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Abstract— Particle systems are a representation, computation,
and rendering method for special effects such as fire, smoke,
explosions, electricity, water, magic, and many other phenomena.
This paper presents NEAT Particles, a new design, represen-
tation, and animation method for particle systems tailored to
real-time effects in video games and simulations. In NEAT
Particles, the NeuroEvolution of Augmenting Topologies (NEAT)
method evolves artificial neural networks (ANN) that control the
appearance and motion of particles. NEAT Particles affords three
primary advantages over traditional particle effect development
methods. First, it decouples the creation of new particle effects
from mathematics and programming, enabling users with little
knowledge of either to produce complex effects. Second, it allows
content designers to evolve a broader range of effects than typical
development tools through a form of Interactive Evolutionary
Computation (IEC). And finally, it acts as a concept generator,
allowing users to interactively explore the space of possible
effects. In the future such a system may allow content to be
evolved in the game itself, as it is played.

Keywords: particle systems, NeuroEvolution of Augment-
ing Topologies, NEAT, interactive evolutionary computation,
IEC

I. INTRODUCTION

Particle systems are ubiquitous in computer graphics, pro-
ducing animated effects including fire, smoke, clouds, gunfire,
water, cloth, explosions, magic, lighting, electricity, atoms,
flocking, and many others [1] [2]. Particle Systems are defined
by (1) a set of points in space, and (2) a set of rules
guiding their behavior and appearance, e.g. velocity, color,
size, shape, transparency, rotation, etc. Since particle systems
follow complex rules, creating new or unique particle effects
requires considerable mathematical and technical skill. For
example, consider designing a particle effect for a magical
spell that originates from the wizard’s hand, swirls in a
spiral toward a target, and changes color and size. In current
practice the precise mechanics for this scenario must be hand
coded by a programmer as a new particle effect

This paper presents NEAT Particles, a new design approach
for particle systems based on the NeuroEvolution of Augment-
ing Topologies (NEAT) method

NEAT Particles aims to (1) enable users with little pro-
gramming or artistic skill to evolve unique particle system
effects through Interactive Evolutionary Computation (IEC),
(2) broaden the range of possible effects, and (3) provide a
way for developers to explore the range of possible effects.
This paper describes how NEAT Particles creates effects

for real-time games and simulations; in the future it will
be extended other applications as well. NEAT Particles can
evolve behavior such as the wizard’s spell without the need
for knowledge of physics or programming. NEAT Particles
is a step toward the long-term goal of automated graphics
content generation for games, simulations, and movies.

II. BACKGROUND

This section reviews particle systems, IEC, and NEAT,
which are all components of the NEAT Particles system
presented in Section III.

A. Particle System Background

Particle systems often implement special effects in movies
[3] and games [1] [2]. Particle systems can also model
more tangible objects such as unique trees in a forest [4],
folded cloth and fabric [5] [6], and simulate fluid motion
[7] [8]. Realistic particle movement is often achieved by
simulating real-world physics [9]. At a more abstract level,
particle systems have simulated animal and insect flocking
and swarming behavior as well [10]. The diversity of particle
system applications demonstrates their importance to modern
interactive media and games.

B. Interactive Evolutionary Computation (IEC) Background

IEC is an approach to evolutionary computation (EC) in
which human evaluation partially or wholly replaces the fit-
ness function [11]. IEC has enabled a broad range of graphical
content generation. An early implementation of IEC was
Biomorphs, which aimed to illustrate theories about natural
evolution [12]. Biomorphs are simple patterns encoded as
Lindenmayer Systems (L-systems) [13], which are grammars
used to specify the order in which a set of replacement rules
are carried out. Figures that resemble animals or plants can
be interactively evolved in this way. IEC digital art systems
have also utilized representations such as linear or non-linear
functions, fractals, and automata. Notable examples include
Mutator [14], a cartoon and facial animation system, and
SBART [15], a two-dimensional art system.

Figure 1 illustrates IEC’s capabilities with Mattias Fager-
lund’s Delphi-NEAT Genetic Art application [16]. The figure
shows four champions in the evolution of a spaceship [17]. In
this example, the user starts by selecting a simple image that
somewhat resembles what they wish to create and continues
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to evolve more complex images through selection until satis-
fied with the output. The series of images demonstrates the
potential of IEC art tools.

C. NeuroEvolution of Augmenting Topologies (NEAT) Back-
ground

The NEAT method was originally developed to solve diffi-
cult control and sequential decision tasks. The ANNs evolved
with NEAT control agents that select actions based on their
sensory inputs. While previous methods that evolved ANNs,
i.e. neuroevolution methods, evolved either fixed topology net-
works [18], [19], [20], or arbitrary random-topology networks
[21], [22], [23], [24], [25], [26], [27], NEAT is the first to
begin evolution with a population of small, simple networks
and complexify the network topology over generations, leading
to increasingly sophisticated behavior. Compared to traditional
reinforcement learning techniques, which predict the long-
term reward for taking actions in different states [28], the
recurrent networks that evolve in NEAT are robust in contin-
uous domains and in domains that require memory, making
many applications possible. This section briefly reviews the
NEAT method; Stanley and Miikkulainen [29], [30] provide
complete introductions.

NEAT is based on three key principles. First, in order
to allow ANN structures to increase in complexity over
generations, a method is needed to keep track of which gene
is which. Otherwise, it is not clear in later generations which
individual is compatible with which, or how their genes should
be combined to produce offspring. NEAT solves this problem
by assigning a unique historical marking to every new piece of
network structure that appears through a structural mutation.
The historical marking is a number assigned to each gene
corresponding to its order of appearance over the course
of evolution. The numbers are inherited during crossover
unchanged, and allow NEAT to perform crossover without the
need for expensive topological analysis. That way, genomes of
different organizations and sizes stay compatible throughout
evolution, solving the previously open problem of matching
different topologies [31] in an evolving population.

Second, NEAT speciates the population so that individuals
compete primarily within their own niches instead of with
the population at large. This way, topological innovations are
protected and have time to optimize their structure before
competing with other niches in the population. NEAT uses
the historical markings on genes to determine to which species
different individuals belong.

Third, unlike other systems that evolve network topolo-
gies and weights [32], [24], [27], [25], [24], [27] NEAT
begins with a uniform population of simple networks with no
hidden nodes. New structure is introduced incrementally as
structural mutations occur, and only those structures survive
that are found to be useful through fitness evaluations. This
way, NEAT searches through a minimal number of weight
dimensions and finds the appropriate complexity level for
the problem. This process of complexification has important
implications for search. While it may not be practical to find a

solution in a high-dimensional space by searching in that space
directly, it may be possible to find it by first searching in lower
dimensional spaces and complexifying the best solutions into
the high-dimensional space.

Since its inception, NEAT has been applied to a broad array
of research areas, most notably NERO, a real-time war game
with ANN-controlled soldiers [33]. Because NEAT is a strong
method for evolving controllers for dynamic physical systems,
it can naturally be extended to evolve the motion of particles in
particle effects as well. The next section explains how NEAT
is combined with IEC to produce NEAT Particles.

III. APPROACH: NEAT PARTICLES

NEAT Particles consists of five major components: 1)
particle systems, 2) ANNs, 3) physics, 4) rendering, and 5)
evolution.

A. Particle System Representation

A particle system is specified by a system position in space
and a set of particles. Each individual particle is specified by a
position in space and its velocity, color, transparency, and size.
Particle lifespan proceeds in three phases. At birth particles
are introduced into the scene based the system’s position and
its generation shape, which defines the volume within which
particles spawn. During a particle’s lifetime it changes and
moves according to the system’s update function. Finally, a
particle is removed from the system when time to live has
expired.

Four classes of particle system are implemented in NEAT
Particles (figure 2), each designed to model type of effect
common in games:

1) The generic particle system (figure 2a) models effects
such as fire, smoke, and explosions. Each particle has a
position, velocity, color, and size.

2) The beam system (figure 2b) models beam or laser-like
effects using Bezier curves. Each particle in the beam
system is a control point for the Bezier curve and has
position, velocity, and color attributes.

3) The plane system (figure 2c) warps individual particles
into different shapes. A single particle in the plane
system is represented by four points, each of which has
position, velocity, and color.

4) Finally, in the trail system (figure 2d), each particle
drops a trail of particles behind it. It behaves similarly
to a generic particle system but additionally has an array
of trail particles.

By evolving within classes, game designers can create a
wide variety of effects for different situations.

B. ANN Implementation

The ANN for each particle effect dictates the characteristics
and behavior of the system. Therefore each particle effect class
has its own ANN input and output configuration. In NEAT
Particles, the ANN replaces the math and physics rules that
must be programmed in traditional particle systems. Every
particle in a single system is guided by the same ANN.
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(a) (b) (c) (d)
Fig. 1. IEC Example. Using Delphi-NEAT Genetic Art (DGNA) [16], a spaceship is evolved [17]. The initial spaceship-like image (a) is evolved from an
initial population of random images. An intermediate stage of evolution (b) suggests a tail section, wing section, and nose section. (c) Evolution proceeds
and the components become more defined as interesting details become apparent. By the final stage (d), a spaceship model evolves with elegant lines, a nose
section, and tail stabilizers.

(a) Generic System (b) Beam System

(c) Plane System (d) Trail System
Fig. 2. Particle System Classes. Each particle system class models a different kind of effect. (a) The generic particle system models effects such as fire,
smoke, and explosions. (b) The beam system simulates beam and laser-like effects. (c) In the plane system individual particles are warped or stretched. (d)
Finally, in the trail system, each particle drops a trail of smaller particles.

However, the ANN is activated separately for each particle.
During every frame of animation in NEAT Particles an update
function is executed during which inputs are loaded into each
particle’s ANN and each ANN is activated. The outputs of
the ANN determine particle behavior for the next frame of
animation. An appropriate set of inputs and outputs is assigned
uniquely to each effect class.

Figure 3 depicts the ANNs for several NEAT Particles
classes. The generic particle system ANN (figure 3a) takes
the current position of the particle (PX , PY , PZ) and distance
from the center of the system (DC) as inputs. Distance
from center introduces additional variety into the behavior of
particles by allowing them to move in relation to the system
center. The outputs are the velocity (VX , VY , VZ) and color
(R,G,B) of the particle for the next frame of animation.
The generic particle system produces behaviors suitable for
explosion, fire, and smoke effects.

The beam system ANN (figure 3b) controls directed beam
effects. To produce twisting beams a Bezier curve is im-

plemented with mobile control points directed by the ANN.
The inputs are the position of each Bezier control point
(PX , PY , PZ) and distance of the control point from some
target (DT ). In NEAT Particles the target is set at a fixed
position away from the system position. In a game however,
the target could be the position of an enemy player, or the
point at which a weapon is pointed. The outputs are the
velocity (VX , VY , VZ) and color (R,G,B) of the control
point for the next frame of animation. Beam systems produce
curving, multi-colored beams typically found in futuristic
weapons, magic spells, lightning, and energy effects aimed
at specific targets.

Each particle in a plane system consists of four points that
form a plane that may be warped into different shapes. Since
the corners must be coplanar for rendering purposes, the y
component of velocity for each corner is fixed. Thus, the
inputs to the plane system ANN (figure 3c) are the position of
each corner (PX , PZ) and the distance from the center of the
quad (DC). The warped quads of plane systems are commonly
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used in explosions, engine thrust, and magical weapon glow
effects.

Because the differences between the trail system and
generic particle system are cosmetic, the trail system ANN
(figure 3d) uses the same inputs and outputs as the generic
particle system.

While ANN topology largely dictates particle behavior, acti-
vation functions play a significant role as well. For simplicity,
in this NEAT Particles implementation, all hidden nodes of
each ANN have the same activation function; however, that
activation function is selected from a set of possibilities.
Activation functions with a smooth curve (e.g. sigmoid or
sine) generally produce fluid movement patterns and smooth
color transitions. The sine and cosine functions produce pat-
terns with cyclic motion, while the tangent function tends
to produce patterns with disjoint motion such as teleporting.
Functions with linear sections of output range, such as ramp
or step, generally contribute to angular, mechanical motion.
To illustrate, suppose an ANN generates a particle system
with an upward velocity and a color change from red to
blue. If the ANN activation function is hyperbolic, the upward
motion would likely be fluid and the color transition gradual.
In contrast, a cosine activation might produce wavy, rising
pattern. Ramp or step functions might produce upward motion
and color change that is abrupt or disjoint. In general, different
activation functions provide (1) greater variety and (2) patterns
within patterns. The effects of different activation functions on
particle motion and color are summarized in Table I.

C. Physics

This initial implementation of NEAT Particles is tailored to
explosions, beams, and magical effects not generally subject
to the effects gravity or collision. Therefore, a linear motion
model calculates the position of a particle at time t based on
time elapsed T since the last frame of animation:

Pt = Pt−1 + SV T, (1)

where Pt is the particle’s new position, Pt−1 is the particle’s
position in the previous animation frame, V is the particle’s
velocity, and S is a scaling value to adjust the speed of
animation.

D. Rendering

NEAT Particles uses the billboarding technique [34] to
render particles to the screen in generic systems, trail systems,
and rotator systems. In billboarding, a texture is mapped onto
a simple plane with four corners (i.e. a quad) that faces
perpendicular to the camera. The corners of the quad are based
upon the center of the particle. Thus, only the position of the
particle needs to be stored rather than all four corners of the
quad. The textured quads in beam systems and plane systems
are not billboarded since they need not face the camera.

There are many ways to optimize particle system rendering
including point sprites, level of detail (LOD), batch rendering,
and GPU acceleration. NEAT Particles is compatible with all
such methods, however they are not explored in this initial
implementation.

E. Evolution

Evolution in NEAT Particles proceeds similarly to other IEC
applications. The user is initially presented with nine simple,
randomized particle systems (figure 4a). Each individual sys-
tem and its ANN may be inspected by zooming in (figure
4b). If the initial population of nine systems is unsatisfactory,
a new batch can be generated with the reset function. When a
suitable starting system is found, the user may begin evolution
by spawning a new generation based on the selected system. In
the new generation function, a population of nine new systems
(offspring) is generated from the ANN of the selected system
(parent). Offspring ANNs are based on the parent ANN, but
with modified connection weights and possibly new nodes
and connections, that is, they complexify following the NEAT
method. Evolution proceeds with repeated rounds of selection
and offspring production until the user is satisfied with the
results.

IV. EXPERIMENTAL RESULTS

This section shows how NEAT Particles works in practice to
produce an appropriate effect with several systems. All particle
systems reported were evolved in approximately ten minutes
in between 20 and 30 generations..

Figure 5 illustrates NEAT Particles interactively evolving an
effect for a hypothetical video game. Suppose a particle effect
is needed for the wizard spell Color Spray that should (1)
emit multiple beams in all directions from the wizard’s hands
that (2) change color as they move and (3) spiral in an orbit
pattern as they move away from the wizard. To generate this
effect in NEAT Particles, random populations were generated
until a suitable starting particle system was found. The initial
simple system (figure 5a) was chosen because its color scheme
is similar to the desired output and its movement along
the axis in both directions is suggestive of potential spiral
motion. After some generations of complexification a rough
orbital pattern emerged (figure 5b); however, there was not yet
sufficient color variation. Several generations later an almost
perfect spiral pattern was evolved along with significant color
transitions (figure 5c). Finally, a particle system with a wider
spiral pattern and brighter colors was achieved (figure 5d),
producing a remarkably vibrant rendition of the desired effect.

Similar results were achieved with other systems described
in Section III. Figure 6 shows animation frames from addi-
tional evolved effects. The top row, 6a though 6d, depicts an
evolved Psychic Scream effect, in which an imperfect ring of
concentric waves radiate from the player. The bottom row,
6e though 6h, illustrates a Warding Whip effect, in which a
beam-like energy whip lashes out from the player.

These results demonstrate how NEAT Particles can be
used to evolve pleasing effects without user knowledge of
programming or mathematics.

V. PERFORMANCE

NEAT Particles’ computational requirements scale at O(n),
where n is the number of particles. The position of each
particle is input to the ANN once per frame. Similarly, in
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(a) Generic System ANN (b) Beam System ANN

(c) Plane System ANN (d) Trail System ANN
Fig. 3. Particle System ANNs. To produce a specific range of effects, each particle class ANN uses different inputs and outputs. (a) The generic particle
system ANN inputs are the current position of the particle, the distance from the system center, and a bias. The outputs are the particle velocity and color.
(b) The beam system ANN inputs are the current position of a Bezier control point, the distance of the control point from the target, and a bias. The outputs
are the control point velocity and color. (c) Since the four corners of a plane system particle must remain coplanar, the y component of each corner’s velocity
is fixed. Therefore the plane system ANN inputs include the position of each corner, the distance of each corner from the center of the plane, and a bias.
Outputs are the velocity and color of each corner. (d) The trail system ANN has inputs and outputs similar to the generic system.

TABLE I

EFFECTS OF ACTIVATION FUNCTIONS ON PARTICLE SYSTEM BEHAVIOR

Col Heading Col Heading Col Heading Col Heading
bipolar sigmoid, fluid, organic motion smooth color transitions explosions, magic spells
hyperbolic
sine, cosine fluid, cyclic motion smooth, cyclic color transitions fire, smoke, water
tangent disjoint motion flashing colors, no transitions sparks, fireworks

teleportation
ramp, step angular, linear motion flashing colors, no transitions robotic movement,

seeking missiles

(a) Main Interface (b) Zoom Mode

Fig. 4. NEAT Particles Interface. In the main interface (a), the user is presented with 9 particle systems. Variables such as activation function, generation
shape, and inputs are displayed on the bottom. In zoom mode (b), a single particle system and its ANN may be inspected. The top row of nodes are inputs
and the bottom row are outputs.
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(a) (b)

(c) (d)
Fig. 5. Evolution Example. This series of images shows the evolution of a Color Spray effect using a trail system. (a) An initial particle system is selected
to start evolution. (b) After some generations a spiral pattern emerges. (c) Soon a full spiral pattern develops along with prominent color transitions. (d) A
wider spiral pattern and brighter color scheme is selected as the final spell effect.

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 6. Example Evolved Systems. Each series shows consecutive frames in animations from two evolved effects. Images (a) through (d) show the expanding
rings from a Psychic Scream effect evolved with the plane system. Images (e) though (h) are frames from a Warding Whip effect, evolved with the beam
system.

traditional particle systems each particle passes through an
update function once per frame. While the complexity of the
ANN increases with the complexity of the effect, the same is
likely true for traditional formulations. Thus NEAT Particles
can be expected to perform comparably to traditional particle
systems.

VI. DISCUSSION AND FUTURE WORK

The purpose of many IEC systems is simply to interactively
explore a search space. In contrast, the objective of NEAT
Particles is to generate useful content. Therefore, NEAT
Particles constrains the search space for the user. The search
space should be large enough to explore many interesting and

useful results, yet not so large that producing useful output is
too time-consuming. The class system implemented in NEAT
Particles provides such constraint.

Besides intentionally evolving specific particle systems that
the user has in mind, the IEC approach of NEAT Particles acts
also as a concept generation tool. While evolving a specific
effect, the user often generates novel, useful effects that were
not initially planned. Thus an additional advantage of NEAT
Particles over traditional particle system implementations is
that it may act as an idea or concept generator.

Future research will focus on the continued exploration
of inputs, outputs, activation functions, and other variables
to evolve new types of particle systems. Fire, smoke, water,
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electricity, and other realistic effects will require specialized
sets of ANN input and outputs.

In addition to acting as a design and rendering system
for effects, NEAT Particles potentially applies to other game-
related applications. For example, novel content is coveted in
games. With an in-game NEAT Particles system, each spell or
character could be associated with a unique ANN. A player
might indirectly affect the attributes of his or her ANN in
various ways. For example, by gaining levels or researching
new spells the player might gain or encounter new effects. In
this manner players could potentially acquire signature spell
effects, like wizards in popular fantasy novels, and thereby
implicitly and collectively search the space of effects. Spells
could also be combined through crossover, generating new
effects. Content can potentially be evolved in real time in this
way with the real-time NEAT (rtNEAT) method [33], which
has proven effective in video games in the past. Automatic
content generation is a Holy Grail in the game industry, and
evolutionary content generation is an intriguing and untested
solution.

VII. CONCLUSIONS

NEAT Particles is a design, representation, and animation
method for particle systems that allows particle effects to
be evolved with NEAT and IEC rather than hand coded.
The advantages provided by NEAT Particles over traditional
particle system implementations are that (1) it allows users
to produce complex effects without mathematical or program-
ming knowledge, (2) a wider range of effects can be produced,
and (3) it can generate novel concepts. NEAT Particles is
designed to produce effects appropriate for real-time games
and simulations; however its most significant implication may
be the generation of novel content during game play itself.
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