
Abstract— Hnefatafl is an ancient Norse game – an ancestor 
of chess. In this paper, we report on the development of 
computer players for this game. In the spirit of Blondie24, we 
evolve neural networks as board evaluation functions for 
different versions of the game. An unusual aspect of this game 
is that there is no general agreement on the rules: it is no longer 
much played, and game historians attempt to infer the rules 
from scraps of historical texts, with ambiguities often resolved 
on gut feeling as to what the rules must have been in order to 
achieve a balanced game. We offer the evolutionary method as 
a means by which to judge the merits of alternative rule sets. 
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I. INTRODUCTION

Board games have long been a favourite source of challenge 
problems for artificial intelligence researchers. Perhaps this 
is because a good player of a complex board game 
encapsulates so much of what we aspire to in our artificially 
intelligent creations: choosing one’s actions by reasoning 
about how they will affect the future. The well-defined and 
delimited nature of a game makes it possible to state the task 
precisely, while the need to account for an inventive and 
wily opponent provides depth and complexity. Decades of 
research have attempted to replicate human play as a process 
of symbolic reasoning, with the development of techniques 
such as alpha-beta search, based on using codified domain 
knowledge in the form of a board position evaluation 
function, and culminating in the success of computer chess 
systems such as Deep Blue ([1]). 

However, human play is not entirely a rational process. In 
recent years, research on board games carried out by 
computational intelligence researchers has shed light on how 
instinctive abilities can be married with pure reasoning. A 
famous example is Fogel and Chellapilla’s evolved checkers 
player, Blondie24 ([2][3][5]). In this work, the researchers 
combined instinct: an evolved or learned ability to judge the 
value of a board position, with reasoning: a game-tree search 
algorithm. Other researchers have explored Awari ([4]), Go 
(e.g. [6][10]), Othello (e.g. [8][12]), Ms PacMan ([7]), 
Backgammon (e.g.[9][11]) and many other games. 

In this paper, we apply similar methods to an ancient 
Norse board game, Hnefatafl. Hnefatafl is not much played 
in the present day, and has not been studied by the computer 
game community, so little is known about good play for 
Hnefatafl – in fact, even the rules of the game are uncertain. 

We investigate the use of an evolutionary algorithm to 
evolve players for the game, and use these to judge the 
merits of different sets of rules.  

II. HNEFATAFL

Hnefatafl (translated approximately as “King’s table”) is an 
ancient board game, historically played in Iceland, 
Scandinavia,  Ireland and Wales. The game is played 
between two players, designated White (“the Swedes”) and 
Red (“the Muscovites”), on a board arranged as a square 
grid of square cells (see Fig 1). Each cell may be occupied 
by a white or red piece, or may be empty. White controls the 
white pieces, while Red controls the red pieces. White’s aim 
is to get a designated white piece (the “King” – shown as a 
crown in the figure) to one of a number of “safe” cells, 
while Red’s aim is to capture the king before it can do so. 

Skill at Hnefatafl was once a requirement of Viking 
manhood. According to the instructions in a box set bought 
from the Icelandic National Museum, Earl Rögnvaldur Kali 
describes a noble Viking thus: 

Tafl emk örr at efla, 
íþróttir kank níu, 
tynik trauðla rúnum, 
tíð er bok ok smíðir, 
skríða kank á skíðum, 
skýtk ok raek, svát nýtir, 
hvárt tveggja kank hyggja 
harpslátt ok bragpáttu 

I play Tafl enthusiastically
I can play nine sports
I know all the runes
Often I read and craft
I can go down hills on skis
I am fully able to row and bunt
I am interested in both
Playing of instruments and 
poetry

Here is the rule set for the version of Hnefatafl we used 
in this study (based on the rules given in the box set): 

The Board: The board is 11 cells x 11 cells. The centre cell 
(the “castle”) is where the King starts. The corners are the 
safe cells (the “burgs”). 

 The Pieces: There are 13 white pieces, including the King, 
initially arranged as in Fig 1. There are 26 red pieces, 
distributed along the sides of the board as shown.

Moving: Red plays the first move and then players alternate. 
On his move, a player must move one of his pieces to a new 
cell, where pieces move in the manner of a rook in chess 
(i.e. any number of cells either horizontally or vertically, as 
long as the intervening cells are empty.) Once a piece has 
been moved, any captured pieces from the opposing side are 
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removed from the board. The one restriction is that only the 
King may move onto a burg or the castle.

Capturing: Any piece other than the King is captured and 
removed from the board if an opposing piece is moved so as 
to pincer it, occupying the cells immediately to the left and 
right, or immediately above and below the piece being 
attacked. For this purpose, a burg or the castle is regarded as 
occupied by an attacking piece. It is not possible to commit 
suicide: a piece that wedges itself between opposing pieces 
is not captured. A King can only be captured by surrounding 
it on all 4 sides, but the edge of the board and/or a burg or 
the castle can assist in the capture. Note that if the King is 
captured, Red immediately wins the game. Fig 2 shows 
some examples of pieces being captured.

Winning: White wins the game if he succeeds in moving the 
King to a burg. Red wins if he succeeeds in capturing the 
King.

As a practical matter and for completeness, we added the 
following rules: 

Stalemate: If a player cannot play a legal move, his 
opponent becomes the winner. 
Draw: In order to limit the length of games, we set an 
arbitrary limit of 100 moves, after which the game is 
declared a draw. 

These last two have been added to cover two situations 
that the rules as stated do not mention. Since we intend to 
carry out experiments with automated play, we must cater 
for every eventuality. 

Fig 1: Initial board layout for our version of Hnefatafl 

Fig 2: Examples of captures. In (a), the indicated red piece is captured by 
the white pieces above and below. In (b) the red piece is captured by the 
white piece to its left, with the assistance of a burg to its right. In (c), the 
king is captured by the red pieces to its left and below, with the assistance 
of the burg and the edge of the board. 

Since the rules are asymmetric, two games are played to 
decide the winner of a match – one as White and one as Red. 
If one player wins more games, then he/she is declared the 
winner of the match. If each player wins an equal number of 
games, then the player with the greatest total number of 
captures wins the match. If the numbers of captures are also 
equal, then the match is a draw. 

These rules are far from universally agreed. Points of 
difference between rule sets include: 

The board size can be 9x9 or 13x13; 
The number and initial arrangement of pieces 
can vary; 
The capture rule for the King may be made the 
same as for ordinary pieces; 
The King may be banned from assisting in 
captures;
There may be a prohibition against repeating 
board positions; 
There may be a “shieldwall” rule, allowing the 
capture of a connected group of pieces by 
completely surrounding them up against one of 
the sides (reminiscent of capturing groups 
against the side of the board in Go); 
There may be a rule allowing the King and 
exactly one defender to be surrounded and 
captured;
Red pieces may be restricted from moving 
through certain sections of the board. 

Some of these are merely regional differences, but some 
result from the fact that the historical sources are incomplete 
or ambiguous about the rules, and game historians have had 
to infer (i.e. make educated guesses about) what the actual 
rules were. 
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III. EVOLVING PLAYERS

As there is little available knowledge on what makes for 
good Hnefatafl play, an evolutionary algorithm seems a 
sensible approach. Following earlier researchers, we 
coevolve populations of players. 

The idea is to create players that select moves using a 
suitable game-tree search algorithm, based on an evolvable 
board position evaluation function. Typically, the fitness of 
a player (or rather its evaluation function) is measured by 
playing a sample of games against other players in the 
population. 

The hope is that as the population evolves, players that 
“discover” general principles of good play will be favoured 
by selection. Unfortunately, all that the evolutionary 
algorithm really ensures is that players that perform well 
against the current generation of players will be favoured, 
which is not the same thing. Problems such as stagnation 
and cycling can occur. 

Various methods have been proposed to prevent these 
problems. A common idea is to add some kind of diversity 
mechanism, such as fitness sharing, or imposing a spatial 
neighbourhood structure. Generally, larger populations are 
recommended. 

Unfortunately, we had to use rather small populations. 
The reason is that Hnefatafl has a very high branching 
factor: over 100, compared with around 10-20 for chess or 
checkers. We implemented a simple-minded heuristic 
function (described later) and a standard alpha-beta search 
algorithm, and found that even with pruning, the effective 
branching factor is around 10-20. Pre-sorting based on 
heuristic function values did not improve the effectiveness 
of pruning. We also tried various other standard approaches 
to improve the speed of the search, including aspiration 
search, the use of transposition tables, and the memory-
based search method MTD - none gave a significant 
improvement. Thus, we could not afford to use large 
populations, as the time needed to evaluate fitnesses of a 
large population would be prohibitive. 

In order to offer some protection against stagnation, we 
included in the evaluation a sample of games against a 
“random” opponent – a player that evaluates all board 
positions equally, and selects between moves of equal value 
randomly. With a search depth of 1, this Random player 
plays random legal moves. The Random player has the nice 
property that it is not deterministic. Two evolved players 
playing against each other will usually repeat the same game 
over and over, so we cannot obtain a larger sample of games 
to evaluate players by having them play each other several 
times. We can use the Random player for this purpose. 

 Taking all this into consideration, we chose a (5+5)-
Evolution Strategy (ES) as our evolutionary algorithm.  ES’s 
have proven to be effective at this type of parameter-tuning 
task, where the genome is a large vector of real values, and 
are reputed to be effective with small populations. 
Runarsson et al. ([9]) had success with this type of algorithm 
in evolving board evaluation functions for small-board Go. 

Blondie24 was evolved using a similar evolutionary 
algorithm. 

Pseudo-code for the algorithm follows: 
1 Initialize:

Set .21 n  Set .21' n

Set njknjk 1,51,1'
,

.

Set 51),1,0()1(' kNnk
.

2 While more generations do 
3    For k:= 1 to 5 do
4 njNN jjjk 1)),1,0()1,0(exp( ''

,

5 )1,0(' Nkkk

6    od
7    Evaluate fitness of members of k and k

’

 by playing each against all the others, and
   against the Random player. 

8    ’ select the best 5 from  + ’

9 od

Fitness evaluation was done by playing matches between 
pairs of players or between a player and the Random player, 
and keeping track of the results of these matches. Due to the 
high branching factor of Hnefatafl, we used a search depth 
of 1 – i.e. players simply select the next legal move with the 
highest available evaluation.  Every player played a match 
against each other player in the population, and a further 10 
matches against the Random player. A player earned 2 
points for winning a match, 1 point for a drawn match, 0 for 
a loss.  From these results, we calculated the average number 
of points earned per match against other players, and also 
against the Random player. Finally, the fitness of a player 
was calculated as the sum of these two averages. 

We ran the ES for 300 generations, and saved the highest 
fitness individual from each generation (note that this may 
not truly be the fittest individual, as the fitness evaluation is 
noisy). Further testing was then carried out on these fittest 
individuals to analyse their performance. 

IV. NEURAL NETWORK FOR BOARD EVALUATION

In order to evolve an evaluation function for Hnefatafl, we 
must choose a suitable representation. Following previous 
researchers, we opted to use an artificial neural network.  
The board position is used to generate the input values to the 
network, and the network output value is taken as the 
estimated value of the board for Red. In order to facilitate 
games ending in a reasonable number of moves, we set the 
value of any board that is a win for Red to a value larger 
than any other board value, and for a White win, less than 
any other board value. 

A good representation must strike a balance between 
expressive power and the size of the search space. Neural 
networks, with their universal approximation capabilities, fit 
the bill nicely in terms of generality, but we needed to be 
careful not to make the search space too large, especially as 
we have a limited budget of fitness evaluations with which 
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to tune the parameters of the networks. Again taking a lead 
from earlier researchers, we decided to reflect the spatial 
structure of the game in the network design. This both 
reduces the size of the search space and embeds some 
domain knowledge. Of course, in doing so, we acknowledge 
that we bias the search. 

Fig 3 illustrates the spatial neural network structure we 
used. To improve the clarity of the diagram, we have show 
only a sample of neurons and a sample of connections. The 
input layer contains one neuron for each cell on the board. 
Their activation values are set at 0 for an empty cell, +1 for 
a cell occupied by a red piece, -1 for a white piece, -2 for the 
king. Next, there is a “feature” layer with three groups of 
spatially defined neurons and three additional neurons. The 
first spatially defined group contains one neuron for each 
vertical strip of 3 columns of cells on the board (thus, 9 
neurons). Each of these has a connection from the 
corresponding input neurons. The next group contains one 
neuron for each horizontal strip of 3 rows. The last group 
contains one neuron for each 3x3 patch of cells on the board 
(thus, 81 neurons). Also in this layer is one neuron whose 
activation level is set to the number of red captures, one set 
to the number of white captures, and one set to 1 if Red is 
next to play, 0 otherwise. 

The next layer (the “hidden” layer) contains 10 neurons 
each fully connected to the feature layer. Finally, the output 
neuron is fully connected to the hidden layer. All internal 
neurons also have a bias, and their activation function is the 
sigmoid, )xe/(11 . Thus, the total number of weights and 

biases in each network is 2862. 

Fig 3: Structure of the neural networks used to represent evaluation 
functions. 

We do not claim that this is the best possible 
representation. We did try a few other configurations, and 
this one performs at least as well. We chose the vertical and 
horizontal strips to match the pattern of movement of the 
pieces, and the dimension 3 for the 11x3, 3x11 and 3x3 
sections to match the method of capture of pieces. We added 
the capture counts because these seem likely to be an 
important feature, and for our purposes, there seems little 
point in requiring the evolutionary process to discover them 
(which would be difficult given the way we have structured 
the rest of the network). The “red to play” neuron provides 

information that is obviously necessary for a good 
evaluation function, and cannot be deduced from the board 
position. 

This network structure is roughly comparable with 
network structures used for other games. For example,  in 
comparison to Blondie24 for checkers: the total number of 
weights and biases is comparable, Blondie had neurons for 
other sized patches (4x4, 5x5, 6x6, 7x7 and 8x8) but did not 
have neurons for vertical and horizontal strips, and Blondie 
had a “piece difference” input fed directly to the output 
neuron where we have “capture count” neurons as part of 
the feature layer. 

V. RESULTS AND DISCUSSION

To investigate the abilities of the evolved players, we saved 
the best player of each generation, and carried out detailed 
tests on these. Once again, these tests were time consuming, 
as they involve playing additional games. Therefore, we 
generally tested only every 50th generation. 

As well as playing a large number (100) of games with a 
search depth of 1 (to get a more accurate estimate of 
performance), we played a moderate number (20 and 10 
respectively) of games with search depth 2 and search depth 
3 (searches deeper than 3-ply were too slow). Since we are 
interested in the actual playing strength of the players, not in 
their performance against the rest of the population, we 
tested the players against the Random player, and also 
against a simple, hand-crafted opponent. 
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Fig 4: %wins for the best evolved player versus the Random player, with 
various numbers of plies, with the original rule set. 

Fig 4 shows the performance of the fittest individual 
from each chosen generation against the Random player. 
The solid line shows the percentage of wins, with both 
players playing at 1-ply. This is a major component of the 
fitness function (which also includes performance against 
other players in the population, and a reward for draws over 
losses). The winning percentage rises from around 50% at 
the start to around 80% at the end of the run. 

The other series show the percentage of wins with both 
players playing at 2-ply, and then at 3-ply. This gives an 
additional advantage to the evolved players, with winning 
percentage rising to better than 90% at 2-ply, and steady at 
100% for 3-ply. Thus we can be confident that the evolved 
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player has learned some useful features for good play. 
However, learning appears to have stopped, and it may be 
that stagnation has set in. 

A. A Simple heuristic 
As an additional test, we designed a simple heuristic, based 
on a most rudimentary grasp of the game (because that is the 
only grasp we have!). It uses two features: piece capture 
difference (since matches can be won by capturing more 
pieces than the opponent, and presumably having more of 
ones own pieces on the board is an advantage), and the 
Manhattan distance of the King to the closest burg (on the 
expectation that it is good for White to advance towards a 
safe cell). Thus, the heuristic we used is: 

cekingDistan0.1res)whiteCaptues(redCapturd)Value(boar

This heuristic gives many moves equal value, and we 
chose between the highest value moves randomly. Thus, like 
the Random player, each game against this Simple player is 
likely to be different, and we can play a sample of games 
against it.  
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Fig 5: %wins for the best evolved player versus the Simple player, with 
various numbers of plies, with the original rule set. 

Fig 5 shows the performance of the evolved players 
against the Simple player. From a starting point of around 
5%, performance at 1-ply rises to around 30%. Thus, the 
evolved player is weaker than this naïve designed player. 
However, performance does improve, confirming that 
relevant features have been learned. Extending the search 
depth produces a curious result: the evolved player does 
much worse than might be expected at 2-ply, losing nearly 
all its games. But performance picks up at 3-ply, with the 
relative strength versus the Simple player being about the 
same as at 1-ply. We are unsure of the reason for the poor 
performance at 2-ply, but other authors have noted that 
evaluation functions evolved at one search depth are not 
always suited to use at other depths, as a weakness in the 
evaluation can be covered over by the search.  

It is tempting to try to evolve players using the Simple 
player in place of the Random player, in the hope of 
evolving stronger players. In fact, we did some experiments 
along those lines, and found that the evolved players could 

compete about equally with the Simple player at 3-ply. 
However, this would not necessarily result in truly stronger 
play, just  play that fares better against the Simple player. 
More satisfying would be to improve the co-evolutionary 
algorithm. 

B. Red and white balance 
Table 1 shows a the number of wins and losses for the best 
evolved player in the final generation, broken down to 
compare performance as Red to performance as White. The 
data shows that it is around 3 times easier to win as White, 
and 10 times easier to lose as Red. 
TABLE 1 - NUMBERS OF WINS AND LOSSES AS RED OR WHITE FOR THE BEST 

EVOLVED PLAYER VERSUS RANDOM AND SIMPLE PLAYERS, WITH ORIGINAL 

RULE SET.
 won  

as red 
won
as white 

lost
as red 

lost
as white 

1-random 21 40 21 1 
2-random 0 6 1 0 
3-random 1 10 4 0 
1-simple 17 69 83 6 
2-simple 0 0 18 4 
3-simple 0 9 10 0 
totals 39 134 137 11 

This suggests that our chosen rule set is not well balanced 
– Red seems to have a much harder task than White. One 
alternative set of rules attempts redress the balance by 
making it easier to capture the King, and limiting the power 
of the King. The changed capture rule is: 

Capturing: Any piece (deleted: other than the King) is 
captured and removed from the board if an opposing piece is 
moved so as to pincer it, occupying the cells immediately to 
the left and right, or immediately above and below the piece 
being attacked. For this purpose, a burg or the castle is 
regarded as occupied by an attacking piece. It is not possible 
to commit suicide: a piece that wedges itself between 
opposing pieces is not captured. Added: The King cannot be 
used to capture another piece. (deleted: A King can only be 
captured by surrounding it on all 4 sides, but the edge of the 
board and/or a burg or the castle can assist in the capture.)
Note that if the King is captured, Red immediately wins the 
game.  

We repeated our earlier experiments, using this 
alternative capture rule, with all other condition identical. 
Fig 6 shows the performance of the fittest individual from 
each chosen generation against the Random player when we 
use this alternative rule set. Once again, the evolved players 
learned useful features for good play, soundly defeating the 
Random player at each search depth, but with some 
performance drop this time for 2-ply. 

In Fig 7, we see the same plot for games against the 
Simple player. With this alternative rule set, the evolved 
player actually beats the Simple player at 1-ply, and is 
nearly equal in strength at 3-ply. As with the original rule 
set, there is a significant drop in relative performance at 2-
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ply. This is an encouraging result – remember that the 
evolved player has never seen the Simple player during 
learning. 
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Fig 6: %wins for the best evolved player versus the Random player, with 
various numbers of plies, with the alternative rule set. 
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Fig 7: %wins for the best evolved player versus the Simple player, with 
various numbers of plies, with the alternative rule set. 

Focusing now on the Red/White balance, it appears, from 
Error! Not a valid bookmark self-reference., that we have 
gone too far in handicapping White, and it is now easier to 
win as Red, and easier to lose as White. However, looking 
more closely, we see that this is not the case at 3-ply, where 
the scales are nicely balanced. While this is the result of 
only a single run of the evolutionary algorithm, it suggests 
that the alternative rule set is the more balanced one. As a 
bonus, these more balanced rules appear to make the game 
easier to learn. 

TABLE 2 - NUMBERS OF WINS AND LOSSES AS RED OR WHITE FOR THE BEST 

EVOLVED PLAYER VERSUS RANDOM AND SIMPLE PLAYERS, WITH 

ALTERNATIVE RULE SET.
 won  

as red 
won
as white 

lost
as red 

lost
as white 

1-random 98 0 0 0 
2-random 9 3 4 0 
3-random 9 10 1 0 
1-simple 93 14 7 84 
2-simple 0 0 10 4 

3-simple 5 5 4 4 
totals 214 32 26 92 

VI. CONCLUSION

In this paper, we have made a modest start towards 
developing computer players for Hnefatafl, an ancient 
ancestor of chess. We have demonstrated that it is possible 
to evolve a neural network to compute a meaningful board 
evaluation function using little or no domain knowledge. 
More usually in studies like this, there are skilled human 
players who can serve as a source of expertise, as well as a 
benchmark for computer players. In our case, there is little 
current day knowledge about how to play the game. In this 
situation, machine learning methods offer a way to develop 
some understanding of the principles of good play for the 
game. 

Our other contribution is the idea of using evolutionary 
algorithms in evaluating candidate rule sets. Perhaps there 
are other historical games that could be studied in the same 
way. 

We would like to challenge other researchers to develop 
better Hnefatafl players. Hnefatafl is an interesting game 
with a rich history, and there is certainly plenty of room here 
for improvement! A number of areas spring immediately to 
mind: 

The high branching factor severely limits the depth 
of searches. There is a need to solve this problem, so 
that larger populations, deeper searches and longer 
evolutionary runs can be used. 
The neural network structure used should be 
improved. The challenge is to provide enough 
representative power without the search space 
becoming infeasibly large. 
The board has a number of symmetries. These might 
be exploited. 
Other kinds of approaches might be needed. For 
example, in another game with a high branching 
factor, Go, a successful approach has been to 
generate promising moves, rather than evaluating all 
moves. 

APPENDIX – SOME ONLINE HNEFATAFL RESOURCES

For the interested reader, here are some WWW starting 
points for information about Hnefatafl. 

http://alumnus.caltech.edu/~leif/games/Hnefetafl/

This site has a good list of rules and variants, and provides a 
very weak player. 

http://home20.inet.tele.dk/rnielsen/hnefatafl_online.html

This site allows for various configurations. The human plays 
Red. 
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http://www.irt.org/games/js/hnefat/

Has a fixed configuration and rules - different from ours. An 
applet allows two humans to play. There is no computer 
opponent. 

http://www.scandinavica.com/games/tablut.htm

Includes a downloadable game. 

http://www.northvegr.org/family/tafl/index.php

A 9x9 downloadable player. 
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