank than q. This
comparison does not imply that there was a match between
p and q. Indeed, it is possible that q will beat p, even if p

is ranked higher. The fairness of the ranking depends on the
tournament structure and the elimination strategy used during
the competition. The next section provides some alternatives
to consider in this regard.

B. Tournaments

In a tournament, a number of participants compete to
decide which participant is the best. A tournament is one
of three types: an elimination tournament, a scoring tourna-
ment or a hybrid tournament. In an elimination tournament,
participants are removed from the tournament until only
the winner remains. In a scoring tournament a score is
given to each competitor after a match, and the winner is
the participant with the highest score. A hybrid tournament
contains elimination and scoring stages.

Different types of scoring tournaments are available. The
tournament used by Messerschmidt and Engelbrecht [15]
and by Fogel [16] is a random subset scoring tournament.
In a fixed subset tournament, the set of competitors for a
participant does not change every epoch. In a round robin
tournament, every participant is matched against every other
participant. Because of the high likelihood that more than one
participant will have the same score, a tie breaking procedure
is required to identify the winner. During this procedure,
criteria derived from the tournament can be considered, such
as the results of the matches between winning participants;
the ratio of number of wins against the number of losses;
the difference between the number of wins and number of
losses; or simply the number of wins.

Two types of elimination tournaments are common. In
a knockout tournament, the loser of a match is eliminated
and the winner continues to the next round. This elimination
process continues until one participant remains. In a double-
elimination tournament, the participant is eliminated after he
loses a second time. This second chance is implemented by
creating two brackets: a winners bracket, and a losers bracket.
The process followed in the winners bracket is the same
as the knockout tournament. However, when a participant
in this bracket loses a match; the participant is moved to
the losers bracket. The losers bracket has two stages to
every round: firstly the winners of the previous losers bracket
round (or the losers of the very first winners bracket round)
compete. In the second stage, the winners of the first stage
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compete against the losers of the same round in the winners
bracket. The losers of the second stage are eliminated from
the tournament, and the winners remain in the losers bracket.
This process continues until both brackets have only one
remaining participant. The champion of the losers bracket
would have lost one match, and the champion of the winners
bracket is undefeated. These two champions then compete to
determine the winner of the tournament.

In the elimination tournaments, the pairing procedure
decides which participants should compete. If unlucky, the
second best participant can be paired with the best participant
and eliminated at the first round of the tournament. Although
the double-elimination tournament mitigates the problem, un-
fair pairing remains an issue. The simplest pairing procedure
is to select the opponents at random. However, if the ability
of the participants are known, the pairs can be organized such
that the best players are likely to compete in the final rounds.
A process called seeding orders the participants according
to previous performance from best to worst. From this
sequence, pairs are formed by repeatedly removing the first
and the last seeded participant. If the number of participants
in a round is not even, one participant receives a bye, and
moves to the next round without competing.

C. The Tournament PSO algorithm

The tournament employed by Fogel’s [16] Genetic Algo-
rithm did not make use of a long term memory, and neither
did Messerschmidt and Engelbrecht [15]. This tournament
requires a re-evaluation of every individual for each new
generation. An alternative approach is to use the personal
best to decrease the number of re-evaluations required at each
cycle. Fewer matches per cycle makes it practical to use the
more match intensive tournament methods described in the
previous section. It is from this idea that the Tournament
PSO developed.

The key difference between Tournament PSO and the com-
petitive PSO described in Section III-A, is that the particles
in tournament PSO compete against their own personal best.
Tournament PSO elaborates on competitive PSO by splitting
the competition stage into two smaller stages: the personal
competition stage and the tournament competition stage. In
the personal competition stage each particle’s current location
competes against its own personal best. If the personal best
is beaten, it is replaced with the current location. During
the tournament competition stage, the personal bests of
all the particles compete in a tournament. The tournament
establishes a partial order ranking that is used to determine
the local best particle in the neighbourhood.

The first stage of Tournament PSO requires a constant
number of matches: for a swarm size of n, n matches are
held during the personal competition stage. If, for a given
epoch, no new personal bests are identified, the results of
the competition phase for the previous epoch is used again
to determine the fitness of the particles in the swarm.

Tournament PSO also makes use of a match cache. The
match cache is a memory structure used during the tour-
nament competition stage. Although this memory structure

increases the memory requirement of the PSO, it does not
affect the trajectory of any particle. Its purpose is to avoid
needless matches between particles. The match cache keeps
the result of the match between the pairs of personal best
locations. When the tournament demands a match between
two locations that have already been matched, the result is
retrieved from match cache. If the result is not available
in the cache the particles compete, and the result of the
competition is added to the cache. Whenever a new personal
best is identified, all matches in which the personal best
participates are removed from the match cache. The number
of new personal bests are likely to become fewer as the
particles approach optimal configurations, and more matches
will be replaced by cached results. The net effect is that more
computing resources are spent on search space exploration,
and less on the evaluation of personal bests.

If more than one neighbour has the same ranking, either
the local best is chosen randomly from these, or a knockout
tournament between the high rankers is used to decide which
neighbour is best. These two approaches are called random
best and knockout best respectively.

A tournament match between two participants consists of
two games; each participant gets a turn as the first player.
For these games, 2 points are awarded to the winner, 1 point
each for a draw and 0 points to the loser. The participant
with the most number of points after the two games wins
the match. If the scores are equal, the winner is chosen at
random.

The local match is more strict - in order to replace the
personal best, the current particle location must win as first
and as second player. This sterner rule aims to prevent
situations in which a tested champion is replaced with a
‘lucky’ novice [11].

If a tournament requires pairing, either random pairing or
rank seeding can be employed. In random pairing, opponents
are paired by random selection. In rank seeding, the previous
rank of the particle is used to order the participants. For a
particle that obtained a new personal best, the rank obtained
by the previous personal best is used for seeding. From this
ordered list, pairs are chosen such that the best seeds are
likely to compete in the final rounds.

For the tie breaker procedure, a knockout tournament is
held that includes all the winners as competitors. If there are
still ties, a winner is chosen randomly.

The tournaments (subset and elimination) can be combined
with the random or knockout local best. For elimination tour-
naments, either random pairing or seeding can be applied.
These choices lead to fourteen different permutations, each
permutation is a different tournament method that can be
used in the Tournament PSO. These methods are summarized
and labelled in Table I.

IV. EXPERIMENTAL SETUP

The experiments were conducted on the game of CHECK-
ERS (using the rules described in [20]) with no game-tree
searching. The PSO found optimal values for the weights
of a linear function, labelled Fb. This function is a complex
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TABLE I

THE TOURNAMENT METHOD MATRIX

Tournament Random best Knockout best
Random subset RSR RSK
Fixed subset FSR FSK
Round robin RRR RRK
Pairing Random Seeded Random Seeded
Knockout KRR KSR KRK KSK
Double elimin. DRR DSR DRK DSK

expression that employs the notation described by Duminy
and Engelbrecht [20]. The function itself produces a weak
player that is unable to consistently beat a random moving
player. Consequently Equation 4 was used to measure the
performance of the function after optimization. The mea-
surements shown in the experiments were obtained using a
value of 15000 for N .

Based on a few preliminary experiments, the following
values were chosen for the PSO parameters: w = 1, c1 =
2.1, c2 = 2.1, valmin = 1 and valmax = 99. The swarm
consisted of 25 particles arranged in a 5×5 lattice. The Von
Neumann [3] neighbourhood topology was chosen because it
has been shown to be superior in related work [3], [18], [19].
The neighbourhood contains the 4 particles that surround the
subject particle in the lattice.

The level of consistency for the experimental conditions
was improved by keeping the initial particle locations the
same for every PSO run.

The PSO was terminated when 30000 matches were
played. During the tournament competition phase, the match
count was incremented only when a new match was added to
the match cache. The matches were played without searching
the game tree. The move choice fell on the next position
in the play line with the highest evaluation. In the case
where more than one move with the best evaluation were
encountered, the next move was randomly chosen from
amongst these moves.

V. EXPERIMENT: SELF IN NEIGHBOURHOOD

Given a fixed topology such as Von Neumann, Kennedy
and Mendes [3] suggests two neighbourhood composition
strategies. The first strategy includes the subject particle1

in its own neighbourhood, and the second strategy excludes
this particle. This choice is significant only when the subject
particle is better than the other particles in its neighbourhood.
When this is the case the self-including strategy would
reinforce the position of the subject particle, while the self-
excluding strategy would nudge the subject particle towards
the second best particle in the inclusive neighbourhood. Con-
sequently, the self-excluding strategy explores more of the
solution space than the self-including strategy and therefore
self-excluding is expected to perform better. This hypothesis
is empirically evaluated by comparing the performance of the
two composition strategies in the context of the Tournament
PSO.

1the particle for which the fitness value is determined

In order to compare the two strategies, the mean perfor-
mance of the strategies in the context of every tournament
method was considered. Using the Tournament PSO algo-
rithm, each of the fourteen tournament methods were used
in twenty runs. Ten of these runs included the subject particle
in the neighbourhood, and ten employed the self-excluding
strategy. At the end of each run, the performance of the
best particle in the swarm was measured using the objective
function described above.

The small size of the sample necessitated the use of
Student’s t-distribution[21]. If the observed F-value was
below the F-value cut-off, the two sample t-test were used.
For the F-value the cut-off for a sample size of 10 is 4.0260.
The cut-off for the t-test is:

t
(0.025)
10+10−2 = t

(0.025)
18 = 2.101 (5)

The measurements taken for the self-excluding and the
self-including strategy are shown in Table III and Table II
respectively. These tables show the sample mean, sample
variance, minimum and maximum for each run.

TABLE II

SELF-INCLUDING PERFORMANCE

S XS s2

S Max Min
DRK 65.5266 2.2152 67.0433 62.6933
DRR 64.9607 3.6231 67.8300 61.5700
DSK 65.1237 2.0082 69.0767 64.2767
DSR 64.9407 0.8509 65.8167 62.5000
FSK 66.1740 1.6380 67.8967 64.1333
FSR 65.7873 1.9372 67.5900 64.1133
KRK 65.5377 1.3065 67.6200 63.8800
KRR 66.1990 2.4128 68.4833 63.2367
KSK 64.9130 0.2899 65.5967 63.5433
KSR 65.3693 0.3255 66.4967 64.7000
RRK 65.6947 3.1974 68.9167 63.6767
RRR 65.6273 1.5950 67.4167 63.5500
RSK 65.9980 2.6762 68.0833 63.7233
RSR 65.4710 2.7587 67.4300 62.2733

TABLE III

SELF-EXCLUDING PERFORMANCE

S XS s2

S Max Min
DRK 65.4016 1.1772 66.9133 63.3167
DRR 65.0917 2.6561 67.4033 62.2300
DSK 66.7290 2.5015 69.3867 64.5700
DSR 65.4183 1.7178 67.6000 63.0700
FSK 65.9664 1.4284 68.1233 64.0267
FSR 65.2980 2.7477 68.2867 63.4667
KRK 65.7903 3.4113 68.9633 62.7800
KRR 66.0460 1.5852 68.5467 64.5333
KSK 64.9390 0.6566 66.9633 64.2367
KSR 66.2663 2.9189 68.4400 63.4600
RRK 65.5190 3.5560 68.4367 63.3900
RRR 66.1187 3.7925 68.7533 63.7033
RSK 65.9110 2.3872 67.6500 62.5667
RSR 65.5840 1.5597 67.8100 63.5333

The values for the statistical calculations of the observed
measurements are shown in Table IV. Except for KSR all the
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TABLE IV

COMPARING THE MEANS OF SELF-INCLUDING AND SELF-EXCLUDING

Method F-value t-value Result
DRK 1.8817 0.2146 Inconclusive
DRR 1.3640 0.1653 Inconclusive
DSK 1.2456 2.3905 Excluding is better
DSR 2.0188 0.9425 Inconclusive
FSK 1.1467 0.3750 Inconclusive
FSR 1.4184 0.7149 Inconclusive
KRK 2.6110 0.3678 Inconclusive
KRR 1.5221 0.2420 Inconclusive
KSK 2.2652 0.0846 Inconclusive
KSR 8.9671 - Inconclusive
RRK 1.1122 0.2138 Inconclusive
RRR 2.3777 0.6694 Inconclusive
RSK 1.1210 0.1223 Inconclusive
RSR 1.7688 0.1720 Inconclusive

tournament methods produced an F-value well below the cut-
off value. Consequently the two-sample test must be applied
to most of the tournament methods. Almost all the calculated
t-values were in the acceptance region, −2.101 < t18 <

2.101, and the conclusion is that most means are equal. The
only tournament method that shows a better mean for the
self-excluding strategy is DSK.

For the KSR tournament method n∗ = 11.42329 and t∗ =
1.57479774. Using the nearest integer value gives the cut-off
value for the approximate t-test at a significance level of 5%
as:

t
(0.025)
11 = 2.201 (6)

The measured value, 1.57479774, is below the cut-off, and
therefore the hypothesis that the two means of KSR are equal
cannot be rejected.

Although the minimum and maximum measurements hint
toward the conclusion that self-excluding strategies are better,
this conclusion would not be statistically sound. A more
accurate general conclusion is that the performance of a
specific Tournament PSO that uses the self-excluding strategy
is no worse than the performance of a PSO that is the same as
the specified PSO in other respects but uses a self-including
strategy. However, a specific conclusion can be stated for the
DSK tournament method – for this method, the self-excluding
strategy outperforms the self-including strategy.

VI. EXPERIMENT: TOURNAMENT METHOD

PERFORMANCE COMPARISON

This experiment applied the self-excluding strategy to each
of the tournament methods identified in Section III-C to
compare the performance of the optimized playing agents.

The method described in Section V is also used for this
experiment, and the discussion below provides a comparative
analysis of the statistics obtained from the self-excluding runs
conducted during the previous experiment.

The results for Fb is shown in Table III, and depicted as a
box-and-whisker diagram in Figure 2. Taken as a whole, the
mean performance of all tournament methods is 65.71995.
From Figure 2, it is clear that no single strategy can be

isolated as the best strategy, but it seems very plausible that
KSK is the worst tournament method for Tournament PSO.
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Fig. 2. The performance of the tournament methods

In order to identify the better strategies accurately, the
mean value of every strategy were tested for equality against
the mean value of the strategy that obtained the greatest mean
value. The best performer was DSK with a mean value of
66.7290. As before, the F-value and the t-value were used
to determine the equality of the two means. The results of
these calculations are shown in Table V.

TABLE V

COMPARING OTHER METHOD MEANS WITH THE MEAN OF DSK

S XS s2

S F-value t-value Result
DRK 65.4016 1.1772 2.1249 2.1885 Not equal
DRR 65.0917 2.6561 1.0618 2.2799 Not equal
DSK 66.7290 2.5015 1.0000 0.0000 Equal
DSR 65.4183 1.7178 1.4562 2.0178 Not equal
FSK 65.9664 1.4284 1.7512 1.2166 Equal
FSR 65.2980 2.7477 1.0984 1.9751 Not equal
KRK 65.7903 3.4113 1.3637 1.2207 Equal
KRR 66.0460 1.5852 1.5780 1.0684 Equal
KSK 64.9390 0.6566 3.8100 3.1852 Not equal
KSR 66.2663 2.9189 1.1669 0.6284 Equal
RRK 65.5190 3.5560 1.4216 1.5547 Equal
RRR 66.1187 3.7925 1.5161 0.7693 Equal
RSK 65.9110 2.3872 1.0479 1.1699 Equal
RSR 65.5840 1.5597 1.6038 1.7967 Not equal

Only six of the fourteen tournament methods were found
to be less effective than DSK. Table VI emphasises the
stronger tournament methods by marking the places of the
six weaker methods with asterisks (‘***’).

The first deduction that can be made from these results is
a predictable one: random best is weaker than knockout best
because the latter was used by only two of the six eliminated
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TABLE VI

THE DOMINANT TOURNAMENT METHOD MATRIX

Tournament Random best Knockout best
Random subset *** RSK
Fixed subset *** FSK
Round robin RRR RRK
Pairing Random Seeded Random Seeded
Knockout KRR KSR KRK ***
Double elimin. *** *** *** DSK

methods. The second deduction is that double elimination is
less effective than knockout tournaments. Double-elimination
takes more rounds to determine the winner, and more
epochs can be achieved with the same number of games
using the knockout tournaments. However, DSK is a double-
elimination strategy that did very well. The reason for this
could be that DSK also used the two other aspects that
intuitively introduce more fairness: that is the use of seeding
for tournaments and the use of a knockout tournament to
determine the best of equal particles in the neighbourhood.

VII. EXPERIMENT: TOURNAMENT METHOD INTERVAL

ANALYSIS

This experiment aimed to identify the better methods
among the 8 methods isolated by the previous experiment.
Here, the performance of the functions created at various
intervals during the PSO run were considered.

For each of the following tournament methods: KSR,
RRR, RRK, FSK, KRK, KRR and RSK, the Tournament
PSO was run 10 times. During each run, 31 measurements
were taken. The first measurement used the weights of the
swarm champion after the very first tournament, and the other
measurements were taken using the weights of the current
champion after every interval of 1000 matches. In total 2400
functions were measured.

For the analysis the measurements were aggregated into
interval means. The interval mean is the mean of the ten
measurements taken at an interval for a tournament method.
Thus, for each tournament 31 interval means were obtained.

A formal statistical analysis of the interval means is not
done for this experiment because the previous experiment
concluded that the performance of the final interval mean is
statistically equal and there is no reason to expect the sample
variances of the other intervals to be less than the variances of
the final intervals. Therefore, a statistical analysis is likely to
conclude that all the interval means are equal. The results of
this experiment undergoes a less formal, but still a reasonable
analysis with two steps.

The first step of the analysis is simply a count of the
number of interval means that is greater than the initial
interval mean for that method. If this count is thirty, it means
that the method constantly produces a function that performs
better than the initial function. However, a count less than
15 indicates that the method is likely to produce functions
that perform worse than the initial function. In such a case
the tournament method fails to identify and to promote better

functions. It could also indicate that the method is susceptible
to local minima.

The second step of the analysis compares the interval
means of each tournament at the intervals. If one of the
methods consistently produces a mean greater than the other
methods, it is likely that this method is better than the others.

Figure 3 shows the number of interval means that were
greater than the mean of the performance of the initial
function. Only DSK and KSR obtained a maximum count
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Fig. 3. Tournament method interval performance

of thirty. KRK and FSK had a count lower than fifteen.
The conclusion is that these two methods failed to produce
functions that consistently perform better as the PSO search
continues.

The second analysis excludes KRK and FSK. Figure 4
shows the interval means for each of the six remaining
tournament methods. The greatest values are amongst the
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means of the following methods: KSR, DSK, KRR, RSK
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and RRR. The only tournament method that had no interval
with the greatest mean is RRK. The methods that has intervals
with the smallest mean are restricted to RRK, RSK and KRR.

From Figure 4 the dominance of DSK as the maximum
mean for each interval is clear. What follows is the count
of intervals for which each strategy achieved the maximum
interval mean: KRR = 1, RSK = 2, KSR = 6, RRR = 4 and
finally DSK had 17 of the maximum intervals.

For DSK all the intervals produced a better performing
function than the initial function, and DSK had the best
performing function in more than half of the measured
intervals. Thus according to this analysis, DSK performs
better than the other tournament methods.

VIII. CONCLUSION

The Tournament PSO operates in a competitive environ-
ment and employs a competitive fitness function that uses the
other particles in the swarm to determine a particle’s fitness.
It is more fair than the Competitive PSO because it uses
a global tournament to choose the local best particle. This
fairness contributes to an improved optimization ability.

The Tournament PSO introduces the idea of ranking all
particles according to a tournament method, and the fitness
value of the particle is its rank. In addition, this new PSO
redefines the personal best: if the current location beats the
personal best in a match, it becomes the new personal best.

Tournament PSO brings with it the question of which Tour-
nament method is better. The experimental results support the
intuitive notion that the most fair and least coarse method
does indeed perform better. Also, it is less likely to converge
early. This method, labelled DSK uses the double-elimination
tournament with seeding, and the knockout tournament to
select the local best amongst equals.
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