Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Using Stochastic Al Techniques to Achieve
Unbounded Resolution in Finite Player Goore
Games and its Applications

B. John Oommen!
School of Computer Science
Carleton University
Ottawa, Ontario, Canada
oommen@scs.carleton.ca

Abstract— The Goore Game (GG) introduced by M. L.
Tsetlin in 1973 has the fascinating property that it can be
resolved in a completely distributed manner with no inter-
communication between the players. The game has recently
found applications in many domains, including the field of
sensor networks and Quality-of-Service (QoS) routing. In actual
implementations of the solution, the players are typically
replaced by Learning Automata (LA). The problem with the
existing reported approaches is that the accuracy of the solution
achieved is intricately related to the number of players partici-
pating in the game — which, in turn, determines the resolution.
In other words, an arbitrary accuracy can be obtained only if
the game has an infinite number of players. In this paper, we
show how we can attain an unbounded accuracy for the GG
by utilizing no more than three stochastic learning machines,
and by recursively pruning the solution space to guarantee
that the retained domain contains the solution to the game
with a probability as close to unity as desired. The paper also
conjectures on how the solution can be applied to some of the
application domains.

Keywords: Learning Automata, Intelligent Game Play-
ing, Goore Games, Sensor Networks and Quality-of-Service
Routing

I. INTRODUCTION

One of the most fascinating games studied in the field of
artificial games is the Goore Game? (GG) described below
using the informal formulation of [1].

“Imagine a large room containing N cubicles and a raised
platform. One person (voter) sits in each cubicle and a
Referee stands on the platform. The Referee conducts a series
of voting rounds as follows. On each round the voters vote
“Yes™ or ““No” (the issue is unimportant) simultaneously and
independently (they do not see each other) and the Referee
counts the fraction, A, of “Yes” votes. The Referee has a
uni-modal performance criterion G(\), which is optimized
when the fraction of “Yes™ votes is exactly A*. The current
voting round ends with the Referee awarding a dollar with
probability G(\) and assessing a dollar with probability

1Chancellor’s Professor ; Fellow : IEEE and Fellow : IAPR. The Author
also holds an Adjunct Professorship with the Dept. of ICT, Agder University
College, Norway.

2This game is also referred to as the Gur Game in the related literature.

1-4244-0709-5/07/$20.00 ©2007 IEEE

Ole-Christoffer Granmo
Department of ICT
Agder University College
Grimstad, Norway
ole._granmo@hia.no

Asle Pedersen
Agder ICT Center
Grimstad, Norway

asle._pedersen@sts.no

1—G(\) to every voter independently. On the basis of their
individual gains and losses, the voters then decide, again
independently, how to cast their votes on the next round.”

The game has many interesting and fascinating features
which render it both non-trivial and “intriguing”. These are
listed below:

1) The game is a non-trivial non-zero-sum game.

2) Unlike the games traditionally studied in the Al liter-
ature (like Chess, Checkers, Lights-Out etc.) the game
is essentially a distributed game.

3) The players of the game are ignorant of all of the
game’s “parameters”. All they know is that they have
to make a choice, for which they are either rewarded
or penalized. They have no clue as to how many other
players there are, how they are playing, or even of
how/why they are rewarded/penalized.

4) The stochastic function used to reward or penalize the
players can be completely arbitrary, as long as it is
uni-modal.

5) The most “intriguing feature” of this game [1] is that
if each voter updates its action based on either a
Tsetlin automaton with large memory, or an absolutely
expedient® algorithm, then the entire group will asymp-
totically optimize the Referee’s performance criterion.

A. Applications to the Goore Game

The literature concerning the GG is scant. It was initially
studied in the general learning domain, and, as far as we
know, was for a long time merely considered as an interesting
pathological game. Recently, however, the GG has found
important applications within two main areas, namely, QoS
(Quality of Service) support in wireless sensor networks [7]
and within cooperative mobile robotics as summarized in [8].
A description of these two application areas follows.

In order to preserve energy in a battery driven network,
lyer et al. [9] proposed a scheme where a base station
provided broadcasted QoS feedback to the sensors of the

3We assume that the reader has a fairly fundamental knowledge of the
field of Learning Automata. Excellent reviews of this material can be found

in [1]-[6].

161

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

network. Using the GG perspective, a sensor is seen as a
voter that chooses between transmitting data or remaining
idle in order to preserve energy. Correspondingly, the base
station takes the role of the Referee and rewards/punishes the
sensors using a unimodal QoS performance criterion function
with the goal of attaining an optimal resolution/energy-usage
trade-off.

Furthermore, Tung and Kleinrock [10] have demonstrated
how the GG can be used for coordinating groups of mobile
robots (also called “mobots™) that have a restricted ability to
communicate. The mobots [10] can either (1) collect pieces
of ore from a landscape, or (2) sort already collected ore
pieces. The mobots vary with respect to how fast they collect
and sort these pieces of ore. The GG is used to make sure
that the mobots optimally choose their actions.

Other possible cooperative robotics applications include
controlling a moving platform and guarding a specified
perimeter [8]. In all of these cases, the solution to the
problem in question would essentially utilize the solution
to the GG in a plug-and-play manner.

B. Known LA Solutions to the Goore Game

Learning Automata (LA) [1]-[6] have been used to model
biological learning systems and to find the optimal action
that is offered by a random Environment. Learning is ac-
complished by explicitly interacting with the Environment
and processing its responses to the actions that are chosen,
while gradually converging toward an ultimate goal. LA have
found various applications in the past two decades. The
learning loop involves two entities, the Random Environment
and a Learning Automaton. A complete study of the theory
and applications of LA can be found in excellent books by
Lakshmivarahan [2], Narenda and Thathachar [1], Najim et
al. [3] and Poznyak et al. [5]. Besides these, a recent issue of
the IEEE Transactions on Systems, Man and Cybernetics [4]
(also see [11]), has been dedicated entirely to the study of
LA, and a more recent book [6] describes the state of the art
when it concerns networks and games of LA. Some of the
fastest reported LA belong to the the family of estimator
algorithms whose study was initiated by Thathachar and
Sastry, and followed by others [4], [12], [13].

We assume that we are dealing with a “team” of d
LA, {A', A% ... A4}, In terms of notation, we assume that
the actions offered to each LA, A7, from the Environ-
ment in question are {a}, a1}, and that the corresponding
penalty probabilities are {c{, c] } respectively. Similarly, we
let P} (n) represent the component of the action probability
vector of A7 for action «,, where n represents the discretized
time index.

In the interest of simplicity, throughout this paper, we
shall assume that the individual LA used is the well-known
Lgr scheme with parameter 6 [1]-[6]. Any other absolutely
expedient (or probably e-optimal scheme — including those
belonging to the estimator families cited above) can be used
just as effectively. Thus, we first state a fundamental result
for the L, learning scheme which we will repeatedly allude
to, in the rest of the paper.

Lemma 1. An Lg; learning scheme with parameter 0 <
0 < 1 is e-optimal whenever an optimal action exists.

The above result is well known [1], [2]. Thus, we are
guaranteed that for any Lry scheme with the two actions
{ag, a1}, if 3k € {0, 1} such that], < ¢]_,, then the action
a is optimal, and P/(n) — 1 asn — oo and 6§ — 1.

Il. FUNDAMENTALS OF THE GOORE GAME

Let G(-) be an arbitrary uni-modal function from [0, 1] —
[0, 1] known to the Referee interacting with a team of d LA,
{A', A%, A%}, Each LA, A7, independently chooses an
action o7 (n) which is either o) or o7, for which it receives,
from the Referee, a response 87 ¢ {0,1}, (with 37 = 0

being as a Reward) as per:

#(n) =0

d i(n
wp. G<ZF}()).m

We now state the fundamental LA - Goore Game (LA-GG)
Property.

Theorem 1. LA-GG Property

If each LA, A‘, receives its feedback signals from the
Referee as per Equation (1), and uses the Lg; learning
scheme with parameter 0 < ¢ < 1 to update its learning
model, then each LA converges so that the collective behavior
of the team optimizes the unknown function G(-). Thus, if
k1t =1lim, 0o lei=1 al(n),

o(5)-0(t) v o

Proof: The is essentially a fundamental result [1], [14]
whose proof is omitted.
Example 1.

Let us suppose that the fqznction G(-) used by the Referee
is G(z) = 0.7x e~ ooess and that 5 LA are participating
in the game. Then, the number of LA who vote “Yes” could
be in the set {0,1,2,3,4,5}, with their corresponding G
values : G(0) = 0.000015, G(0.2) = 0.000208, G(0.4) =
0.01050, G(0.6) = 0.14702, G(0.8) = 0.57209, G(1.0) =
0.61895.

Observe that although G(-) has its maximum value at 1.0
within the discretized domain, the maximum of the function
itself occurs at 0.9123. Theorem 1 claims that if each LA
is an Lr; scheme with parameter 6 being arbitrarily close
to unity, all of the 5 LA will converge to a “Yes” vote (i.e.,
to a value of o = 1) with a probability as close to unity as
desired.

A. Problems with reported LA solutions to the GG

The above solution to the GG is indeed both intriguing and
actually, almost “mystical”. Without knowledge of the func-
tion G(-), of how their partners decide, or even a perception
of how the Referee “manufactured” their responses, the LA
converge to the optimal solution without any communication.
However, the main handicap associated with using it in

162

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

real-life applications concerns the accuracy of the solution
obtained, which is intricately linked to the number of LA
used. If the number of LA involved in the game is d, the
precision of the solution is bounded by Cll, and thus the
solution can be arbitrarily accurate only as d is increased
indefinitely - leading to extremely slow convergence.

B. Salient Aspects of the Paper

The contributions of the paper are the following:

1) We report the first solution to the GG which needs only
a finite number of LA. Indeed, the number of LA can
be as small as 3.

2) We report the first GG solution which is arbitrarily
accurate.

3) The solution we propose is recursive. To the best of our
knowledge, there has been no other reported recursive
solution.

4) The solution that we propose is “fast”. Although this
is a relative term, it turns out that, usually, each
epoch of the recursion converges within a few hundred
iterations, and the accuracy of the solution increases
exponentially with the number of recursive calls. It is
thus, arguably, the first reported realistic solution to
this intriguing game.

The problem we study is akin to the ones studied in [15]-
[19] for, the point location problem. The solution we propose
is related, in principle, to the tertiary and d-ary recursive
search mechanisms earlier proposed for the stochastic version
of the latter [16], [17], [19]. But unlike the solutions reported
in [16], [17], [19], the solution here is far more consequential
because the system does not rely on a Teacher or “Oracle”
instructing the LA which way it should move. Thus, our
solution will have applications in all the areas mentioned
earlier for which the GG has found direct applications
[9], [10], and for the areas where the entire field of LA
and stochastic learning, has found uni-modal optimization
applications from a finite or infinite action set [1]-[3], [5],
(6], [18], [20].

I11. CONTINUOUS GOORE GAME WITH ADAPTIVE d-ARY
SEARCH

The solution presented in this paper is based on a strategy,
the so-called Continuous Goore Game with Adaptive d-
ary Search (CGG-AdS) strategy. The basic idea behind the
CGG-AdS solution is to use d LA to play the GG, and then
to use the results of their solution to systematically explore
a sub-interval of the current interval for the solution. This
exploration is a series of estimates, each one more accurate
than the previous one.

In CGG-AdS, the given search interval is divided into
d partitions representing d disjoint sub-intervals. In each
interval, the LA utilize their distributed learning capabilities
(with no mutual communication) to attain a consensus as
to where the optimal point lies. Based on the collective re-
sponse, the Referee then prunes the space without informing
the LA, and eliminates at least one of the sub-intervals from

being searched further. The search is then recursively invoked
within the remaining pruned contiguous interval until the
search interval is at least as small as the required resolution
of estimation. This elimination process essentially utilizes
the e-optimality property of the underlying automata and the
monotonicity of the intervals to guarantee the convergence,
as stated in Theorem 1.

A. Notations and Definitions

Let A(t) = [o,7v) sit. ¢ < A* <~y be the current search
interval at epoch ¢, containing A* whose left and right
(smaller and greater) boundaries on the real line are o
and ~ respectively. A(0) is initialized to be the unit in-
terval. We partition A(t) into d equi-sized disjoint par-
titions* A7, j € {1,2,...d}, such that, A7 = [o7 ~7).
To formally describe the relative locations of intervals we
define an interval relational operator < such that, AJ <
AF iff 49 < oF. Since points on the real interval are
monotonic, A' < A%... < A% Also, we say that

MO AT iff oF <N <Al

B. Construction of the Learning Automata

We associate d 2-action Lp; automaton {A7=
(39,109, 87,77, Q%)) where, X9 is the set of actions -
representing “Yes” or “No” decisions, I17 is the set of action
probabilities, 57 is the set of feedback inputs from the
Environment, Y7 is the set of action probability updating
rules, and €7 is the set of possible decision outputs of the
automata at the end of each epoch. The Referee has, in
its possession, a secret arbitrary uni-modal function G(-)
from [0,1] — [0,1]. The Environment, E , for each LA, is
governed by the response of the Referee, who, unknown to
the LA, rewards or penalizes them based on the values of
the function G(-) within the current interval of interest. It,
in a distributed manner, governs the overall search strategy
by providing the responses to the LA, and additionally
enhancing CGG-AdS, by using a Pruning Decision Rule
(PDR)®, A, to prune the search interval. It achieves this by
utilizing the LA-GG property and the decisions, €7, made
in the previous epoch by the d LA. Thus A7, j € {1,...d},
together with E and A completely define the CGG-AdS
strategy. These are formalized below.

1) The set of actions of the automaton: (X7)

The two actions of the automaton are o, for k& €
{0,1}, where, ag corresponds to the LA casting a “No”
vote, and «f corresponds to the LA casting a “Yes”
vote.

2) The action probabilities: (I17)

P} (n) represent the probabilities of selecting the action
aj, for k € {0,1}, at step n. Initially, P(0) = 0.5,
for k=0,1.

3) The feedback inputs from the Environment to each

automaton: (37)

4The equi-partitioning is really not a restriction. It can easily be general-
ized.
5This rule is also referred to as the Pruning Table.

163

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Each LA receives, from the Referee, a response 37 €
{0, 1}, (with 37 = 0 being regarded as a Reward) as

per Equation (1) given below:
. (2;; o/ <n>>
p .

4) The action probability updating rules: (Y7)
First of all, since we are using the Lr; scheme, we
ignore all the penalty responses. Upon reward, we obey
the following updating rule :
If o, for k € {0, 1}was rewarded then,

#(n) =0

w.p.

P (n+1)«—0x P/_(n)
Pln+1)—1—-0xP] ,(n)

where 0 < 6 < 1 is the Ly reward parameter.
5) The decision outputs at each epoch: (/)

From the action probabilities we infer the decision 7
of the Lr; automaton, A7, after a fixed number N,
of iterations. Typically, N, is chosen so as to ensure
(with a very high probability) that the team of automata
will have converged®. Q7 indicates that the particular
LA, A7, has decided that it should vote either “Yes” or
“No” with an arbitrary high accuracy. The set of values
that €2/ can take and the preconditions are given by:

g No If PJ(Nw) >1—e.
Yes If P/(No)>1—c.

6) The Pruning Decision Rule (PDR) for pruning the
search space: (A)
Since the actions chosen by each LA can lead to one
of the two possible decisions, namely Yes or No,
the number of “Yes” votes can be any integer in the
set {0,1,...,d}. Once the team of automata have
made a decision regarding where they reckon * to
be (by virtue of their votes), the CGG-AdS reduces
the size of the search interval by a factor of at least
3. If &+ is the number of “Yes” votes received, the
new pruned search interval, A™**, for the subsequent
learning phase (epoch) is generated according to the
PDR, A, for the specific value of d, defined as follows:

Al If kt=0.
AT UA™L U kY =m;m #0,d.
Ad If kt=d.

(3)

The PDR (generally, synonymously and equivalently
given as a table), A, is shown in Table | and for the
case when d = 3 and in [20] for d = 4. Clearly, the
table “prunes” the size of the interval, because A(t+1)
at the next epoch is, at most, of length 2.
We shall now derive the fundamental properties of CGG—
AdS.

A(t+1) =

6This is always guaranteed if we use an absolutely expedient scheme in
which the unit vectors are absorbing barriers [1]-[6].

TABLE |
THE DECISION TABLE, (A), TO PRUNE THE SEARCH SPACE OF
CGG-AdS FOR d = 3 BASED ON THE LA oUTPUTS Q7. kT IS THE
NUMBER OF LA WHO VOTE “YES”.

kT New Sub-interval : Ane®

0 Al
1 Al U A2
2 A2 U A3
3 A3

IV. CONVERGENCE PROPERTIES OF CGG-AdS

We consider here the convergence results concerning
CGG-AdS for the general GG. Lemmas 2 and 3 essentially
use the e-optimality property of L r; automata to prove that
they produce the correct decision output for each partition.
These are then used in Theorem 2 to prove that the formula
used to create the PDR is correct. This, thus, establishes that
after elimination of one or more partitions, the remaining in-
terval still contains A*w. p. 1., thereby assuring convergence.

Lemma 2. Consider an arbitrary GG with a Referee pro-
viding responses as per Equation (1), and the LA working
with an Lr; scheme with a parameter which is arbitrarily
close to unity. Then, for 1 < m < d, the following is true:

If (V& A™),Then Pr{(kT=m—1) or (kT =m)] — 1.

Proof: The proof is found in [20] and omitted here in
the interest of brevity.

Lemma 3. Consider an arbitrary GG with a Referee pro-
viding responses as per Equation (1), and the LA working
with an Lr; scheme with a parameter 6 which is arbitrarily
close to unity. Then the following is true:

If (k* =0), Then Pr [(A'© AY)] — 1.
If (k¥ =m,m #0,d), Then P[(\'© A™)
or (VG A™H] — 1.

If (k* =d), Then Pr [(A'© AY)] — 1.

Proof: The proof of this result too is found in [20].

Theorem 2. Consider an arbitrary GG with a Referee
providing responses as per Equation (1), and the LA working
with an Lz, scheme with a parameter 6 which is arbitrarily
close to unity. Then:

1) The rules specified in Section 2.2 defining the construc-
tion of the PDR is valid.

2) The search domain for the solution of the GG reduces
at each step of the recursion by a factor of at least 3

3) The unknown * is always contained (w. p. 1) in the
new search-interval A™<% resulting from the applica-

tion of the PDR specified in Section 2.2.

Proof: The proof invokes the above Lemmas and further
relies on the transitivity of the regions {A®}. It is detailed
in [20].

With these results, we are ready to construct a mechanism
that can learn the optimal solution A* for the GG.

164

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

V. IMPLEMENTATION AND EVALUATION OF CGG-AdS
SCHEME

The CGG-AdS strategy is fairly simple to implement,
because it uses a straightforward partitioning of the search
interval, a simple decision table for elimination, and the
well known Lg; learning algorithm for playing the Goore
Game. In this Section we present the pseudo-code for the
overall learning strategy as well as that of the L z; automata
playing it. We also present in [20] a sample trace (for d = 3)
to demonstrate its correct convergence. Finally, we present
numerical results to augment our analysis presented in the
previous sections.

A. Implementation of the CGG-AdS Strategy

The CGG-AdJS strategy has been implemented and tested
with a wide range of inputs. The pseudo-code for the
algorithms (in Figure V1) is included in the Appendix, and
sample traces are presented in [20] (omitted here in the
interest of brevity) to illustrate the workings of the CGG—
AdS strategy, where the latter is given for the case when
d=3.

The pseudo-code in Figure VI (in the Appendix) shows the
recursive organization of the search, including the systematic
pruning of the search interval. Each pruning decision is
obtained by consulting Table I, after observing the outcome
of an Lr; GG that has been projected into the current search
interval. The algorithm is then recursively invoked. The
recursion is terminated when the width of the interval is less
than twice the desired accuracy. Indeed, it is the projection of
the Ly solution to the GG into increasingly smaller search
intervals that allows unbounded solution precision.

Although we have done numerous experiments, we present
here two specific examples, to highlight two crucial issues.
In the experiments which we report, we used a Gaussian
performance criterion function G(\) = ae=("+)’ allow-
ing the magnitude and peakedness of the criterion function
to be controlled by the parameters a and b respectively. This
permitted us to simulate a wide variety of environments.

In the first experiment which we report, we considered the
case when G()\) attains it maximum at 0.9123 - which was
exactly the solution for the example given in [19]. This was
done to highlight the difference between our recursive GG
solution, and the solution presented earlier for the stochastic
point location problem. Although the solutions reported in
[16], [17], [19] were novel (and in the case of [19], it still
remains the only known solution) the LA solution to the GG
presented here do not have the luxury of a Teacher/“Oracle”
to assist them. Secondly, each LA in the case of the results
of [17], [19] have 3 possible decisions, and thus the size
of the possible set of decisions is 3¢ (a lot of information,
indeed!!) — which is significantly reduced by the pruning to
O(d). Here, the number of possible solutions is significantly
less — merely O(d), and the reduction that the pruning can
achieve is even less significant. Finally, and most importantly,
each LA in [17], [19] has the advantage of knowing that if the
solution is likely to be to the “Left” of a certain region A?,

Estimate

T
Y

ok
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Recursion Step

d=:
d=5 -
ot

Fig. 1. Convergence of estimates for d = 3,5,9. The unknown
parameter * = 0.3139, and the optimal value of the criterion function
is 0.7.

it is even more likely to be to the left of a region A7, where
j > 4. Our current solution has to infer all this - and that in
a distributed manner - without knowing how their partners
performed or how and why they got a penalty/reward.

The trace given in [20] shows the execution of the CGG—
AdS algorithm for the case when d = 3. In this example run,
the initial search interval is [0,1) and A* is 0.9123, and the
parameters a and b were set to 0.7 and 0.035 respectively
- which means that the optimal value of G()\) is 0.7. The
search terminated when the width (i.e., the resolution) of the
interval was < 0.0002. The reward factor 6 of the automata
was 0.9999 and € = 0.05. In every invocation of CGG-
AdS, the results of the automata are given as the optimal
number of “Yes” votes, k. We remark that at Step 18 in
the recursion, the width of the interval [0.9121,0.9123] is
0.0002, at which point the estimated value for * is the
mid-point of the interval [0.9121,0.9123], which is 0.9122.
We note that at this resolution, our scheme is very close
to optimizing the performance criterion function because
G(0.9122) =~ 0.69999. The corresponding problem in the
case of the solution in [19] converged after 10 recursive steps.
It should be mentioned that the traditional LA solution to the
GG would require 10,000 LA to attain this level of precision.
Hence, the power of our strategy !! Additional examples and
traces for other executions of the solution are given in [20],
and omitted here in the interest of space.

The analogous results for the second example are also
given in [20] and illustrated in Figure 1.

We first note that as the solution resolution increases at
each recursion step, the accuracy of the A*estimates does
not increase monotonically, as, perhaps, could have been ex-
pected. Instead, the estimates fluctuate noticeably, however,
with decreasing variance. As argued in [20], this fluctuation
is not a result of the random properties of our algorithm.
However, for larger number of automata, the positioning of
the sub-partitions seems to become less significant, as seen
in Figure 2 for d = 9.

The reader should also note that at any given recursion
step, the speed of convergence seems to be determined by

165

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Estimate

o °

© =
—

d=3 ——

d=5 -

d=9 ---x-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Recursion Step

Fig. 2. Convergence of estimates for d = 3,5,9. The unknown
parameter * = 0.9123, and the optimal value of the criterion function
is 0.7.

the magnitude that the best available estimate AT differs from
the inferior estimates. Thus, for instance, a function G with
a G()) that is flat around the optimal value A* may slow
down convergence when the search interval falls within the
flat area. However, such a flat search interval means that all of
the candidate estimates are close to the optimal value of the
performance criterion function, and accordingly, the search
could be terminated without a significant loss of accuracy.

V1. CONCLUSIONS

In this paper, we have considered a intriguing game,
called the Goore Game (GG) introduced in [21], and which
has recently found applications in many domains, including
the field of sensor networks and Quality-of-Service (QoS)
routing. The GG has the fascinating property that it can be
resolved in a completely distributed manner with no inter-
communication between the players. The existing reported
approaches have a fundamental “ailment” : The accuracy of
the solution achieved is intricately related to the number of
players (typically, Learning Automata (LA)) participating in
the game — which, in turn, determines the resolution. In other
words, an arbitrary accuracy can be obtained only if the game
has an infinite number of players, and thus a practical solution
is infeasible. In this paper, we showed how we can attain an
unbounded accuracy for the GG by utilizing at most d LA,
and by recursively pruning the solution space to guarantee
that the retained domain contains the solution to the game
with a probability as close to unity as desired. Indeed, d can
be made as small as three. The paper contains the formal
algorithms, the claims of the respective convergence results,
and it includes simulation results demonstrating its power.
Indeed, we believe that we have presented here the first
practical implementation of the GG.

We are currently investigating the application of these
results to a variety of potential applications involving neural
networks and optimization, and in the application domains
related to sensor networks and QoS routing.

REFERENCES

[1] K. Narendra and M. Thathachar, Learning Automata.
1989.

[2] S. Lakshmivarahan, Learning Algorithms Theory and Applications.
Springer-Verlag, 1981.

[3] K. Najim and A. S. Poznyak, Learning Automata: Theory and Appli-
cations. Oxford: Pergamon Press, 1994.

[4] M. S. Obaidat, G. I. Papadimitriou, and A. S. Pomportsis, “Learning
automata: Theory, paradigms and applications,” IEEE Transactions on
Systems Man and Cybernetics, vol. SMC-32, pp. 706-709, 2002.

[5] A. S. Poznyak and K. Najim, Learning Automata and Stochastic
Optimization. Berlin: Springer-Verlag, 1997.

[6] M. A. L. T. Thathachar and P. S. Sastry, Networks of Learning
Automata : Techniques for Online Stochastic Optimization. Boston:
Kluwer Academic, 2003.

[7]1 D. Chen and P. K. Varshney, “QoS Support in Wireless Sensor Net-
works: A Survey,” in The 2004 International Conference on Wireless
Networks (ICWN 2004), 2004.

[8] Y. U. Cao, A. S. Fukunaga, and A. Kahng, “Cooperative Mobile
Robotics: Antecedents and Directions,” Autonomous Robots, vol. 4,
no. 1, pp. 7-27, 1997.

[9] R. lyer and L. Kleinrock, “Qos control for sensor networks,” in IEEE
International Conference on Communications, vol. 1, 2003, pp. 517-
521.

[10] B. Tung and L. Kleinrock, “Using Finite State Automata to Produce
Self-Optimization and Self-Control,” IEEE Transactions on Parallel
and Distributed Systems, vol. 7, no. 4, pp. 47-61, 1996.

[11] M. S. Obaidat, G. I. Papadimitriou, and A. S. Pomportsis, “Efficient
fast learning automata,” Information Sciences, vol. 157, pp. 121-133,
2003.

[12] M. Agache and B. J. Oommen, “Generalized pursuit learning schemes:
New families of continuous and discretized learning automata,” IEEE
Transactions on Systems, Man and Cybernetics, vol. SMC-32(B), pp.
738 749, 2002.

[13] J. Lanc6t and B. Oommen, “Discretized estimator learning automata,”
IEEE Transactions on Systems Man and Cybernetics, vol. SMC-22,
pp. 1473- 1483, 1992.

[14] M. A. L. Thathachar and M. T. Arvind, “Solution of Goore game using
models of stochastic learning automata,” J. Indian Institute of Science,
no. 76, pp. 47-61, January-February 1997.

[15] R. A. Baeza-Yates, J. C. Culberson, and G. J. E. Rawlins, “Searching
with uncertainty,” in Proceedings of the Scandinavian Workshop on
Algorithms and Theory, SWAT 88, 1988, pp. 176-189.

[16] B. Oommen, “Stochastic searching on the line and its applications to
parameter learning in nonlinear optimization,” IEEE Transactions on
Systems, Man and Cybernetics, vol. SMC-27, pp. 733- 739, 1997.

[17] B. Oommen and G. Raghunath, “Automata learning and intelligent
tertiary searching for stochastic point location,” IEEE Transactions on
Systems, Man and Cybernetics, vol. SMC-28B, pp. 947- 954, 1998.

[18] G. Santharam, P. Sastry, and M. Thathachar, “Continuous action set
learning automata for stochastic optimization,” Journal of the Franklin
Institute, vol. 331B5, pp. 607-628, 1994.

[19] B. J. Oommen, G. Raghunath, and B. Kuipers, “Parameter learning
from stochastic teachers and stochastic compulsive liars,” IEEE Trans-
actions on Systems Man and Cybernetics, p. To Appear, 2006.

[20] B.J. Oommen, O. C. Granmo, and A. Pedersen, "Achieving unbounded
resolution in finite player goore games using stochastic automata,
and its applications,” Unabridged version of this paper. Submitted for
publication, 2006.

[21] M. Tsetlin, Automaton Theory and the Modelling of Biological Sys-
tems. New York and London: Academic Press, 1973.

Prentice-Hall,

166

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Appendix

Program Search(A)

Input : A: Search interval [o,~) containing A*. Resolution: The size of the smallest significant interval containing A*. The
function MidPointOfinterval returns the mid-point of the specified interval and the function Partitioninterval partitions
the given interval into d sub-intervals.

Output The estimate of *.

Method :
Begin
If (WidthOfinterval(A) < Resolution) Then
Return (MidPointOfinterval(A)) /* Terminate Recursion */
Else
{A°, ..., A%} := PartitionInterval(A)
k* = ExecuteGooreGame({A°, ..., A%})

A"ev := ChooseNewSearchinterval({A°, ..., A%}, kT, Decision-Table)
Search(A"™*") /* Tail Recursion */
EndIf

END Program Search

Procedure ExecuteGooreGame({A°, ..., A%})

Input : The partitioned search interval A= [o,~); the parameters ¢ and e of the Lr; scheme; the performance criterion
function G()\) of the Environment.

Output A decision k™ from the set D = {0, ..., d}. The decision represents the optimal number of “Yes” votes among D.

Method :
Begin
For i:=1To d Do
P;:=P:=05
While e < P{ <1 —eFor Any i € {1,...,d} Do
k=0
For i :=1 To d Do
y; = ChooseAction(A?) ; k =k + v
EndFor
For ¢ :=1To d Do
If (y; =0) Then
8 = GetFeedBack(c")
If (6 =0) Then
Pl :=0.P}; Pt:=1- P}
EndIf
Else
= GetFeedBack(c")
If (6 =0) Then
Pi=0.PPi:=1-P;
EndlIf
EndIf
EndFor
EndWhile
ET =0
For 7:=1To d Do
If (P{ >1—¢) Then
Et =kt 41
EndIf
EndFor
Return (k™)
End Procedure ExecuteGooreGame

Fig. 3. Algorithm CGG-AdS: Overall search strategy.

167

