
 
 

 

Abstract—This paper investigates the effectiveness of 
hybrids of learning and evolutionary approaches to find 
weights and topologies for an artificial neural network (ANN) 
which is used to evaluate board positions for a two-person zero-
sum game, the Virus Game. Two hybrid approaches: 
evolutionary RPROP (Resilient backPROPagation) and 
evolutionary BP (BackPropagation) are described and 
empirically compared with BP, RPROP, iRPROP (improved 
RPROP) and evolutionary learning approaches. The results 
show that evolutionary RPROP and evolutionary BP have 
significantly better generalisation performance than their 
constituent learning and evolutionary methods. 
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I. INTRODUCTION 

In hybrid training of artificial neural networks, 
evolutionary algorithms and gradient-based techniques work 
together. In these training methods, evolutionary algorithms 
are used to find an appropriate neural network topology, to 
explore good initial weights of the neural networks and to 
explore appropriate values of learning parameters while 
learning methods are used to tune the connection weights. In 
this paper, we aim to investigate whether a hybrid of 
learning and evolution is more effective than learning and 
evolution alone. The paper describes two hybrid methods 
and compares them with evolutionary and gradient-based 
learning methods. These methods are applied to a board 
game where artificial neural networks learn to evaluate 
board positions to provide a (highly non linear) deterministic 
evaluation function. Mapping or generalising a non linear 
evaluation function is challenging task for a learning 
algorithm. This paper describes hybrid approaches which 
combine evolutionary and gradient-based learning methods 
for better generalisation performance.      

[1] and [2] applied Genetic Algorithms to find good initial 
weights for a neural network and then applied 
backpropagation to tune these weights in the direction of 
minimum error. Their results show that a hybrid of a Genetic 
Algorithm and BP performs better than BP alone. [3] used 
evolutionary algorithms to find an appropriate topology of a 
neural network and the results in this case show that a neural 
network designed by an evolutionary method has better 
generalisation performance than a fixed size neural network 
when trained using BP. Harp et al [4] also evolved both 
neural network topologies and learning parameters for 
backpropagation. In this case, the results show that the 
simultaneous evolution of both learning parameters and 

topologies improves the performance of backpropagation 
significantly. In [5], the authors evolved learning parameters 
for backpropagation with predefined neural network 
topologies. In this case, Evolutionary Programming (EP) is 
used to evolve the learning rates of BP where a population 
contains a list of different learning rates. The fitness of each 
chromosome is measured as the inverse of Total Sum Square 
Error while offspring are generated by adding a Gaussian 
perturbation to the selected parents. In this case, the 
performance of BP with evolution of learning parameters is 
shown to be better than a number of variants of BP without 
evolution. [6] used hybrid of Quickprop [7] and GAs  where 
a GA finds good initial weights and evolves topologies and 
learning rates while Quickprop tunes the connection 
weights. The results show that their approach has better 
performance than both RPROP and Quickprop.  

Stanley et al [8] mutated topologies by adding a new 
connection between existing nodes, adding a new node or 
splitting up an existing connection into two different 
connections. In case of adding a new node (hidden neuron) 
along with a new connection, Stanley et al [8] assigned one 
as the value of the weight of new connection. 

Gradient-based learning methods for neural networks 
estimate the derivative of the network error with respect to 
the weight of each link and use this to modify weights at 
each iteration. Backpropagation (BP) uses a delta rule to 
modify neural network weights according to the estimated 
derivatives [9]. Resilient Backpropagation (RPROP) [10] 
uses the sign of partial derivatives rather than their values to 
tune the connection weights and biases of an artificial neural 
network. The amount of weight update is determined by a 
weight specific factor called the “update value” [10]. 
Improved resilient backpropagation (iRPROP) [11] modifies 
RPROP with the consideration that those weight updates 
that have caused changes to the signs of the corresponding 
estimated partial derivatives are reversed. 

Games, particularly two-person zero sum games such as 
chess [12] and draughts [13] have been fertile ground for AI 
research for many years. In this paper we will consider the 
Virus game [14] [15] [16]. Virus is a two-person, zero-sum 
game of perfect information played on a square board. This 
report will consider only an 8×8 board. The Black player 
always starts the game and the other player is the White 
player. Players alternate and each player can move only one 
piece (of the player’s colour) per turn. There are two kinds 
of moves. In a grow or step move (as shown in figure 1), a 
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piece is added to an empty position adjacent to one of the 
player’s pieces. Note two squares are adjacent if their 
borders adjoin or they share a corner. A jump or two-step 
move (as shown in figure 2) occurs when a player moves 
one of his pieces via an adjacent empty square to a square 
two steps away from the piece’s original position. For both 
types of moves, if the squares adjacent to the new position 
of the moved piece contain pieces of the opposite colour 
then these grown pieces change their colour to that of moved 
piece. This operation is called capturing or infecting the 
opponent’s pieces. The aim of each player is to capture more 
squares than the opponent at game end, which occurs when 
neither player can move.  
 

 

 

 
 
Fig 1: This figure represents a one-step or grow  move. The White player is 
to move the white piece at position (3, 2) moves to position (4, 1). This 
move gives another white piece at (4, 1) and captures the pieces of opposite 
colour at positions adjacent to (4, 1). 

 

 

 

 
 
Fig 2: This figure shows a jump move. Black is to move and chooses to 
move the piece at (5, 5) to (7, 7) which captures white pieces in the squares 
surrounding square (7, 7). 
 

In the paper, two hybrid learning models (Co-Evo-
RPROP and Co-Evo-BP) are presented and compared to 
Backpropagation, RPROP, iRPROP and an evolutionary 
algorithm. Our hybrid methods modify neural network 
structures and learning parameters of RPROP/BP using 
evolutionary methods while neural networks weights are 
tuned using RPROP/BP.   

The rest of the paper is structured as follows. The learning 
methods used in this paper are described in the Section 
“Learning Models”. The section “Experimental Design” 
provides the experimental framework for our learning 
methods. In the Section “Results and Analysis”, the hybrid 
learning methods are investigated experimentally and 
compared to non-hybrid methods. We then present 
conclusions and describe possible future research directions. 

II. LEARNING MODELS 

In this paper, we investigate three learning models: 
Gradient-based learning, Evolutionary learning and our new 
evolutionary Gradient-based learning approach. These 
models are discussed briefly in the following sub sections.  

A. Gradient based learning Model 

The gradient-based learning models that we consider use 
BP, RPROP and iRPROP to train neural networks using 
known examples. The accuracy and speed of BP are highly 
sensitive to a single learning rate parameter [10] while 
RPROP and iRPROP use five learning parameters which are 
∆o, ∆max, ∆min, η+ and η-. ∆o is used to initialise the values of 
partial derivatives and weight update values; and the weight 
update value is constrained to lie between ∆min and ∆max. If 
the partial derivative of a connection does not change its 
sign then the weight update value for that connection is 
multiplied by η+ (η+>1) and if that partial derivative changes 
sign then the value of weight update is multiplied by η- (η- 
<1) [11]. 

The topologies of the neural networks, used in the 
gradient-based learning methods are 64-7-3-1, 64-10-5-1, 
64-13-7-1, 64-17-8-1, 64-20-10-1, 64-23-12-1, 64-27-13-1, 
64-30-15-1, 64-33-17-1, 64-37-18-1, 64-40-20-1 and 64-43-
22-1. Here, each network topology is represented as 64-N1-
N2-1 where there are 64 input units, N1 and N2 are the 
number of hidden neurons in first and second hidden layers 
respectively. There is 1 output neuron in all these 
architectures.  

 

 
Fig 3: An Artificial neural network of 64-30-15-1 topology with an starting 
board position of the Virus game. The figure also shows the input encoding 
of board the Virus board 

 
Figure 3 shows a graphical description of a neural 

network with topology of 64-30-15-1. The selected neural 
networks have around twice as many hidden neurons in the 
first hidden layer as compared to the second hidden layer. 
All hidden neurons have sigmoid activation functions. This 
arrangement of hidden neurons in the topologies of neural 
network is based on the work of [11] for a problem of 
Cancer classification and that of [13] for draughts/checkers. 
Each input unit of a neural network represents a square on 
the Virus board. If the Virus board has a black piece on a 
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given square then its corresponding input unit receives value 
‘1’ and for a white piece it receives value ‘-1’ while an 
empty square is encoded as ‘0’. The output neuron has a 
linear activation function. Positive values of output function 
indicate positions where black is ahead, while negative 
values indicate positions where white is ahead. The 
magnitude of output value indicates the size of the 
advantage in the given board position. 

 
TABLE 1 

THE LEARNING PARAMETERS FOR RPROP AND IRPROP EXPERIMENTS 
∆O ∆MAX ∆MIN h+ h- 

0.1 50.0 0.000001 1.2 0.5 
0.001 50.0 0.000001 1.2 0.5 
0.001 80.0 0.000001 1.2 0.5 
0.0001 40.0 0.000001 10.2 0.5 
0.0001 90.0 0.0000001 15.2 0.1 
0.05 40.0 0.00001 1.0 0.01 

 
In the initial experiments, we used 1000 iterations of 

training as the stopping criterion and root mean square error 
at the 1000th iteration measures the accuracy of each neural 
network with respect to its initial weights. We investigated 
initial weights uniformly distributed at random in ranges [-
015, 015], [-0.30, 0.30], [-0.40, 0.40], [-0.50, 0.50] and [-
0.60, 0.60]. BP and RPROP have slightly better performance 
for initial weights in the range [-0.50, 0.50]; so we use this 
initial range in all of our subsequent experiments. For BP, 
we use learning rates 0.0001, 0.001, 0.01, 0.1, 1.0 and 5.0. 
The learning rates for backpropagation are based on the 
work of [11]. The selection of the first set of five learning 
parameters (shown in table 1) for RPROP and iRPROP is 
made according to the recommended values by authors in 
[10] and [11] and other sets are variations of the first 
parameter set. 

 

B. Non Hybrid Evolutionary Model 

The evolutionary learning model we use here, applies a 
Genetic Algorithm (GA) to evolve the weights of neural 
networks in the direction of minimum error using a set of 
training examples. The chromosome encodes the weights of 
a fixed topology network as real numbers. The fitness of an 
individual in the population is measured as the reciprocal of 
the root mean square error (RMSE) [18] of the encoded 
neural network on the training data. Rank selection [19] is 
used to select parent chromosomes. The top 33% 
chromosomes of a population are selected as parents to 
generate a new population and are used to generate the 
remaining 77% of new chromosomes through crossover and 
mutation operations. A two-point crossover operation [19] is 
applied to two randomly selected chromosomes from the 
parent chromosomes to combine the genetic material of both 
individuals and create two offspring. During crossover, each 
pair of parent chromosomes can reproduce at most once per 
generation. A Gaussian mutation operator [13] is applied to 

the offspring chromosome weights. The standard deviation 

is  of each weight Wi is then updated as shown in equations 

(1). 
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Where iW  is the ith weight of a given chromosome before 

mutation and m
iW  is the ith weight of that chromosome after 

mutation. Each component is  (i=1,2,..L) is a standard 

deviation related to the weight of an individual gene. 
According to [20] and [21] the Gaussian mutation operator 

with self-adaptation of is  performs better than the 

Gaussian mutation with out self-adaptation. 
Two neural network topologies are used for experiments 

with a non-hybrid evolutionary learning approach. The 
network topologies are 64-20-10-1 and 64-25-15-1. The 
population size is 12. Three values of crossover operator 
(0%, 1.2% and 2.4%) and three values of mutation standard 
deviation parameter (0.1, 0.01 and 0.001) are used. The 
selection of these empirical parameters is made based upon 
our intuition and testing of a wider range of parameters. 
Each experiment is run for 1000 generations. 
 

C. Hybrid Models 

In this paper, we present two novel hybrid learning 
models which combine coevolutionary and gradient-based 
learning methods. These two methods are Co-Evo-RPROP 
and Co-Evo-BP. Co-Evo-RPROP uses a Genetic Algorithm 
to evolve the learning parameters of RPROP. It uses 
evolutionary programming to evolve the topologies of 
neural networks and tunes the connection weights and biases 
using RPROP. The topology of a neural network is encoded 
as a chromosome (n1, n2), which contains n1, hidden neurons 
in the first hidden layer and n2, hidden neurons in the second 
hidden layer. The learning parameters are encoded as a 5-
tuple chromosome, with each learning parameter encoded as 
a floating point number. This approach differs from the 
hybrid methods proposed by [4] and [6] in that two different 
populations (of learning parameters and network topologies) 
are maintained and  
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P = Population of RPROP parameter sets. NP = 
parameter set population size. cP = crossover 
probability for parameter sets. sP = mutation standard 
deviation for parameter sets. The p fittest parameter 
sets pass unchanged to the next generation. 
T = Population of network topologies. nT = network 
topology population size.  
 
Repeat for g generations 
 

for each (p,t)˛P·T 
train an ANN with topology t 
starting from random weights, using 
RPROP with parameters p, and 
obtain RMSE r(p,t) 
 

for each p˛P, calculate fitness: 

∑
T˛

=

t
tpr

p
),(

)( Tn
f  

for each t˛T, calculate fitness: 

∑
P˛

P=

p
tpr

t
),(

)(
n

f  

 
Pf = {the p fittest parameter sets p˛P} 
P ‹ Pf 
While |P| < nP 

select distinct p1, p2 uniformly at random 
from  P.  
Apply 2-point crossover with probability cP.  
Add Gaussian mutation with standard 
deviation sP to each parameter to generate 
children p1¢, p2¢ 
 P ‹ P ¨ {p1¢, p2¢} 
Tf = {the (nT /3) fittest parameter sets t˛T} 
T ‹ Tf 
for each t = (t1,t2) ˛Tf 

randomly choose one of t1 and t2 and 
Add 1 to it to  create  topology t¢ 
Subtract 1 from the other of t1 and t2 
to Create topology t† if t¢ or t†  has a 
hidden layer with more than 60 or 
less    than 2 nodes then shift half of 
the nodes in the larger layer to the 
smaller layer 
T ‹ T ¨ {t¢, t†} 

 

 Fig 4: Pseudocode for Co-Evo-RPROP 

 
coevolved using two different evolutionary methods. 
In the Co-Evo-RPROP model (as shown in figure 4), we 
coevolve network topologies and learning parameters and 
use RPROP to learn network weights. The population of 

initial neural network topologies is initialised randomly with 
integers representing the number of neurons in the first and 
second hidden layer, chosen uniformly at random in the 
range [10, 60]. The initial weights of all neural networks in a 
population are selected uniformly at random in the range [-
0.5, 0.5]. The population of parameter sets (Do, Dmax, Dmin, 
h+, h-) is also initialised randomly using a different uniform 
distribution for each parameter as shown in table 2. 

 
 

TABLE 2   
RPROP  PARAMETERS (PARAM) AND THEIR DISTRIBUTION RANGES. 

PARAM RANGE PARAM RANGE 
Do [0.0001, 5] Dmin [0.0000001,0.00001] 
Dmax [20, 120] h+ [1.0, 20.0] 
h- [0.01, 0.5]   

 
The fitness of each individual in the population of 

parameter sets is measured as the reciprocal of the average 
RMSE of this parameter set over all neural networks of the 
current neural network population when trained using 
RPROP. The fitness of a neural network topology is 
measured as the reciprocal of the average RMSE of this 
neural network over all parameter sets of the given 
population of parameter sets when trained using RPROP. 
The use of average fitness of a neural network is made to 
find a neural network topology which is more consistent 
over the whole population of parameter sets and vise versa.  

Rank selection is used to select the parents from the 
populations of parameter sets for reproduction. The top 33% 
of individuals from the population of parameter sets sorted 
by decreasing fitness are selected to reproduce offspring by 
performing two-point crossover and Gaussian mutation to 
replace the 77% of the chromosomes which are not selected 
as parents. The parameters of genetic operators for evolving 
learning parameters are shown in table 3. 
 

TABLE 3 
 GA PARAMETERS FOR EVOLVING LEARNING PARAMETERS OF  

CO-EVO-RPROP. 
CROSSOVER RATE MUTATION 

PARAMETER 
POP SIZE 

0% 0.01 12 
30% 0.001 12 
60% 0.00001 12 

 
The selection of parents for the population of neural 

network topology also uses the Rank selection where the top 
4 individuals are selected for reproduction to reproduce 8 
offspring using a mutation operator. These 8 offspring 
replace the chromosomes which are not among top 4 
individuals. During the mutation operation, one 
chromosome produces two offspring; adding one hidden 
neuron in a randomly chosen hidden layer creates the first 
offspring and removing one hidden neuron from randomly 
selected hidden layer creates the second offspring. The 
connection weights of all new born neural networks are 
initialised uniformly at random in the range [-0.5, 0.5]. 
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In Co-Evo-BP scheme, each chromosome in the 
population of learning parameters contains simply a learning 
rate. These learning rates are initialised uniformly at random 
in the range [0.0001, 5]. The evolution of learning 
parameters is implemented by evolutionary programming 
using a rank selection method where the top 4 individuals 
are selected as parents to reproduce 8 offspring to replace 
the 8 individuals of population which are not parents. The 
evolution of neural network topologies is the same as used 
in the Co-Evo-RPROP model. Order of the evolution of 
parameters and topologies is same as in Co-Evo-RPROP. 

The size of topology and learning parameters populations 
is 12 for both Co-Evo-RPROP and Co-Evo-BP. 100 
generations are used in each evolutionary experiment as 
stopping criteria. The mutation self-adaptive parameters (s), 
which are explored with this approach, are 0.0001, 0.001, 
0.01 and 0.1. 

III. EXPERIMENTAL FRAMEWORK 

The experimental setup includes the initialisation of 
connection weights, network topologies, evolutionary and 
learning parameters. A set of board positions whose values 
are given by effective heuristics AI player is divided into 
two subsets, a training dataset and a test dataset. All learning 
methods used the same training and test data sets. The 
performance of each method is measured using the RMSE 
on training and test datasets. The training data used in all 
learning procedures contains 2000 training instances, of 
Virus board positions obtained in actual play and their 
evaluation values as given by an effective hand-crafted AI, 
“the Teacher”. “The Teacher” is a highly effective AI player 
which came top out of 45 players who competed in an AI 
Virus tournament [16]. The board evaluations are scaled 
between [-64, 64]. Training data board positions occur in a 
1-ply search of the game tree when playing “the Teacher” 
against the 10 other hand-crafted AI players. The neural 
networks are trained using pattern mode or online learning 
[17], and each instance of the training data is presented 
many times to the neural network. In our case, a single 
training instance is presented to a neural network 10 times. 
In initial experiments, we used 3-15 epochs of training and 
10 epochs were found to provide the best trade-off between 
CPU time and learning ability in most of our experiments. 
The test data is used to investigate the generalisation 
performance of learning methods. The test data contains 
approximately 1000 board positions, generated in 1-ply 
searches in games between “the Teacher” and five different, 
effective hand-crafted AI players. Again “the Teacher” 
provides a board evaluation for each position. The results 
using test data measure the generalisation performance of 
the neural network in evaluating positions which were 
unseen during training. A large difference between training 
error and test error is indicative of overfitting [18].  

IV. RESULTS AND ANALYSIS 

Table 4 shows the RMSE on test data for the best 
networks produced by each learning method. The RMSE of 
trained neural networks over test data shows that neural 
networks trained with evolutionary gradient-based learning 
model have far better generalization accuracy than the 
neural networks trained with evolutionary model or 
gradient-based learning model alone. The large difference 
between training RMSE and test RMSE shows overfitting 
especially in the case of BP and GA where test RMSE are 
orders of magnitude higher than training RMSE. Among the 
gradient-based learning methods, iRPROP shows the best 
generalization performance, but still is much worse than our 
evolutionary gradient based hybrid methods. The hybrid 
methods perform well on both training data and test data due 
to their searches for an appropriate topology of neural 
network and a set of learning parameters which work over a 
range of topologies. Hybridisation of evolution and learning 
in this way minimises the probability of converging to poor 
local minima. The topologies explored by Co-Evo-RPROP 
and Co-Evo-BP perform significantly better than neural 
networks with 64-2n-n-1 topologies. 

 
TABLE 4 

 SUMMARY OF TEST RMSE WITH ALL LEARNING MODELS 
LEARNING 

METHOD 
BEST NETWORK  

TOPOLOGY 
BEST TRAINING 

DATA RMSE 
TEST DATA 

RMSE 
BP 64-27-13-1 0.08207 1.88740 
RPROP 64-27-13-1 0.0383 0.41567 
iRPROP 64-13-7-1 0.0475 0.10014 
Evolutionary 
Model  

64-20-10-1 0.00008 0.43102 

Co-Evo- 
RPROP  

64-41-29-1 0.00013 0.00142 

Co-Evo-BP  64-28-23-1 0.00090 0.00460 

 
TABLE 5  

SUMMARY OF MEAN TRAINING RMSE OF THE NEURAL NETWORK USING CO-
EVO-RPROP LEARNING MODEL(X RATE IS CROSS OVER RATE  AND M 

VALUE IS MUTATION VALUE)  
X 

RATE 
M 

VALUE 
NETWORK 

TOPOLOGY 
RMSE DO DMAX 

0% 0.1 64-13-29-1 0.00014 0.084 56.22 
30% 0.1 64-31-9-1 0.0032 0.182 55.36 
60% 0.1 64-18-7-1 0.00089 0.113 79.63 
0% 0.01 64-33-19-1 0.0002 0.001 131.2 
30% 0.01 64-12-15-1 0.0280 0.1 53.21 
60% 0.01 64-31-11-1 0.0051 0.21 57.02 
0% 0.001 64-17-31-1 0.0172 0.1 56.72 
30% 0.001 64-9-16-1 0.0025 0.079 84.40 
60% 0.001 64-13-15-1 0.0606 0.02 125.6 
0% 0.0001 64-41-29-1 0.0001 0.004 94.23 
30% 0.0001 64-21-14-1 0.0541 0.02 125.8 
60% 0.0001 64-37-23-1 0.0073 0.14 71.85 

 

Table 5 contains average training RMSE of the neural 
networks over 10 runs using the Co-Evo-RPROP learning 
method. The average RMSE shown are the mean for the 
network with the best RMSE in the final evolved population 
over 10 runs. Table 5 also shows the evolved initial update 
value parameter and maximum update value parameter 
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along with the evolved topology. The mean RMSE of 
different neural networks with the same crossover rate are 
shown in figure 5. According to figure 5, the average 
training RMSE of Co-Evo-RPROP without crossover are 
smaller than the average training errors with crossover; 60% 
crossover has lower average RMSE than 30% crossover; 
However there is no significance difference between the 
performance of different crossover rates.  
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Fig  5: Mean RMSEs of neural networks with different Crossover Rates 
using the Co-Evo-RPROP learning method. 
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Fig 6:  Mean RMSEs with Standard mean error of ANN with  Mutation 
parameters using Co-Evo-RPROP. 

 
Figure 6 graphs the average RMSE with standard mean 

error for different initial values of the mutation parameter. 
We can see from figure 7 that initial value of 0.1 of mutation 
parameter produces better and more consistent results than 
other values of mutation parameter. The graph also suggest 
that larger values of mutation parameter than 0.1 may 
produce even better results.  

Table 5 shows that Co-Evo-RPROP method explores a 
wide range of network topologies and learning parameters 
for each topology. In most runs we see that evolved values 
of learning parameter Do converge at around 0.01, much 
smaller than the value of 0.1. it seems that starting from an 
initial value of 0.1 (recommend by [10] and [11]) and 
reducing over time gives the best performance. The evolved 
values of Dmax jump about rather than converging to a single 
value. The results show that Co-Evo-RPROP has good 
accuracy generally for larger neural networks, and evolved 

population contain mostly larger neural networks. Large 
networks with small values of Do yielded the best accuracy. 
We note that value of evolved learning parameters is highly 
dependent on the number of hidden neurons in a network 
and their configuration. The best evolved neural network 
topologies of evolutionary RPROP do not have the structure 
of 64-2N-N-1 as used in our experiments of gradient-based 
methods and explored in [10], [11] and [15].  

 
TABLE 6  

SUMMARY OF MEAN TRAINING RMSE WITH CO-EVO-BP 
MUTATION 

PARAMETER 
LEARNING 

RATE 
NETWORK 
TOPOLOGY 

RMSE  

0.0001 0.240 64-29-21-1 0.001436 
0.001 0.334 64-30-21-1 0.003015 
0.01 0.300 64-28-23-1 0.000902 
0.1 0.331 64-37-19-1 0.00275 

 
Table 6 shows the mean of training RMSEs in the final 

population over 10 runs using Co-Evo-BP with different 
values of the mutation parameter. The best mean training 
RMSE has a very small value (0.00014) and is obtained with 
initial value of 0.01 for the mutation parameter. As for Co-
Evo-RPROP, Co-Evo-BP showed better accuracy with 
larger neural networks. For all networks, we see 
convergence to a similar topology and a learning rate of 
around 0.3. The evolution of the learning rate in Co-Evo-BP 
is highly dependent on the value of the mutation self-
adaptive parameter. Smaller values of the mutation 
parameter have slow speed of convergence and with the 
higher values of mutation parameter, the results of 
convergence started jumping about although in both cases a 
mean value around 0.3 was finally observed. The converged 
topologies in evolutionary BP have minor differences 
between the numbers of hidden neurons in each hidden layer 
and these topologies do not follow the configuration of best 
reported network topologies used in the non-hybrid 
gradient-based methods. The experimental results shown in 
table 6 demonstrate that training RMSE of neural networks 
with Co-Evo-BP is not very sensitive to the initial value of 
the mutation parameter. When comparing tables 5 and 6, we 
see that Co-Evo-RPROP produces smaller training RMSE 
than Co-Evo-BP for training and test data.. 

Table 7 shows the best training RMSE, learning 
parameters and topology of neural networks obtained from 
the experimental results of BP, RPROP, iRPROP and 
evolutionary learning method on training data. These 
training RMSE values are the best of the results of each 
learning method with the learning and evolutionary 
parameters discussed in previous section. Each learning 
method is run 10 times and average results are shown. 
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TABLE 7  
SUMMARY OF AVERAGE TRAINING RMSE WITH BP, RPROP, IRPROP AND 

EVOLUTIONARY METHODS 
 BEST 

NETWORK 

TOPOLOGY 

 BEST 

TRAINING 

RMSE 

PARAMETERS 

VALUES 

BP 64-27-13-1 0.08207 h=0.1 
RPROP 64-27-13-1 0.0383 Do=0.1, Dmax=50 
iRPROP 64-13-7-1 0.0475 Do=0.1, Dmax=50 
Evolutionary 
(GA) 

64-20-10-1 0.00008 Crossover=0%, 
s=0.01 

BP 64-27-13-1 0.08207 h=0.1 
RPROP 64-27-13-1 0.0383 Do=0.1, Dmax=50 

 
According to the results of table 7, evolutionary learning 

has better performance than gradient-based learning 
methods on the training data. The training data RMSE with 
evolutionary method are slightly smaller than for Co-Evo-
RPROP (shown in table 5). Evolutionary learning has better 
performance with low crossover rates while a mutation 
parameter value of 0.01 produces the smallest RMSE over 
training data. 

V. CONCLUSION 

The paper provides empirical analysis of three different 
types of supervised learning models: gradient-based, 
evolutionary and two new hybrids of gradient-based and 
evolutionary techniques. The performance of these models is 
measured by RMSE on training and test datasets which 
evaluate board positions for a two player zero-sum game. 
Evolutionary learning performs much better on training data 
than the training results of gradient-based learning methods. 
The hybrid methods we have introduced show similar (but 
slightly worse) performance on training data. However, our 
hybrid of evolutionary and gradient-based methods perform 
much better on test data than either evolutionary or gradient-
based methods alone and suffer less from overfitting. In 
evaluating a highly nonlinear function to map board 
positions in the Virus game to winning chances for the black 
player, we have shown that a hybrid of evolution and 
gradient-based method is far greater than the sum of its 
parts.  We have also provided evidence that the 64-2N-N-
1configuration formed by [7, 10, 21] may be less effective 
than other topologies if network topology is allowed to 
evolve. 

As future work, it will be interesting to train networks 
using our hybrid methods evaluating their fitness based on 
their performance on test data to avoid further overfitting, to 
investigate the effectiveness of our neural network as a 
component of an effective game player and to investigate the 
performance of hybrid learning methods for other game 
environments. 
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