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Abstract— Algorithm UCB1 for multi-armed bandit problem
has already been extended to Algorithm UCT which works
for minimax tree search. We have developed a Monte-Carlo
program, MoGo, which is the first computer Go program using
UCT. We explain our modification of UCT for Go application
and also the sequence-like random simulation with patterns
which has improved significantly the performance of MoGo.
UCT combined with pruning techniques for large Go board is
discussed, as well as parallelization of UCT. MoGo is now a
top-level Computer-Go program on 9 × 9 Go board.

Keywords: Computer Go, Monte-Carlo Go, multi-armed
bandit, UCT, sequence-like simulation, 3 × 3 patterns

I. INTRODUCTION

The history of Go stretches back some 4000 years and
the game still enjoys a great popularity all over the world.
Although its rules are simple (see http://www.gobase.org for
a comprehensive introduction), its complexity has defeated
the many attempts done to build a good Computer-Go player
since the late 70’s [1]. Presently, the best Computer-Go play-
ers are at the level of weak amateurs; Go is now considered
one of the most difficult challenges for AI, replacing Chess
in this role.

Go differs from Chess in many respects. First of all,
the size and branching factor of the tree are significantly
larger. Typically the Go board ranges from 9× 9 to 19× 19
(against 8× 8 for the Chess board); the number of potential
moves is a few hundred against a few dozen for Chess.
Secondly, no efficient evaluation function approximating the
minimax value of a position is available. For these reasons,
the powerful alpha-beta search used by Computer-Chess
players (see [2]) failed to provide good enough Go strategies.

Recent progress has been done regarding the evaluation
of Go positions, based on Monte-Carlo approaches [3] (more
on this in section II). However, this evaluation procedure has
a limited precision; playing the move with highest score in
each position does not end up in winning the game. Rather, it
allows one to restrict the number of relevant candidate moves
in each step. Still, the size of the (discrete) search space
makes it hardly tractable to use some standard Reinforcement
Learning approach [4], to enforce the exploration versus
exploitation (EvE) search strategy required for a good Go
player.

Another EvE setting originated from Game Theory, the
multi-armed bandit problem, is thus considered in this paper.
The multi-armed bandid problem models the gambler, choos-
ing the next machine to play based on her past selections

and rewards, in order to maximize the total reward [5]. The
UCB1 algorithm proposed by Auer et al. in the multi-armed
bandit framework [6] was recently extended to tree-structured
search space by Kocsis et al. (algorithm UCT) [7].

The main contributions of the player we present (named
MoGo) are: (i) modification of UCT algorithm for Go, (ii)
original use of sequence-like simulations in Monte-Carlo
evaluation function. Several algorithmic (dynamic tree struc-
ture [8], parallelized implementation) or heuristic (simple
pruning heuristics) issues were also tackled. MoGo has
reached a comparatively good Go level: MoGo has been
ranked as the first Go program out of 142 on 9×9 Computer
Go Server (CGOS1) since August 2006; and it won all the
tournaments (9x9 and 13x13) on the international Kiseido
Go Server2 on October and November 2006.

This paper is organized as follows. Section II briefly in-
troduces related work, assuming the reader’s familiarity with
the basics of Go. Section III describes MoGo, focussing on
our contributions: the implementation of UCT in large sized
search spaces, and the use of prior, pattern-based, knowledge
to bias the Monte-Carlo evaluation. Experiment results are
reported and discussed in Section IV. The paper concludes
with some knowledge and computer-intensive perspectives
for improving MoGo.

II. PREVIOUS RELATED WORK

Our approach is based on the Monte-Carlo Go and multi-
armed bandit problems, which we present respectively in
Section II-A and II-B. UCT, which applies multi-armed
bandit techniques to minimax tree search, is presented in
Section II-C. We suppose minimax tree and alpha-beta search
is well known for the reader.

A. Monte-Carlo Go

Monte-Carlo Go, first appeared in 1993 [3], has attracted
more and more attention in the last years. Monte-Carlo Go
has been surprisingly efficient, especially on 9 × 9 game;
CrazyStone, developed by Rémi Coulom [8], a program
using stochastic simulations with very little knowledge of
Go, is the best known3.

1http://cgos.boardspace.net/
2http://www.weddslist.com/kgs/past/index.html
3CrazyStone won the gold medal for the 9 × 9 Go game during the

11th Computer Olympiad at Turin 2006, beating several strong programs
including GnuGo, Aya and GoIntellect.
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Two principle methods in Monte-Carlo Go are also used
in our program. First we evaluate Go board situations by
simulating random games until the end of game, where
the score could be calculated easily and precisely. Second
we combine the Monte-Carlo evaluation with minimax tree
search. We use the tree structure of CrazyStone [8] in our
program.

Remark 1: We speak of a tree, in fact what we have is
often an oriented graph. However, the terminology ”tree” is
widely used. As to the Graph History Interaction Problem
(GHI) explained in [9], we ignore this problem considering
it not very serious, especially compared to other difficulties
in Computer-Go.

B. Bandit Problem

A K-armed bandit, is a simple machine learning problem
based on an analogy with a traditional slot machine (one-
armed bandit) but with more than one arm. When played,
each arm provides a reward drawn from a distribution as-
sociated to that specific arm. The objective of the gambler
is to maximize the collected reward sum through iterative
plays4. It is classically assumed that the gambler has no initial
knowledge about the arms, but through repeated trials, he can
focus on the most rewarding arms.

The questions that arise in bandit problems are related
to the problem of balancing reward maximization based
on the knowledge already acquired and attempting new
actions to further increase knowledge, which is known as the
exploitation-exploration dilemma in reinforcement learning.
Precisely, exploitation in bandit problems refers to select the
current best arm according to the collected knowledge, while
exploration refers to select the sub-optimal arms in order to
gain more knowledge about them.

A K-armed bandit problem is defined by random variables
Xi,n for 1 ≤ i ≤ K and n ≥ 1, where each i is the
index of a gambling machine (i.e., the ”arm” of a bandit).
Successive plays of machine i yield rewards Xi,1,Xi,2,...
which are independent and identically distributed according
to a certain but unknown law with unknown expectation µi.
Here independence holds also for rewards across machines;
i.e., Xi,s and Xj,t are independent (probably not identically
distributed) for each 1 ≤ i < j ≤ K and each s, t ≥ 1.
Algorithms choose the next machine to play depending on
the obtained results of the previous plays. Let Ti(n) be the
number of times machine i has been played after the first
n plays. Since the algorithm does not always make the best
choice, its expected loss is studied. Then the regret after n
plays is defined by

µ∗n −
K
∑

j=1

µjE[Tj(n)] where µ∗ = max
1≤i≤K

µi

E[ ] denotes expectation. In the work of Auer and Al. [6], a
simple algorithm UCB1 is given, which ensures the optimal

4We will use ”play an arm” when refering to general multi-armed
problems, and ”play a move” when refering to Go. In Go application, the
”play” will not refer to a complete game but only one move.

machine is played exponentially more often than any other
machine uniformly when the rewards are in [0, 1]. Note

X̄i,s =
1

s

s
∑

j=1

Xi,j , X̄i = X̄i,Ti(n) ,

then we have:
Algorithm 1: Deterministic policy: UCB1

• Initialization: Play each machine once.

• Loop: Play machine j that maximizes X̄j +
√

2 log n
Tj(n) ,

where n is the overall number of plays done so far.
One formula with better experimental results is suggested

in [6]. Let

Vj(s) =

(

1

s

s
∑

γ=1

X2
j,γ

)

− X̄2
j,s +

√

2 log n

s

be an estimated upper bound on the variance of machine j,
then we have a new value to maximize:

X̄j +

√

log n

Tj(n)
min{1/4, Vj(Tj(n))} . (1)

According to Auer and Al., the policy maximizing (1)
named UCB1-TUNED, considering also the variance of the
empirical value of each arms, performs substantially better
than UCB1 in all his experiments. This corresponds to our
early results and then we use always the policy UCB1-
TUNED in our program5.

C. UCT: UCB1 for Tree Search

UCT [7] is the extension of UCB1 [6] to minimax tree
search. The idea is to consider each node as an independent
bandit, with its child-nodes as independent arms. Instead of
dealing with each node once iteratively, it plays sequences
of bandits within limited time, each beginning from the root
and ending at one leaf.

The algorithm UCT is defined in Table I6. The program
continues playing one sequence each time, which is defined
from line 1 to line 8. Line 9 to line 21 are the function using
UCB1 for choosing one arm (one child-node in the UCT
case). Line 15 ensures each arm be selected once before
further exploration. Line 16 applies the formula of UCB1.
After each sequence, the value of played arm of each bandit
is updated7 iteratively from the father-node of the leaf to the
root by formula UCB1, described in function updateV alue
from line 22 to line 29. Here the code deals with the minimax
case. In general, the value of each node converges to the real
max (min) value as the number of simulations increases.

In the problems of minimax tree search, what we are
looking for is often the optimal branch at the root node.
It is sometimes acceptable if one branch with a score near to
the optimal one is found, especially when the depth of the
tree is very large and the branching factor is big, like in Go,
as it is often too difficult to find the optimal branch within
short time.

5We will however say UCB1 for short.
6In order to be clear, the optimization is not discussed here.
7Here we use the original formula in Algorithm 1.
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TABLE I

PSEUDOCODE OF UCT FOR MINIMAX TREE.

1: function playOneSequence(rootNode);
2: node[0] := rootNode; i = 0;
3: while(node[i] is not leaf) do
4: node[i+1] := descendByUCB1(node[i]);
5: i := i + 1;
6: end while ;
7: updateValue(node, -node[i].value);
8: end function;

9: function descendByUCB1(node)
10: nb := 0;
11: for i := 0 to node.childNode.size() - 1 do
12: nb := nb + node.childNode[i].nb;
13: end for;
14: for i := 0 to node.childNode.size() - 1 do
15: if node.childNode[i].nb = 0

do v[i] := ∞;
16: else v[i] := 1-node.childNode[i].value

/node.childNode[i].nb
+sqrt(2*log(nb)/(node.childNode[i].nb)

17: end if;
18: end for;
19: index := argmax(v[j]);
20: return node.childNode[index];
21: end function;

22: function updateValue(node,value)
23: for i := node.size()-2 to 0 do
24: node[i].value := node[i].value + value;
25: node[i].nb := node[i].nb + 1;
26: value := 1-value;
27: end for;
28: end function;

Fig. 1. UCT search. The shape of the tree enlarges asymmetrically. Only
updated values (node[i].value) are shown for each visited nodes.

In this sense, UCT outperforms alpha-beta search. Indeed
we can outlight three major advantages. First, it works in an
anytime manner. We can stop at any moment the algorithm,
and its performance can be somehow good. This is not the
case of alpha-beta search. Figure 2 shows if we stop alpha-
beta algorithm prematurely, some moves at first level has
even not been explored. So the chosen move may be far
from optimal. Of course iterative deepening can be used,
and solve partially this problem. Still, the anytime property
is stronger for UCT and it is easier to finely control time in
UCT algorithm.

Second, UCT is robust as it automatically handles uncer-
tainty in a smooth way. At each node, the computed value
is the mean of the value for each child weighted by the
frequency of visits. Then the value is a smoothed estimation
of max, as the frequency of visits depends on the difference
between the estimated values and the confidence of this
estimates. Then, if one child-node has a much higher value
than the others, and the estimate is good, this child-node will
be explored much more often than the others, and then UCT
selects most of the time the ’max’ child node. However, if
two child-nodes have a similar value, or a low confidence,
then the value will be closer to an average.

Third, the tree grows in an asymmetric manner. It explores
more deeply the good moves. What is more, this is achieved
in an automatic manner. Figure 1 gives an example.

Figure 1 and Figure 2 compares clearly the explored tree of
two algorithms within limited time. However, the theoretical
analysis of UCT is in progress [10]. We just give some
remarks on this aspect at the end of this section. It is obvious
that the random variables involved in UCT are not identically
distributed nor independent. This complicates the analysis of
convergence. In fact we can define the bias for the arm i by:

δi,t =

∣

∣

∣

∣

∣

µ∗
i −

1

t

t
∑

s=1

Xi,s

∣

∣

∣

∣

∣

,

where µ∗
i is the minimax value of this arm. It is clear that

at leaf level δi,t = 0. We can also prove that

δi,t ≤ KD log t

t
,

with K constant and D the depth of the arm (counted from
the root down). This corresponds to the fact that the bias is
amplified when passing from deep level to the root, which
prevents the algorithm from finding quickly the optimal arm
at the root node.

An advantage of UCT is that it adapts automatically to the
’real’ depth. For each branch of the root, its ’real’ depth is the
depth from where δi,t = 0 holds true. For these branches, the
bias at the root is bounded by Kd log t

t
with the real depth d <

D. The values of these branches converging faster than the
other, UCT spends more time on other interesting branches.

Fig. 2. Alpha-beta search with limited time. The nodes with ’?’ are not
explored yet. This happens often during the large-sized tree search where
entire search is impossible. Iterative deepening solves partially this problem.

177

Proceedings of the 2007 IEEE Symposium on 
Computational Intelligence and Games (CIG 2007)



TABLE II

PSEUDOCODE OF UCT FOR MOGO

1: function playOneSequenceInMoGo(rootNode)
2: node[0] := rootNode; i := 0;
3: do
4: node[i+1] := descendByUCB1(node[i]); i := i + 1;
5: while node[i] is not first visited;
6: createNode(node[i]);
7: node[i].value := getValueByMC(node[i]);
8: updateValue(node,-node[i].value);
9: end function;

III. MAIN WORK

In this section we present our program MoGo using UCT
algorithm. Section III-A presents our application of UCT.
Then, considering two important aspects for having a strong
Monte-Carlo program: the quality of simulations (then the
estimation of score) and the depth of the tree, we show in
the two following sections our corresponding improvements.
Section III-B presents the sequence-like random simulation
with patterns. Section III-C presents ideas for tree search
pruning on large Go board. Section III-D presents the modi-
fication on the exploring order of non-visited nodes. At last,
Section III-E presents parallelization.

A. Application of UCT for Computer-Go

MoGo contains mainly two parts, namely the tree search
part and the random simulation part, as shown in Figure 3.
Each node of the tree represents a Go board situation, with
child-nodes representing next situations after corresponding
move.

The application of UCT for Computer-Go is based on the
hypothesis that each Go board situation is a bandit problem,
where each legal move is an arm with unknown reward but
of a certain distribution. We suppose that there are only two
kinds of arms, the winning ones and the losing ones. We
set respectively reward 1 and 0. We ignore the case of draw,
which is too rare in Go.

In the tree search part, we use a parsimonious version of
UCT by introducing the same dynamic tree structure as in
CrazyStone [8] in order to economize memory. The tree is
then created incrementally by adding one node after each
simulation as explained in the following. This is different
from the one presented in [7], and is more efficient because
less nodes are created during simulations. In other words,
only nodes visited more than twice are saved, which econ-
omizes largely the memory and accelerates the simulations.
The pseudocode is given in Table II. Again we do not talk
about optimization.

During each simulation, MoGo starts from the root of the
tree that it saves in the memory. At each node, MoGo selects
one move according to the UCB1 formula 1. MoGo then
descends to the selected child node and selects a new move
(still according to UCB1) until such a node has not yet been
created in the tree. This part corresponds to the code from
line 1 to line 5. The tree search part ends by creating this
new node (in fact one leaf) in the tree. This is finished by
createNode. Then MoGo calls the random simulation part,

the corresponding function getV alueByMC at line 7, to
give a score of the Go board at this leaf.

In the random simulation part, one random game is played
from the corresponding Go board till the end, where score is
calculated quickly and precisely according to the rules. The
nodes visited during this random simulation are not saved.
The random simulation done, the score received, MoGo
updates the value at each node passed by the sequence of
moves of this simulation8.

Fig. 3. MoGo contains the tree search part using UCT and the random
simulation part giving scores. The numbers on the bottom correspond to
the final score of the game (win/loss). The numbers in the nodes are the
updated values of the nodes (node[i].value).

Remark 2: In the update of the score, we use the 0/1 score
instead of the territory score, since the former is much more
robust. Then the real minimax value of each node should
be either 0 or 1. In practice, however, UCT approximates
each node by a weighted average value in [0, 1]. This value
is usually considered as the probability of winning.

B. Improving simulation with domain-dependent knowledge

In this section we introduce our sequence-like random
simulation with patterns. Its advantage is obvious compared
with the classical random simulation, which we call pure
random mode. In the following we talk about our improved
random mode as well as our implementation of patterns.

In the random simulation part, it is very important to have
clever simulations giving credible scores. Using some simple
3 × 3 patterns inspired by Indigo [11] (similar patterns can
also be found in [12]), our random simulation is likely to
have more meaningful sequences in random simulations than
before, which has improved significantly the level of MoGo.

8It is possible to arrive at one end game situation during the tree search
part. In this case, one score could be calculated immediately and there is
no need to create the node nor to call the random simulation part.
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Fig. 4. Left: beginning of one random game simulated by pure random
mode. Moves are sporadically played with little sense. Right: beginning of
one random game simulated by the pattern-based random mode. From move
5 to move 29 one complicated sequence is generated.

Essentially, we use patterns to create meaningful se-
quences in simulations by finding local answers. The moves
played are not necessarily globally better moves. It is not
obvious that is more important to get better sequences rather
that better moves to make the Monte-Carlo evaluation more
accurate. However our experiments showed that the main
improvement came from the use of local answers. If the same
patterns are used to find interesting moves everywhere in
the board instead of near the previous moves, the accuracy
decreases. We believe that this claim is not obvious, and
one of the main contribution of MoGo. We also don’t use
patterns for pruning in the tree. We have not investigated the
more sophisticated patterns equipped by other programs like
GnuGo.

In our pure random mode, legal moves are played on the
Go board uniformly randomly, with few rules preventing the
program from filling its own eyes. We also privilege the
moves capturing some stones. On CGOS our first program
using exactly this mode has achieved rank score 1647 ELO9.
Currently the rank of MoGo is close to 2200 ELO.

Then, since we were not satisfied by the pure random
simulations which gave meaningless games most of the time,
local patterns are introduced in order to have some more
reasonable moves during random simulations. Our patterns
are defined as 3 × 3 intersections, centered on one free
intersection, where one move is supposed to be played. Our
patterns consist of several functions, testing if one move in
such a local situation (3 × 3) is interesting. More precisely,
we test if one move satisfies some classical forms in Go
games, for example cut move, Hane move, etc.

Moreover, we look for interesting moves only around the
last played move on the Go board. This is because that local
interesting moves look more likely to be the answer moves
of the last moves, and thus local sequence appears when
several local interesting moves are tested and then played
continuously in random simulations.

We describe briefly how the improved random mode
generates moves. It first verifies whether the last played move
is an Atari; if yes, and if the stones under Atari can be saved
(in the sense that it can be saved by capturing stones or
increasing liberties), it chooses one saving move randomly;
otherwise it looks for interesting moves in the 8 positions

around the last played move and plays one randomly if there
is any; otherwise it looks for the moves capturing stones on
the Go board, plays one if there is any. At last, if still no
move is found, it plays one move randomly on the Go board.
Surely, the code of MoGo is actually complicated in details,
with many small functions equipped with hand-coded Go
knowledges. However, we believe the main frame given here
is the most essential to have sequence-like simulations.

Figure 4 shows the first 30 moves of two random games
using different modes. Moves generated by the improved
random mode are obviously much more meaningful.

9The ELO (http://en.wikipedia.org/wiki/Elo rating
system) is a rating system where the probability of winning is related
to the difference between the ranks.

We now give the detailed information on our patterns. The
patterns are 3×3 intersections centered on an empty position,
say p, where is supposed to play the next move. Each pattern
is a boolean function, answering the question whether the
next move playing on p is an interesting move. True is
returned (when pattern is matched), if and only if the state of
each position on the Go board is the same as the one on the
corresponding position of the pattern, or there is a cross on
the corresponding position (which means the situation of this
position is ignored). Normally there is no constraint on the
color of the next move (one move good for black is supposed
to be also good for white). Some special cases are explained
when mentioned. The symmetry, rotations and exchange of
stone colors of patterns are considered. Moves are tested by
patterns only if they are neither illegal moves nor self-Atari
moves.

We have tried several patterns during the development of
MoGo and implemented finally the ones shown in Figure 5,
6, 7 and 8, where the position with a square is where the next
move is supposed to be played. We used hand-coded patterns
in our implementation. However, it will be more interesting if
this can be achieved by a learning system. Another approach
using Bayesian generation can be found in Bouzy’s work
[13].

Fig. 5. Patterns for Hane. True is returned if any pattern is matched. In
the right one, a square on a black stone means true is returned if and only
if the eight positions around are matched and it is black to play.

Fig. 6. Patterns for Cut1. The Cut1 Move Pattern consists of three patterns.
True is returned when the first pattern is matched and the next two are not
matched.

Remark 3: We believe that it is not always better to have
more ’good’ patterns in the random modes, meanwhile what
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Fig. 7. Pattern for Cut2. True is returned when the 6 upper positions are
matched and the 3 bottom positions are not white.

Fig. 8. Patterns for moves on the Go board side. True is returned if any
pattern is matched. In the three right ones, a square on a black (resp. white)
stone means true is returned if and only if the positions around are matched
and it is black (resp. white) to play.

is more important is whether the random simulation can have
some meaningful sequences often. This claim needs more
experiments.
The Table III shows clearly how patterns improve the overall
performance.

TABLE III

DIFFERENT MODES WITH 70000 RANDOM SIMULATIONS/MOVE IN 9X9.

Random mode Win. Rate Win. rate Total
for B. Games for W. Games Win. Rate

Pure 46% (250) 36% (250) 41.2% ± 2.2%
Sequence-like 77% (400) 82% (400) 80% ± 1.4%

C. UCT with pruning ideas

In this section we show our ideas (heuristics) to reduce
the huge tree size, which makes MoGo relatively strong on
large Go board. Thus we gain a larger local depth in the
search tree by losing the global view of UCT. Obviously
pruning heuristics may lead to a sub-optimal solution. First
we define group by Go knowledge to reduce the branching
factor in tree search. Then zone division is derived from
group, which helps to have a more precise score. We use
group and zone mode for 13 × 13 and 19 × 19 Go board.
Figure 9 will give one example.

Remark 4: As we are not very experienced for Go-
knowledge-based programming and we had little time work-
ing on it, we believe other programs like GnuGo and AyaGo,
or Monte-Carlo programs have more clever pruning tech-
niques. Some other techniques are mentioned in [14][15].
Due to the space limitation, we do not give the detailed
pseudo code of this part. However, our experimental results
of combining UCT with pruning techniques are already
encouraging.

First we define one group as a set of strings and free
intersections on a Go board according to certain Go knowl-
edge, which gathers for example one big living group and its
close enemies. We have implemented Common Fate Graph
(CFG) [16] in our program to help the calculation of groups.
The method starts from one string and recursively adds
close empty intersections and strings close to these empty
intersections until no more close strings are found within a
distance controled by a parameter.

In group mode, in the tree search part we search only
the moves in the group instead of all over the Go board.
In random simulation part there is no more such restriction.
Using groups, we reduce the branching factor to less than
50 at the opening period. Then, depth of MoGo’s tree
could be around 7-8 on large Go board. Table IV shows
MoGo becomes competitive on 13 × 13 Go board by using
group pruning technique. However, sophisticated pruning
techniques are undoubtedly necessary to improve the level
of Computer-Go programs.

TABLE IV

MOGO WITH 70000 SIMULATIONS PER MOVE, ON 13 × 13 GO BOARD,

USING OR NOT THE GROUP MODE HEURISTIC AGAINST GNUGO 3.6

LEVEL 0 (GG 0) OR 8 (GG 8).

Opponents Win. Rate Win. rate Total
for B. Games for W. Games Win. Rate

No group vs GG 0 53.2%(216) 51.8% (216) 52% ± 2.4%
No group vs GG 8 24.2%(300) 30% (300) 27% ± 1.8%

group vs GG 0 67.5% (80) 61.2% (80) 64.3% ± 3.7%
group vs GG 8 51.9% (160) 60% (160) 56% ± 2.7%

As explained above, group mode limits the selection of
moves in the tree search part. It has however no restriction
on the random simulation. As the accuracy of the simulations
becomes lower as the game length increases, we tried to
generate the random moves only in a certain zone instead of
on the whole Go board. The zones were defined using the
groups presented above. However due to space limitations,
and as the zones are no more used in the current MoGo
player, we do not describe them further. Interesting future
research directions could be to define properly zones to limit
the simulations lengths.
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Fig. 9. The opening of one game between MoGo and Indigo in the 18th
KGS Computer Go Tournament. MoGo (Black) was in advantage at the
beginning of the game, however it lost the game at the end.
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D. Modification of exploring order for non-visited nodes

UCT works very well when the node is frequently visited
as the trade-off between exploration and exploitation is well
handled by UCB1 formula. However, for the nodes far from
the root, whose number of simulations is very small, UCT
tends to be too much exploratory. This is due to the fact that
all the possible moves in one position are supposed to be
explored before using the UCB1 formula. Thus, the values
associated to moves in deep nodes are not meaningful, since
the child-nodes of these nodes are not all explored yet and,
sometimes even worse, the visited ones are selected in fixed
order. This can leads to bad predicted sequences.

Two modifications are made to have a better order.
First-play urgency: UCB1 algorithm begins by exploring

each arm once, before using the formula (1). This can
sometimes be unefficient especially if the number of trials
is not large comparing to the number of arms. This is the
case for numerous nodes in the tree (number of visits is
small comparing to the number of moves). For example if
an arm keeps returning 1 (win), there is no good reason
to explore other arms. We have set a fixed constant named
first-play urgency (FPU) in the algorithm. For each move, we
name its urgency by the value of formula (1). The urgency
value is set to the value of FPU (FPU is +∞ by default)
for each legal move before first visit (see line 15 in Table I).
Any node, after being visited at least once, has its urgency
updated according to UCB1 formula. We play the move
with the highest urgency. Thus, FPU = +∞ ensures the
exploration of each move once before further exploitation of
any previously visited move. On the other way, smaller FPU
ensures earlier exploitations if the first simulations lead to
an urgency larger than FPU (in this case the other unvisited
nodes are not selected). This improved the level of MoGo
according to our experiment as shown in Table VII.

Use information of the parents: One assumption that can
be made in go game is that given a situation, good moves may
sometimes still be good ones on the following move. When
we encounter a new situation, instead of exploring each move
m in any order, we can use the value estimation of m in an
earlier position to choose a better order. We typically use the
estimated values of the grandfather of the node. We believe
this helps MoGo on the large Go board, however we do not
have enough experiments to claim significant results.

E. Parallelization

As UCT scales well with time, we made MoGo run
on a multi-processors machine with shared memory. The
modifications to the algorithm are quite straightforward. All
the processors share the same tree, and the access to the tree
is locked by mutexes. As UCT is deterministic, all the threads
could take exactly the same path in the tree, except for the
leaf. The behavior of the multithreaded UCT as presented
here is then different from the monothreaded UCT. Two
experiments has then to be done. First, we can compare the
level of MoGo using the monothreaded or the multithreaded

algorithms while allowing the same number of simulations
per move. All such experiments showed non significant dif-
ferents in the play level10. Second, we can compare the level
using the same time per move (the multithreaded version will
then make more simulations per move). As UCT benefits
from the computational power increase, the multithreaded
UCT is efficient (+100 ELO on CGOS with 4 processors).

IV. RESULTS

We list in this section several experiment results who
reflect characteristics of the algorithm. All the tests are made
by letting MoGo play against GnuGo 3.6 with default mode.
Komi are set to 7.5 points. In the tables, the winning rates
when MoGo plays black and white are given with the number
of games played in each color (in parentheses). The number
given after the ± is the standard deviation.

A. Dependence of Time

The performance of our program depends on the given
time (equally the number of simulations) for each move.
Table V shows its level improves as this number increases.
The outstanding performance of MoGo on double-processors
and quadri-processors also supports this claim.

TABLE V

PURE RANDOM MODE WITH DIFFERENT TIMES.

Seconds Winning Rate Winning rate Total
per move for Black Games for White Games Winning Rate

5 26% ± 6% (50) 26% ± 6% (50) 26% ± 4.3%
20 41% ± 3% (250) 42% ± 3% (250) 41.8% ± 2.2%
60 53% ± 3.5% (200) 50% ± 3.5% (200) 51.5% ± 2.5%

B. Parametrized UCT

We parametrize the UCT implemented in our program
by two new parameters, namely p and FPU . First we add
one coefficient p to formula UCB1-TUNED (1), which by
default is 1. This leads to the following formula: choose j
that maximizes:

X̄j + p

√

log n

Tj(n)
min{1/4, Vj(nj)}

p decides the balance between exploration and exploitation.
To be precise, the smaller the p is, the deeper the tree is
explored. According to our experiment shown in Table VI,
UCB1-TUNED is almost optimal in this sense.

The second is the first-play urgency (FPU) as explained
in Section III-D. Some results are shown in Table VII. We
believe that changing exploring order of non-visited nodes
can bring further improvement.

C. Results On CGOS

MoGo is ranked as the first program on 9 × 9 Computer
Go Server since August 2006.

10we had only access to a 4 processors computer, the behavior can be
very different with many more processors.
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TABLE VI

COEFFICIENT p DECIDES THE BALANCE BETWEEN EXPLORATION AND

EXPLOITATION. (PURE RANDOM MODE)

p Winning Rate Winning rate Total
for Black Games for White Games Winning Rate

0.05 2% ± 2% (50) 4% ± 2.5% (50) 3% ± 1.7%
0.55 30% ± 6.5% (50) 36% ± 6.5% (50) 33% ± 4.7%
0.80 33% ± 4.5% (100) 39% ± 5% (100) 36% ± 3.3%

1.0 40% ± 4% (150) 38% ± 4% (150) 39% ± 2.8%
1.1 39% ± 4% (150) 41% ± 4% (150) 40% ± 2.8%
1.2 40% ± 4% (150) 44% ± 4% (150) 42% ± 2.9%
1.5 30% ± 6.5% (50) 26% ± 6% (50) 28% ± 4.5%
3.0 36% ± 6.5% (50) 24% ± 6% (50) 30% ± 4.5%
6.0 22% ± 5.5% (50) 18% ± 5% (50) 20% ± 4%

TABLE VII

INFLUENCE OF FPU (70000 SIMULATIONS/MOVE).

FPU Winning Rate Winning rate Total
for Black Games for White Games Winning Rate

1.4 37% ± 4.5% (100) 38% ± 5% (100) 37.5% ± 3.5%
1.2 46% ± 5% (100) 36% ± 5% (100) 41% ± 3.5%
1.1 45% ± 3% (250) 41% ± 3% (250) 43.4% ± 2.2%
1.0 49% ± 3% (300) 42% ± 3% (300) 45% ± 2%
0.9 47% ± 4% (150) 32% ± 4% (150) 40% ± 2.8%
0.8 40% ± 7% (50) 32% ± 6.5% (50) 36% ± 4.8%

V. CONCLUSION

The success of MoGo shows the efficiency of UCT
compared to alpha-beta search in the sense that nodes are
automatically studied with better order, especially in the case
when search time is too limited. We have discussed the
advantages of UCT relevant to Computer-Go. It is worthy
to mention that a growing number of top level Go programs
now use UCT.

We have discussed improvements that could be made to
UCT algorithm. In particular, UCT does not help to choose a
good ordering for non-visited moves, nor is it so effective for
little explored moves. We proposed some methods adjusting
the first-play urgency to solve this problem, and futher
improvements are expected in this direction.

We have proposed the pattern-based (sequence-like) sim-
ulation which has improved significantly the level of MoGo.
We implemented 3 × 3 patterns in random simulations in
order to have more meaningful sequences. We believe that
significant improvements can still be made in this direc-
tion, for example by using larger patterns, perhaps auto-
matically generated ones. It is also possible to implement
some sequence-forced patterns to improve the quality of
simulations.

We have also shown the possibilities of combining UCT
with pruning techniques in order to have a strong program

on large Go board. Having had some encouraging results, we
believe firmly further improvements in this direction.

A straightforward parallelization of UCT on shared-
memory computer is made and has given some positive
results. Parallelization on a cluster of computers can be
interesting but the way to achieve that is yet to be found.
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