
Abstract— Hnefatafl is an ancient Norse game – an ancestor
of chess. In this paper, we report on the development of
computer players for this game. In the spirit of Blondie24, we
evolve neural networks as board evaluation functions for
different versions of the game. An unusual aspect of this game
is that there is no general agreement on the rules: it is no longer
much played, and game historians attempt to infer the rules
from scraps of historical texts, with ambiguities often resolved
on gut feeling as to what the rules must have been in order to
achieve a balanced game. We offer the evolutionary method as
a means by which to judge the merits of alternative rule sets.

Keywords: Evolution, board games, Hnefatafl

I. INTRODUCTION

Board games have long been a favourite source of challenge
problems for artificial intelligence researchers. Perhaps this
is because a good player of a complex board game
encapsulates so much of what we aspire to in our artificially
intelligent creations: choosing one’s actions by reasoning
about how they will affect the future. The well-defined and
delimited nature of a game makes it possible to state the task
precisely, while the need to account for an inventive and
wily opponent provides depth and complexity. Decades of
research have attempted to replicate human play as a process
of symbolic reasoning, with the development of techniques
such as alpha-beta search, based on using codified domain
knowledge in the form of a board position evaluation
function, and culminating in the success of computer chess
systems such as Deep Blue ([1]).

However, human play is not entirely a rational process. In
recent years, research on board games carried out by
computational intelligence researchers has shed light on how
instinctive abilities can be married with pure reasoning. A
famous example is Fogel and Chellapilla’s evolved checkers
player, Blondie24 ([2][3][5]). In this work, the researchers
combined instinct: an evolved or learned ability to judge the
value of a board position, with reasoning: a game-tree search
algorithm. Other researchers have explored Awari ([4]), Go
(e.g. [6][10]), Othello (e.g. [8][12]), Ms PacMan ([7]),
Backgammon (e.g.[9][11]) and many other games.

In this paper, we apply similar methods to an ancient
Norse board game, Hnefatafl. Hnefatafl is not much played
in the present day, and has not been studied by the computer
game community, so little is known about good play for
Hnefatafl – in fact, even the rules of the game are uncertain.

We investigate the use of an evolutionary algorithm to
evolve players for the game, and use these to judge the
merits of different sets of rules.

II. HNEFATAFL

Hnefatafl (translated approximately as “King’s table”) is an
ancient board game, historically played in Iceland,
Scandinavia, Ireland and Wales. The game is played
between two players, designated White (“the Swedes”) and
Red (“the Muscovites”), on a board arranged as a square
grid of square cells (see Fig 1). Each cell may be occupied
by a white or red piece, or may be empty. White controls the
white pieces, while Red controls the red pieces. White’s aim
is to get a designated white piece (the “King” – shown as a
crown in the figure) to one of a number of “safe” cells,
while Red’s aim is to capture the king before it can do so.

Skill at Hnefatafl was once a requirement of Viking
manhood. According to the instructions in a box set bought
from the Icelandic National Museum, Earl Rögnvaldur Kali
describes a noble Viking thus:

Tafl emk örr at efla,
íþróttir kank níu,
tynik trauðla rúnum,
tíð er bok ok smíðir,
skríða kank á skíðum,
skýtk ok raek, svát nýtir,
hvárt tveggja kank hyggja
harpslátt ok bragpáttu

I play Tafl enthusiastically
I can play nine sports
I know all the runes
Often I read and craft
I can go down hills on skis
I am fully able to row and bunt
I am interested in both
Playing of instruments and
poetry

Here is the rule set for the version of Hnefatafl we used
in this study (based on the rules given in the box set):

The Board: The board is 11 cells x 11 cells. The centre cell
(the “castle”) is where the King starts. The corners are the
safe cells (the “burgs”).

 The Pieces: There are 13 white pieces, including the King,
initially arranged as in Fig 1. There are 26 red pieces,
distributed along the sides of the board as shown.

Moving: Red plays the first move and then players alternate.
On his move, a player must move one of his pieces to a new
cell, where pieces move in the manner of a rook in chess
(i.e. any number of cells either horizontally or vertically, as
long as the intervening cells are empty.) Once a piece has
been moved, any captured pieces from the opposing side are

Evolving Players for an Ancient Game: Hnefatafl

Philip Hingston
School of Computer and Information Science

Edith Cowan University
p.hingston@ecu.edu.au

168

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

1-4244-0709-5/07/$20.00 ©2007 IEEE

removed from the board. The one restriction is that only the
King may move onto a burg or the castle.

Capturing: Any piece other than the King is captured and
removed from the board if an opposing piece is moved so as
to pincer it, occupying the cells immediately to the left and
right, or immediately above and below the piece being
attacked. For this purpose, a burg or the castle is regarded as
occupied by an attacking piece. It is not possible to commit
suicide: a piece that wedges itself between opposing pieces
is not captured. A King can only be captured by surrounding
it on all 4 sides, but the edge of the board and/or a burg or
the castle can assist in the capture. Note that if the King is
captured, Red immediately wins the game. Fig 2 shows
some examples of pieces being captured.

Winning: White wins the game if he succeeds in moving the
King to a burg. Red wins if he succeeeds in capturing the
King.

As a practical matter and for completeness, we added the
following rules:

Stalemate: If a player cannot play a legal move, his
opponent becomes the winner.
Draw: In order to limit the length of games, we set an
arbitrary limit of 100 moves, after which the game is
declared a draw.

These last two have been added to cover two situations
that the rules as stated do not mention. Since we intend to
carry out experiments with automated play, we must cater
for every eventuality.

Fig 1: Initial board layout for our version of Hnefatafl

Fig 2: Examples of captures. In (a), the indicated red piece is captured by
the white pieces above and below. In (b) the red piece is captured by the
white piece to its left, with the assistance of a burg to its right. In (c), the
king is captured by the red pieces to its left and below, with the assistance
of the burg and the edge of the board.

Since the rules are asymmetric, two games are played to
decide the winner of a match – one as White and one as Red.
If one player wins more games, then he/she is declared the
winner of the match. If each player wins an equal number of
games, then the player with the greatest total number of
captures wins the match. If the numbers of captures are also
equal, then the match is a draw.

These rules are far from universally agreed. Points of
difference between rule sets include:

The board size can be 9x9 or 13x13;
The number and initial arrangement of pieces
can vary;
The capture rule for the King may be made the
same as for ordinary pieces;
The King may be banned from assisting in
captures;
There may be a prohibition against repeating
board positions;
There may be a “shieldwall” rule, allowing the
capture of a connected group of pieces by
completely surrounding them up against one of
the sides (reminiscent of capturing groups
against the side of the board in Go);
There may be a rule allowing the King and
exactly one defender to be surrounded and
captured;
Red pieces may be restricted from moving
through certain sections of the board.

Some of these are merely regional differences, but some
result from the fact that the historical sources are incomplete
or ambiguous about the rules, and game historians have had
to infer (i.e. make educated guesses about) what the actual
rules were.

169

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

III. EVOLVING PLAYERS

As there is little available knowledge on what makes for
good Hnefatafl play, an evolutionary algorithm seems a
sensible approach. Following earlier researchers, we
coevolve populations of players.

The idea is to create players that select moves using a
suitable game-tree search algorithm, based on an evolvable
board position evaluation function. Typically, the fitness of
a player (or rather its evaluation function) is measured by
playing a sample of games against other players in the
population.

The hope is that as the population evolves, players that
“discover” general principles of good play will be favoured
by selection. Unfortunately, all that the evolutionary
algorithm really ensures is that players that perform well
against the current generation of players will be favoured,
which is not the same thing. Problems such as stagnation
and cycling can occur.

Various methods have been proposed to prevent these
problems. A common idea is to add some kind of diversity
mechanism, such as fitness sharing, or imposing a spatial
neighbourhood structure. Generally, larger populations are
recommended.

Unfortunately, we had to use rather small populations.
The reason is that Hnefatafl has a very high branching
factor: over 100, compared with around 10-20 for chess or
checkers. We implemented a simple-minded heuristic
function (described later) and a standard alpha-beta search
algorithm, and found that even with pruning, the effective
branching factor is around 10-20. Pre-sorting based on
heuristic function values did not improve the effectiveness
of pruning. We also tried various other standard approaches
to improve the speed of the search, including aspiration
search, the use of transposition tables, and the memory-
based search method MTD - none gave a significant
improvement. Thus, we could not afford to use large
populations, as the time needed to evaluate fitnesses of a
large population would be prohibitive.

In order to offer some protection against stagnation, we
included in the evaluation a sample of games against a
“random” opponent – a player that evaluates all board
positions equally, and selects between moves of equal value
randomly. With a search depth of 1, this Random player
plays random legal moves. The Random player has the nice
property that it is not deterministic. Two evolved players
playing against each other will usually repeat the same game
over and over, so we cannot obtain a larger sample of games
to evaluate players by having them play each other several
times. We can use the Random player for this purpose.

 Taking all this into consideration, we chose a (5+5)-
Evolution Strategy (ES) as our evolutionary algorithm. ES’s
have proven to be effective at this type of parameter-tuning
task, where the genome is a large vector of real values, and
are reputed to be effective with small populations.
Runarsson et al. ([9]) had success with this type of algorithm
in evolving board evaluation functions for small-board Go.

Blondie24 was evolved using a similar evolutionary
algorithm.

Pseudo-code for the algorithm follows:
1 Initialize:

Set .21 n Set .21' n

Set njknjk 1,51,1'
,

.

Set 51),1,0()1(' kNnk
.

2 While more generations do
3 For k:= 1 to 5 do
4 njNN jjjk 1)),1,0()1,0(exp(''

,

5)1,0(' Nkkk

6 od
7 Evaluate fitness of members of k and k

’

 by playing each against all the others, and
 against the Random player.

8 ’ select the best 5 from + ’

9 od

Fitness evaluation was done by playing matches between
pairs of players or between a player and the Random player,
and keeping track of the results of these matches. Due to the
high branching factor of Hnefatafl, we used a search depth
of 1 – i.e. players simply select the next legal move with the
highest available evaluation. Every player played a match
against each other player in the population, and a further 10
matches against the Random player. A player earned 2
points for winning a match, 1 point for a drawn match, 0 for
a loss. From these results, we calculated the average number
of points earned per match against other players, and also
against the Random player. Finally, the fitness of a player
was calculated as the sum of these two averages.

We ran the ES for 300 generations, and saved the highest
fitness individual from each generation (note that this may
not truly be the fittest individual, as the fitness evaluation is
noisy). Further testing was then carried out on these fittest
individuals to analyse their performance.

IV. NEURAL NETWORK FOR BOARD EVALUATION

In order to evolve an evaluation function for Hnefatafl, we
must choose a suitable representation. Following previous
researchers, we opted to use an artificial neural network.
The board position is used to generate the input values to the
network, and the network output value is taken as the
estimated value of the board for Red. In order to facilitate
games ending in a reasonable number of moves, we set the
value of any board that is a win for Red to a value larger
than any other board value, and for a White win, less than
any other board value.

A good representation must strike a balance between
expressive power and the size of the search space. Neural
networks, with their universal approximation capabilities, fit
the bill nicely in terms of generality, but we needed to be
careful not to make the search space too large, especially as
we have a limited budget of fitness evaluations with which

170

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

to tune the parameters of the networks. Again taking a lead
from earlier researchers, we decided to reflect the spatial
structure of the game in the network design. This both
reduces the size of the search space and embeds some
domain knowledge. Of course, in doing so, we acknowledge
that we bias the search.

Fig 3 illustrates the spatial neural network structure we
used. To improve the clarity of the diagram, we have show
only a sample of neurons and a sample of connections. The
input layer contains one neuron for each cell on the board.
Their activation values are set at 0 for an empty cell, +1 for
a cell occupied by a red piece, -1 for a white piece, -2 for the
king. Next, there is a “feature” layer with three groups of
spatially defined neurons and three additional neurons. The
first spatially defined group contains one neuron for each
vertical strip of 3 columns of cells on the board (thus, 9
neurons). Each of these has a connection from the
corresponding input neurons. The next group contains one
neuron for each horizontal strip of 3 rows. The last group
contains one neuron for each 3x3 patch of cells on the board
(thus, 81 neurons). Also in this layer is one neuron whose
activation level is set to the number of red captures, one set
to the number of white captures, and one set to 1 if Red is
next to play, 0 otherwise.

The next layer (the “hidden” layer) contains 10 neurons
each fully connected to the feature layer. Finally, the output
neuron is fully connected to the hidden layer. All internal
neurons also have a bias, and their activation function is the
sigmoid,)xe/(11 . Thus, the total number of weights and

biases in each network is 2862.

Fig 3: Structure of the neural networks used to represent evaluation
functions.

We do not claim that this is the best possible
representation. We did try a few other configurations, and
this one performs at least as well. We chose the vertical and
horizontal strips to match the pattern of movement of the
pieces, and the dimension 3 for the 11x3, 3x11 and 3x3
sections to match the method of capture of pieces. We added
the capture counts because these seem likely to be an
important feature, and for our purposes, there seems little
point in requiring the evolutionary process to discover them
(which would be difficult given the way we have structured
the rest of the network). The “red to play” neuron provides

information that is obviously necessary for a good
evaluation function, and cannot be deduced from the board
position.

This network structure is roughly comparable with
network structures used for other games. For example, in
comparison to Blondie24 for checkers: the total number of
weights and biases is comparable, Blondie had neurons for
other sized patches (4x4, 5x5, 6x6, 7x7 and 8x8) but did not
have neurons for vertical and horizontal strips, and Blondie
had a “piece difference” input fed directly to the output
neuron where we have “capture count” neurons as part of
the feature layer.

V. RESULTS AND DISCUSSION

To investigate the abilities of the evolved players, we saved
the best player of each generation, and carried out detailed
tests on these. Once again, these tests were time consuming,
as they involve playing additional games. Therefore, we
generally tested only every 50th generation.

As well as playing a large number (100) of games with a
search depth of 1 (to get a more accurate estimate of
performance), we played a moderate number (20 and 10
respectively) of games with search depth 2 and search depth
3 (searches deeper than 3-ply were too slow). Since we are
interested in the actual playing strength of the players, not in
their performance against the rest of the population, we
tested the players against the Random player, and also
against a simple, hand-crafted opponent.

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

Generations

%
 w

in
s

1 ply

2 ply

3 ply

Fig 4: %wins for the best evolved player versus the Random player, with
various numbers of plies, with the original rule set.

Fig 4 shows the performance of the fittest individual
from each chosen generation against the Random player.
The solid line shows the percentage of wins, with both
players playing at 1-ply. This is a major component of the
fitness function (which also includes performance against
other players in the population, and a reward for draws over
losses). The winning percentage rises from around 50% at
the start to around 80% at the end of the run.

The other series show the percentage of wins with both
players playing at 2-ply, and then at 3-ply. This gives an
additional advantage to the evolved players, with winning
percentage rising to better than 90% at 2-ply, and steady at
100% for 3-ply. Thus we can be confident that the evolved

171

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

player has learned some useful features for good play.
However, learning appears to have stopped, and it may be
that stagnation has set in.

A. A Simple heuristic
As an additional test, we designed a simple heuristic, based
on a most rudimentary grasp of the game (because that is the
only grasp we have!). It uses two features: piece capture
difference (since matches can be won by capturing more
pieces than the opponent, and presumably having more of
ones own pieces on the board is an advantage), and the
Manhattan distance of the King to the closest burg (on the
expectation that it is good for White to advance towards a
safe cell). Thus, the heuristic we used is:

cekingDistan0.1res)whiteCaptues(redCapturd)Value(boar

This heuristic gives many moves equal value, and we
chose between the highest value moves randomly. Thus, like
the Random player, each game against this Simple player is
likely to be different, and we can play a sample of games
against it.

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

Generations

%
 w

in
s

1 ply

2 ply

3 ply

Fig 5: %wins for the best evolved player versus the Simple player, with
various numbers of plies, with the original rule set.

Fig 5 shows the performance of the evolved players
against the Simple player. From a starting point of around
5%, performance at 1-ply rises to around 30%. Thus, the
evolved player is weaker than this naïve designed player.
However, performance does improve, confirming that
relevant features have been learned. Extending the search
depth produces a curious result: the evolved player does
much worse than might be expected at 2-ply, losing nearly
all its games. But performance picks up at 3-ply, with the
relative strength versus the Simple player being about the
same as at 1-ply. We are unsure of the reason for the poor
performance at 2-ply, but other authors have noted that
evaluation functions evolved at one search depth are not
always suited to use at other depths, as a weakness in the
evaluation can be covered over by the search.

It is tempting to try to evolve players using the Simple
player in place of the Random player, in the hope of
evolving stronger players. In fact, we did some experiments
along those lines, and found that the evolved players could

compete about equally with the Simple player at 3-ply.
However, this would not necessarily result in truly stronger
play, just play that fares better against the Simple player.
More satisfying would be to improve the co-evolutionary
algorithm.

B. Red and white balance
Table 1 shows a the number of wins and losses for the best
evolved player in the final generation, broken down to
compare performance as Red to performance as White. The
data shows that it is around 3 times easier to win as White,
and 10 times easier to lose as Red.
TABLE 1 - NUMBERS OF WINS AND LOSSES AS RED OR WHITE FOR THE BEST

EVOLVED PLAYER VERSUS RANDOM AND SIMPLE PLAYERS, WITH ORIGINAL

RULE SET.
 won

as red
won
as white

lost
as red

lost
as white

1-random 21 40 21 1
2-random 0 6 1 0
3-random 1 10 4 0
1-simple 17 69 83 6
2-simple 0 0 18 4
3-simple 0 9 10 0
totals 39 134 137 11

This suggests that our chosen rule set is not well balanced
– Red seems to have a much harder task than White. One
alternative set of rules attempts redress the balance by
making it easier to capture the King, and limiting the power
of the King. The changed capture rule is:

Capturing: Any piece (deleted: other than the King) is
captured and removed from the board if an opposing piece is
moved so as to pincer it, occupying the cells immediately to
the left and right, or immediately above and below the piece
being attacked. For this purpose, a burg or the castle is
regarded as occupied by an attacking piece. It is not possible
to commit suicide: a piece that wedges itself between
opposing pieces is not captured. Added: The King cannot be
used to capture another piece. (deleted: A King can only be
captured by surrounding it on all 4 sides, but the edge of the
board and/or a burg or the castle can assist in the capture.)
Note that if the King is captured, Red immediately wins the
game.

We repeated our earlier experiments, using this
alternative capture rule, with all other condition identical.
Fig 6 shows the performance of the fittest individual from
each chosen generation against the Random player when we
use this alternative rule set. Once again, the evolved players
learned useful features for good play, soundly defeating the
Random player at each search depth, but with some
performance drop this time for 2-ply.

In Fig 7, we see the same plot for games against the
Simple player. With this alternative rule set, the evolved
player actually beats the Simple player at 1-ply, and is
nearly equal in strength at 3-ply. As with the original rule
set, there is a significant drop in relative performance at 2-

172

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

ply. This is an encouraging result – remember that the
evolved player has never seen the Simple player during
learning.

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

Generations

%
 w

in
s

1 ply

2 ply

3 ply

Fig 6: %wins for the best evolved player versus the Random player, with
various numbers of plies, with the alternative rule set.

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

Generations

%
 w

in
s

1 ply

2 ply

3 ply

Fig 7: %wins for the best evolved player versus the Simple player, with
various numbers of plies, with the alternative rule set.

Focusing now on the Red/White balance, it appears, from
Error! Not a valid bookmark self-reference., that we have
gone too far in handicapping White, and it is now easier to
win as Red, and easier to lose as White. However, looking
more closely, we see that this is not the case at 3-ply, where
the scales are nicely balanced. While this is the result of
only a single run of the evolutionary algorithm, it suggests
that the alternative rule set is the more balanced one. As a
bonus, these more balanced rules appear to make the game
easier to learn.

TABLE 2 - NUMBERS OF WINS AND LOSSES AS RED OR WHITE FOR THE BEST

EVOLVED PLAYER VERSUS RANDOM AND SIMPLE PLAYERS, WITH

ALTERNATIVE RULE SET.
 won

as red
won
as white

lost
as red

lost
as white

1-random 98 0 0 0
2-random 9 3 4 0
3-random 9 10 1 0
1-simple 93 14 7 84
2-simple 0 0 10 4

3-simple 5 5 4 4
totals 214 32 26 92

VI. CONCLUSION

In this paper, we have made a modest start towards
developing computer players for Hnefatafl, an ancient
ancestor of chess. We have demonstrated that it is possible
to evolve a neural network to compute a meaningful board
evaluation function using little or no domain knowledge.
More usually in studies like this, there are skilled human
players who can serve as a source of expertise, as well as a
benchmark for computer players. In our case, there is little
current day knowledge about how to play the game. In this
situation, machine learning methods offer a way to develop
some understanding of the principles of good play for the
game.

Our other contribution is the idea of using evolutionary
algorithms in evaluating candidate rule sets. Perhaps there
are other historical games that could be studied in the same
way.

We would like to challenge other researchers to develop
better Hnefatafl players. Hnefatafl is an interesting game
with a rich history, and there is certainly plenty of room here
for improvement! A number of areas spring immediately to
mind:

The high branching factor severely limits the depth
of searches. There is a need to solve this problem, so
that larger populations, deeper searches and longer
evolutionary runs can be used.
The neural network structure used should be
improved. The challenge is to provide enough
representative power without the search space
becoming infeasibly large.
The board has a number of symmetries. These might
be exploited.
Other kinds of approaches might be needed. For
example, in another game with a high branching
factor, Go, a successful approach has been to
generate promising moves, rather than evaluating all
moves.

APPENDIX – SOME ONLINE HNEFATAFL RESOURCES

For the interested reader, here are some WWW starting
points for information about Hnefatafl.

http://alumnus.caltech.edu/~leif/games/Hnefetafl/

This site has a good list of rules and variants, and provides a
very weak player.

http://home20.inet.tele.dk/rnielsen/hnefatafl_online.html

This site allows for various configurations. The human plays
Red.

173

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

http://www.irt.org/games/js/hnefat/

Has a fixed configuration and rules - different from ours. An
applet allows two humans to play. There is no computer
opponent.

http://www.scandinavica.com/games/tablut.htm

Includes a downloadable game.

http://www.northvegr.org/family/tafl/index.php

A 9x9 downloadable player.

REFERENCES

[1] Campbell, M., Hoane, A.J. and Hsu, F.-h. DeepBlue, in Schaeffer, J.
and van den Herik, J. (ed.) “Chips Challenging Champions: games,
computer and Artificial Intelligence”, pp 3-9, Elsevier, Amsterdam,
2002.

[2] Chellapilla, K. and Fogel, D., Evolving neural networks to play
checkers without expert knowledge, IEEE Transactions on Neural
Networks, vol. 10, no. 6, pp. 1382–1391, 1999.

[3] Ibid., Evolving an expert checkers playing program without using
human expertise, IEEE Transactions on Evolutionary Computation,
vol. 5, pp. 422 – 428, 2001.

[4] Davis, J. E. and Kendall, G., An Investigation, using Co-Evolution, to
Evolve an Awari Player. In proceedings of Congress on Evolutionary
Computation (CEC2002), Hawaii, pp 1408-1413, 2002.

[5] Fogel, D., Blondie24: playing at the edge of AI. Morgan Kaufmann
Publishers Inc., 2002.

[6] Kendall G., Yaakob R. and Hingston P., An Investigation of an
Evolutionary Approach to the Opening of Go. In proceedings of
Congress on Evolutionary Computation 2004 (CEC'04), Portland,
Oregon, 20-23, pp 2052-2059, 2004.

[7] Lucas, S.M., Evolving a Neural Network Location Evaluator to Play
Ms. Pac-Man, IEEE Symposium on Computational Intelligence and
Games (2005) , pp. 203- 210, 2005.

[8] Lucas, S.M. and Runarsson, T.P., Temporal Difference Learning
Versus Co-Evolution for Acquiring Othello Position Evaluation. IEEE
Computational Intelligence and Games (2006), pp. 52-58, 2006

[9] Pollack, J.B. and Blair, A.D., Co-evolution in the successful learning
of backgammon strategy. Machine Learning, 32:225–240, 1998.

[10] Runarsson, T.P.; Lucas, S.M., Coevolution versus self-play temporal
difference learning for acquiring position evaluation in small-board
Go, IEEE Transactions on Evolutionary Computation, vol.9, no.6pp.
628- 640, Dec. 2005

[11] Tesauro, G., Temporal difference learning and TD-gammon, Journal
of the ACM, Vol 38, No. 3, pp 58-68, 1995.

[12] Yoshioka, T, Ishii, S. and Ito, M., Strategy acquisition for the game
”Othello” based on reinforcement learning, IEICE Transactions on
Information and Systems E82-D 12, pp. 1618–1626, 1999.

174

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

