

Abstract—This paper investigates the effectiveness of
hybrids of learning and evolutionary approaches to find
weights and topologies for an artificial neural network (ANN)
which is used to evaluate board positions for a two-person zero-
sum game, the Virus Game. Two hybrid approaches:
evolutionary RPROP (Resilient backPROPagation) and
evolutionary BP (BackPropagation) are described and
empirically compared with BP, RPROP, iRPROP (improved
RPROP) and evolutionary learning approaches. The results
show that evolutionary RPROP and evolutionary BP have
significantly better generalisation performance than their
constituent learning and evolutionary methods.

Keywords: Gradient-based learning, evolutionary

learning, hybrid learning techniques, The Virus Game.

I. INTRODUCTION

In hybrid training of artificial neural networks,
evolutionary algorithms and gradient-based techniques work
together. In these training methods, evolutionary algorithms
are used to find an appropriate neural network topology, to
explore good initial weights of the neural networks and to
explore appropriate values of learning parameters while
learning methods are used to tune the connection weights. In
this paper, we aim to investigate whether a hybrid of
learning and evolution is more effective than learning and
evolution alone. The paper describes two hybrid methods
and compares them with evolutionary and gradient-based
learning methods. These methods are applied to a board
game where artificial neural networks learn to evaluate
board positions to provide a (highly non linear) deterministic
evaluation function. Mapping or generalising a non linear
evaluation function is challenging task for a learning
algorithm. This paper describes hybrid approaches which
combine evolutionary and gradient-based learning methods
for better generalisation performance.

[1] and [2] applied Genetic Algorithms to find good initial
weights for a neural network and then applied
backpropagation to tune these weights in the direction of
minimum error. Their results show that a hybrid of a Genetic
Algorithm and BP performs better than BP alone. [3] used
evolutionary algorithms to find an appropriate topology of a
neural network and the results in this case show that a neural
network designed by an evolutionary method has better
generalisation performance than a fixed size neural network
when trained using BP. Harp et al [4] also evolved both
neural network topologies and learning parameters for
backpropagation. In this case, the results show that the
simultaneous evolution of both learning parameters and

topologies improves the performance of backpropagation
significantly. In [5], the authors evolved learning parameters
for backpropagation with predefined neural network
topologies. In this case, Evolutionary Programming (EP) is
used to evolve the learning rates of BP where a population
contains a list of different learning rates. The fitness of each
chromosome is measured as the inverse of Total Sum Square
Error while offspring are generated by adding a Gaussian
perturbation to the selected parents. In this case, the
performance of BP with evolution of learning parameters is
shown to be better than a number of variants of BP without
evolution. [6] used hybrid of Quickprop [7] and GAs where
a GA finds good initial weights and evolves topologies and
learning rates while Quickprop tunes the connection
weights. The results show that their approach has better
performance than both RPROP and Quickprop.

Stanley et al [8] mutated topologies by adding a new
connection between existing nodes, adding a new node or
splitting up an existing connection into two different
connections. In case of adding a new node (hidden neuron)
along with a new connection, Stanley et al [8] assigned one
as the value of the weight of new connection.

Gradient-based learning methods for neural networks
estimate the derivative of the network error with respect to
the weight of each link and use this to modify weights at
each iteration. Backpropagation (BP) uses a delta rule to
modify neural network weights according to the estimated
derivatives [9]. Resilient Backpropagation (RPROP) [10]
uses the sign of partial derivatives rather than their values to
tune the connection weights and biases of an artificial neural
network. The amount of weight update is determined by a
weight specific factor called the “update value” [10].
Improved resilient backpropagation (iRPROP) [11] modifies
RPROP with the consideration that those weight updates
that have caused changes to the signs of the corresponding
estimated partial derivatives are reversed.

Games, particularly two-person zero sum games such as
chess [12] and draughts [13] have been fertile ground for AI
research for many years. In this paper we will consider the
Virus game [14] [15] [16]. Virus is a two-person, zero-sum
game of perfect information played on a square board. This
report will consider only an 8×8 board. The Black player
always starts the game and the other player is the White
player. Players alternate and each player can move only one
piece (of the player’s colour) per turn. There are two kinds
of moves. In a grow or step move (as shown in figure 1), a

Hybrid Evolutionary Learning Approaches for The Virus Game
M.H.Naveed, P.I.Cowling and M.A. Hossain

MOSAIC Research Centre, Department of Computing,
University of Bradford

Bradford, BD7 1DP, UK.
E-mail: {M.H.Naveed, P.I.Cowling and M.A.Hossain1}@bradford.ac.uk

196

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

1-4244-0709-5/07/$20.00 ©2007 IEEE

piece is added to an empty position adjacent to one of the
player’s pieces. Note two squares are adjacent if their
borders adjoin or they share a corner. A jump or two-step
move (as shown in figure 2) occurs when a player moves
one of his pieces via an adjacent empty square to a square
two steps away from the piece’s original position. For both
types of moves, if the squares adjacent to the new position
of the moved piece contain pieces of the opposite colour
then these grown pieces change their colour to that of moved
piece. This operation is called capturing or infecting the
opponent’s pieces. The aim of each player is to capture more
squares than the opponent at game end, which occurs when
neither player can move.

Fig 1: This figure represents a one-step or grow move. The White player is
to move the white piece at position (3, 2) moves to position (4, 1). This
move gives another white piece at (4, 1) and captures the pieces of opposite
colour at positions adjacent to (4, 1).

Fig 2: This figure shows a jump move. Black is to move and chooses to
move the piece at (5, 5) to (7, 7) which captures white pieces in the squares
surrounding square (7, 7).

In the paper, two hybrid learning models (Co-Evo-
RPROP and Co-Evo-BP) are presented and compared to
Backpropagation, RPROP, iRPROP and an evolutionary
algorithm. Our hybrid methods modify neural network
structures and learning parameters of RPROP/BP using
evolutionary methods while neural networks weights are
tuned using RPROP/BP.

The rest of the paper is structured as follows. The learning
methods used in this paper are described in the Section
“Learning Models”. The section “Experimental Design”
provides the experimental framework for our learning
methods. In the Section “Results and Analysis”, the hybrid
learning methods are investigated experimentally and
compared to non-hybrid methods. We then present
conclusions and describe possible future research directions.

II. LEARNING MODELS

In this paper, we investigate three learning models:
Gradient-based learning, Evolutionary learning and our new
evolutionary Gradient-based learning approach. These
models are discussed briefly in the following sub sections.

A. Gradient based learning Model

The gradient-based learning models that we consider use
BP, RPROP and iRPROP to train neural networks using
known examples. The accuracy and speed of BP are highly
sensitive to a single learning rate parameter [10] while
RPROP and iRPROP use five learning parameters which are
∆o, ∆max, ∆min, η+ and η-. ∆o is used to initialise the values of
partial derivatives and weight update values; and the weight
update value is constrained to lie between ∆min and ∆max. If
the partial derivative of a connection does not change its
sign then the weight update value for that connection is
multiplied by η+ (η+>1) and if that partial derivative changes
sign then the value of weight update is multiplied by η- (η-
<1) [11].

The topologies of the neural networks, used in the
gradient-based learning methods are 64-7-3-1, 64-10-5-1,
64-13-7-1, 64-17-8-1, 64-20-10-1, 64-23-12-1, 64-27-13-1,
64-30-15-1, 64-33-17-1, 64-37-18-1, 64-40-20-1 and 64-43-
22-1. Here, each network topology is represented as 64-N1-
N2-1 where there are 64 input units, N1 and N2 are the
number of hidden neurons in first and second hidden layers
respectively. There is 1 output neuron in all these
architectures.

Fig 3: An Artificial neural network of 64-30-15-1 topology with an starting
board position of the Virus game. The figure also shows the input encoding
of board the Virus board

Figure 3 shows a graphical description of a neural

network with topology of 64-30-15-1. The selected neural
networks have around twice as many hidden neurons in the
first hidden layer as compared to the second hidden layer.
All hidden neurons have sigmoid activation functions. This
arrangement of hidden neurons in the topologies of neural
network is based on the work of [11] for a problem of
Cancer classification and that of [13] for draughts/checkers.
Each input unit of a neural network represents a square on
the Virus board. If the Virus board has a black piece on a

+1

Inputs
Hidden Layer_1

15

1

30

1

64

1
Hidden Layer_2

 +1

 0

-1

Output

Σ

~
 ~

~

~

197

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

given square then its corresponding input unit receives value
‘1’ and for a white piece it receives value ‘-1’ while an
empty square is encoded as ‘0’. The output neuron has a
linear activation function. Positive values of output function
indicate positions where black is ahead, while negative
values indicate positions where white is ahead. The
magnitude of output value indicates the size of the
advantage in the given board position.

TABLE 1

THE LEARNING PARAMETERS FOR RPROP AND IRPROP EXPERIMENTS
∆O ∆MAX ∆MIN h+ h-

0.1 50.0 0.000001 1.2 0.5
0.001 50.0 0.000001 1.2 0.5
0.001 80.0 0.000001 1.2 0.5
0.0001 40.0 0.000001 10.2 0.5
0.0001 90.0 0.0000001 15.2 0.1
0.05 40.0 0.00001 1.0 0.01

In the initial experiments, we used 1000 iterations of

training as the stopping criterion and root mean square error
at the 1000th iteration measures the accuracy of each neural
network with respect to its initial weights. We investigated
initial weights uniformly distributed at random in ranges [-
015, 015], [-0.30, 0.30], [-0.40, 0.40], [-0.50, 0.50] and [-
0.60, 0.60]. BP and RPROP have slightly better performance
for initial weights in the range [-0.50, 0.50]; so we use this
initial range in all of our subsequent experiments. For BP,
we use learning rates 0.0001, 0.001, 0.01, 0.1, 1.0 and 5.0.
The learning rates for backpropagation are based on the
work of [11]. The selection of the first set of five learning
parameters (shown in table 1) for RPROP and iRPROP is
made according to the recommended values by authors in
[10] and [11] and other sets are variations of the first
parameter set.

B. Non Hybrid Evolutionary Model

The evolutionary learning model we use here, applies a
Genetic Algorithm (GA) to evolve the weights of neural
networks in the direction of minimum error using a set of
training examples. The chromosome encodes the weights of
a fixed topology network as real numbers. The fitness of an
individual in the population is measured as the reciprocal of
the root mean square error (RMSE) [18] of the encoded
neural network on the training data. Rank selection [19] is
used to select parent chromosomes. The top 33%
chromosomes of a population are selected as parents to
generate a new population and are used to generate the
remaining 77% of new chromosomes through crossover and
mutation operations. A two-point crossover operation [19] is
applied to two randomly selected chromosomes from the
parent chromosomes to combine the genetic material of both
individuals and create two offspring. During crossover, each
pair of parent chromosomes can reproduce at most once per
generation. A Gaussian mutation operator [13] is applied to

the offspring chromosome weights. The standard deviation

is of each weight Wi is then updated as shown in equations

(1).

,..L,i)),,N()L((σσ

),,σN(WW

ii

ii
m

i

2110exp

0
1 =··‹

+=
-

 (1)

Where iW is the ith weight of a given chromosome before

mutation and m
iW is the ith weight of that chromosome after

mutation. Each component is (i=1,2,..L) is a standard

deviation related to the weight of an individual gene.
According to [20] and [21] the Gaussian mutation operator

with self-adaptation of is performs better than the

Gaussian mutation with out self-adaptation.
Two neural network topologies are used for experiments

with a non-hybrid evolutionary learning approach. The
network topologies are 64-20-10-1 and 64-25-15-1. The
population size is 12. Three values of crossover operator
(0%, 1.2% and 2.4%) and three values of mutation standard
deviation parameter (0.1, 0.01 and 0.001) are used. The
selection of these empirical parameters is made based upon
our intuition and testing of a wider range of parameters.
Each experiment is run for 1000 generations.

C. Hybrid Models

In this paper, we present two novel hybrid learning
models which combine coevolutionary and gradient-based
learning methods. These two methods are Co-Evo-RPROP
and Co-Evo-BP. Co-Evo-RPROP uses a Genetic Algorithm
to evolve the learning parameters of RPROP. It uses
evolutionary programming to evolve the topologies of
neural networks and tunes the connection weights and biases
using RPROP. The topology of a neural network is encoded
as a chromosome (n1, n2), which contains n1, hidden neurons
in the first hidden layer and n2, hidden neurons in the second
hidden layer. The learning parameters are encoded as a 5-
tuple chromosome, with each learning parameter encoded as
a floating point number. This approach differs from the
hybrid methods proposed by [4] and [6] in that two different
populations (of learning parameters and network topologies)
are maintained and

198

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

P = Population of RPROP parameter sets. NP =
parameter set population size. cP = crossover
probability for parameter sets. sP = mutation standard
deviation for parameter sets. The p fittest parameter
sets pass unchanged to the next generation.
T = Population of network topologies. nT = network
topology population size.

Repeat for g generations

for each (p,t)˛P·T
train an ANN with topology t
starting from random weights, using
RPROP with parameters p, and
obtain RMSE r(p,t)

for each p˛P, calculate fitness:

∑
T˛

=

t
tpr

p
),(

)(Tn
f

for each t˛T, calculate fitness:

∑
P˛

P=

p
tpr

t
),(

)(
n

f

Pf = {the p fittest parameter sets p˛P}
P ‹ Pf
While |P| < nP

select distinct p1, p2 uniformly at random
from P.
Apply 2-point crossover with probability cP.
Add Gaussian mutation with standard
deviation sP to each parameter to generate
children p1¢, p2¢
 P ‹ P ¨ {p1¢, p2¢}
Tf = {the (nT /3) fittest parameter sets t˛T}
T ‹ Tf
for each t = (t1,t2) ˛Tf

randomly choose one of t1 and t2 and
Add 1 to it to create topology t¢
Subtract 1 from the other of t1 and t2
to Create topology t† if t¢ or t† has a
hidden layer with more than 60 or
less than 2 nodes then shift half of
the nodes in the larger layer to the
smaller layer
T ‹ T ¨ {t¢, t†}

 Fig 4: Pseudocode for Co-Evo-RPROP

coevolved using two different evolutionary methods.
In the Co-Evo-RPROP model (as shown in figure 4), we
coevolve network topologies and learning parameters and
use RPROP to learn network weights. The population of

initial neural network topologies is initialised randomly with
integers representing the number of neurons in the first and
second hidden layer, chosen uniformly at random in the
range [10, 60]. The initial weights of all neural networks in a
population are selected uniformly at random in the range [-
0.5, 0.5]. The population of parameter sets (Do, Dmax, Dmin,
h+, h-) is also initialised randomly using a different uniform
distribution for each parameter as shown in table 2.

TABLE 2
RPROP PARAMETERS (PARAM) AND THEIR DISTRIBUTION RANGES.

PARAM RANGE PARAM RANGE
Do [0.0001, 5] Dmin [0.0000001,0.00001]
Dmax [20, 120] h+ [1.0, 20.0]
h- [0.01, 0.5]

The fitness of each individual in the population of

parameter sets is measured as the reciprocal of the average
RMSE of this parameter set over all neural networks of the
current neural network population when trained using
RPROP. The fitness of a neural network topology is
measured as the reciprocal of the average RMSE of this
neural network over all parameter sets of the given
population of parameter sets when trained using RPROP.
The use of average fitness of a neural network is made to
find a neural network topology which is more consistent
over the whole population of parameter sets and vise versa.

Rank selection is used to select the parents from the
populations of parameter sets for reproduction. The top 33%
of individuals from the population of parameter sets sorted
by decreasing fitness are selected to reproduce offspring by
performing two-point crossover and Gaussian mutation to
replace the 77% of the chromosomes which are not selected
as parents. The parameters of genetic operators for evolving
learning parameters are shown in table 3.

TABLE 3
 GA PARAMETERS FOR EVOLVING LEARNING PARAMETERS OF

CO-EVO-RPROP.
CROSSOVER RATE MUTATION

PARAMETER
POP SIZE

0% 0.01 12
30% 0.001 12
60% 0.00001 12

The selection of parents for the population of neural

network topology also uses the Rank selection where the top
4 individuals are selected for reproduction to reproduce 8
offspring using a mutation operator. These 8 offspring
replace the chromosomes which are not among top 4
individuals. During the mutation operation, one
chromosome produces two offspring; adding one hidden
neuron in a randomly chosen hidden layer creates the first
offspring and removing one hidden neuron from randomly
selected hidden layer creates the second offspring. The
connection weights of all new born neural networks are
initialised uniformly at random in the range [-0.5, 0.5].

199

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

In Co-Evo-BP scheme, each chromosome in the
population of learning parameters contains simply a learning
rate. These learning rates are initialised uniformly at random
in the range [0.0001, 5]. The evolution of learning
parameters is implemented by evolutionary programming
using a rank selection method where the top 4 individuals
are selected as parents to reproduce 8 offspring to replace
the 8 individuals of population which are not parents. The
evolution of neural network topologies is the same as used
in the Co-Evo-RPROP model. Order of the evolution of
parameters and topologies is same as in Co-Evo-RPROP.

The size of topology and learning parameters populations
is 12 for both Co-Evo-RPROP and Co-Evo-BP. 100
generations are used in each evolutionary experiment as
stopping criteria. The mutation self-adaptive parameters (s),
which are explored with this approach, are 0.0001, 0.001,
0.01 and 0.1.

III. EXPERIMENTAL FRAMEWORK

The experimental setup includes the initialisation of
connection weights, network topologies, evolutionary and
learning parameters. A set of board positions whose values
are given by effective heuristics AI player is divided into
two subsets, a training dataset and a test dataset. All learning
methods used the same training and test data sets. The
performance of each method is measured using the RMSE
on training and test datasets. The training data used in all
learning procedures contains 2000 training instances, of
Virus board positions obtained in actual play and their
evaluation values as given by an effective hand-crafted AI,
“the Teacher”. “The Teacher” is a highly effective AI player
which came top out of 45 players who competed in an AI
Virus tournament [16]. The board evaluations are scaled
between [-64, 64]. Training data board positions occur in a
1-ply search of the game tree when playing “the Teacher”
against the 10 other hand-crafted AI players. The neural
networks are trained using pattern mode or online learning
[17], and each instance of the training data is presented
many times to the neural network. In our case, a single
training instance is presented to a neural network 10 times.
In initial experiments, we used 3-15 epochs of training and
10 epochs were found to provide the best trade-off between
CPU time and learning ability in most of our experiments.
The test data is used to investigate the generalisation
performance of learning methods. The test data contains
approximately 1000 board positions, generated in 1-ply
searches in games between “the Teacher” and five different,
effective hand-crafted AI players. Again “the Teacher”
provides a board evaluation for each position. The results
using test data measure the generalisation performance of
the neural network in evaluating positions which were
unseen during training. A large difference between training
error and test error is indicative of overfitting [18].

IV. RESULTS AND ANALYSIS

Table 4 shows the RMSE on test data for the best
networks produced by each learning method. The RMSE of
trained neural networks over test data shows that neural
networks trained with evolutionary gradient-based learning
model have far better generalization accuracy than the
neural networks trained with evolutionary model or
gradient-based learning model alone. The large difference
between training RMSE and test RMSE shows overfitting
especially in the case of BP and GA where test RMSE are
orders of magnitude higher than training RMSE. Among the
gradient-based learning methods, iRPROP shows the best
generalization performance, but still is much worse than our
evolutionary gradient based hybrid methods. The hybrid
methods perform well on both training data and test data due
to their searches for an appropriate topology of neural
network and a set of learning parameters which work over a
range of topologies. Hybridisation of evolution and learning
in this way minimises the probability of converging to poor
local minima. The topologies explored by Co-Evo-RPROP
and Co-Evo-BP perform significantly better than neural
networks with 64-2n-n-1 topologies.

TABLE 4

 SUMMARY OF TEST RMSE WITH ALL LEARNING MODELS
LEARNING

METHOD
BEST NETWORK

TOPOLOGY
BEST TRAINING

DATA RMSE
TEST DATA

RMSE
BP 64-27-13-1 0.08207 1.88740
RPROP 64-27-13-1 0.0383 0.41567
iRPROP 64-13-7-1 0.0475 0.10014
Evolutionary
Model

64-20-10-1 0.00008 0.43102

Co-Evo-
RPROP

64-41-29-1 0.00013 0.00142

Co-Evo-BP 64-28-23-1 0.00090 0.00460

TABLE 5

SUMMARY OF MEAN TRAINING RMSE OF THE NEURAL NETWORK USING CO-
EVO-RPROP LEARNING MODEL(X RATE IS CROSS OVER RATE AND M

VALUE IS MUTATION VALUE)
X

RATE
M

VALUE
NETWORK

TOPOLOGY
RMSE DO DMAX

0% 0.1 64-13-29-1 0.00014 0.084 56.22
30% 0.1 64-31-9-1 0.0032 0.182 55.36
60% 0.1 64-18-7-1 0.00089 0.113 79.63
0% 0.01 64-33-19-1 0.0002 0.001 131.2
30% 0.01 64-12-15-1 0.0280 0.1 53.21
60% 0.01 64-31-11-1 0.0051 0.21 57.02
0% 0.001 64-17-31-1 0.0172 0.1 56.72
30% 0.001 64-9-16-1 0.0025 0.079 84.40
60% 0.001 64-13-15-1 0.0606 0.02 125.6
0% 0.0001 64-41-29-1 0.0001 0.004 94.23
30% 0.0001 64-21-14-1 0.0541 0.02 125.8
60% 0.0001 64-37-23-1 0.0073 0.14 71.85

Table 5 contains average training RMSE of the neural
networks over 10 runs using the Co-Evo-RPROP learning
method. The average RMSE shown are the mean for the
network with the best RMSE in the final evolved population
over 10 runs. Table 5 also shows the evolved initial update
value parameter and maximum update value parameter

200

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

along with the evolved topology. The mean RMSE of
different neural networks with the same crossover rate are
shown in figure 5. According to figure 5, the average
training RMSE of Co-Evo-RPROP without crossover are
smaller than the average training errors with crossover; 60%
crossover has lower average RMSE than 30% crossover;
However there is no significance difference between the
performance of different crossover rates.

0%

30%
60%

0

0.01

0.02

0.03

0.04

Crossover Rate

M
ea

n
 R

M
S

E

Fig 5: Mean RMSEs of neural networks with different Crossover Rates
using the Co-Evo-RPROP learning method.

0.1

0.01

0.001
0.0001

0

0.01

0.02

0.03

0.04

0.05

-0.005 0.095Mutation Parameter

M
ea

n
 R

M
S

E

Fig 6: Mean RMSEs with Standard mean error of ANN with Mutation
parameters using Co-Evo-RPROP.

Figure 6 graphs the average RMSE with standard mean

error for different initial values of the mutation parameter.
We can see from figure 7 that initial value of 0.1 of mutation
parameter produces better and more consistent results than
other values of mutation parameter. The graph also suggest
that larger values of mutation parameter than 0.1 may
produce even better results.

Table 5 shows that Co-Evo-RPROP method explores a
wide range of network topologies and learning parameters
for each topology. In most runs we see that evolved values
of learning parameter Do converge at around 0.01, much
smaller than the value of 0.1. it seems that starting from an
initial value of 0.1 (recommend by [10] and [11]) and
reducing over time gives the best performance. The evolved
values of Dmax jump about rather than converging to a single
value. The results show that Co-Evo-RPROP has good
accuracy generally for larger neural networks, and evolved

population contain mostly larger neural networks. Large
networks with small values of Do yielded the best accuracy.
We note that value of evolved learning parameters is highly
dependent on the number of hidden neurons in a network
and their configuration. The best evolved neural network
topologies of evolutionary RPROP do not have the structure
of 64-2N-N-1 as used in our experiments of gradient-based
methods and explored in [10], [11] and [15].

TABLE 6

SUMMARY OF MEAN TRAINING RMSE WITH CO-EVO-BP
MUTATION

PARAMETER
LEARNING

RATE
NETWORK
TOPOLOGY

RMSE

0.0001 0.240 64-29-21-1 0.001436
0.001 0.334 64-30-21-1 0.003015
0.01 0.300 64-28-23-1 0.000902
0.1 0.331 64-37-19-1 0.00275

Table 6 shows the mean of training RMSEs in the final

population over 10 runs using Co-Evo-BP with different
values of the mutation parameter. The best mean training
RMSE has a very small value (0.00014) and is obtained with
initial value of 0.01 for the mutation parameter. As for Co-
Evo-RPROP, Co-Evo-BP showed better accuracy with
larger neural networks. For all networks, we see
convergence to a similar topology and a learning rate of
around 0.3. The evolution of the learning rate in Co-Evo-BP
is highly dependent on the value of the mutation self-
adaptive parameter. Smaller values of the mutation
parameter have slow speed of convergence and with the
higher values of mutation parameter, the results of
convergence started jumping about although in both cases a
mean value around 0.3 was finally observed. The converged
topologies in evolutionary BP have minor differences
between the numbers of hidden neurons in each hidden layer
and these topologies do not follow the configuration of best
reported network topologies used in the non-hybrid
gradient-based methods. The experimental results shown in
table 6 demonstrate that training RMSE of neural networks
with Co-Evo-BP is not very sensitive to the initial value of
the mutation parameter. When comparing tables 5 and 6, we
see that Co-Evo-RPROP produces smaller training RMSE
than Co-Evo-BP for training and test data..

Table 7 shows the best training RMSE, learning
parameters and topology of neural networks obtained from
the experimental results of BP, RPROP, iRPROP and
evolutionary learning method on training data. These
training RMSE values are the best of the results of each
learning method with the learning and evolutionary
parameters discussed in previous section. Each learning
method is run 10 times and average results are shown.

201

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

TABLE 7
SUMMARY OF AVERAGE TRAINING RMSE WITH BP, RPROP, IRPROP AND

EVOLUTIONARY METHODS
 BEST

NETWORK

TOPOLOGY

 BEST

TRAINING

RMSE

PARAMETERS

VALUES

BP 64-27-13-1 0.08207 h=0.1
RPROP 64-27-13-1 0.0383 Do=0.1, Dmax=50
iRPROP 64-13-7-1 0.0475 Do=0.1, Dmax=50
Evolutionary
(GA)

64-20-10-1 0.00008 Crossover=0%,
s=0.01

BP 64-27-13-1 0.08207 h=0.1
RPROP 64-27-13-1 0.0383 Do=0.1, Dmax=50

According to the results of table 7, evolutionary learning

has better performance than gradient-based learning
methods on the training data. The training data RMSE with
evolutionary method are slightly smaller than for Co-Evo-
RPROP (shown in table 5). Evolutionary learning has better
performance with low crossover rates while a mutation
parameter value of 0.01 produces the smallest RMSE over
training data.

V. CONCLUSION

The paper provides empirical analysis of three different
types of supervised learning models: gradient-based,
evolutionary and two new hybrids of gradient-based and
evolutionary techniques. The performance of these models is
measured by RMSE on training and test datasets which
evaluate board positions for a two player zero-sum game.
Evolutionary learning performs much better on training data
than the training results of gradient-based learning methods.
The hybrid methods we have introduced show similar (but
slightly worse) performance on training data. However, our
hybrid of evolutionary and gradient-based methods perform
much better on test data than either evolutionary or gradient-
based methods alone and suffer less from overfitting. In
evaluating a highly nonlinear function to map board
positions in the Virus game to winning chances for the black
player, we have shown that a hybrid of evolution and
gradient-based method is far greater than the sum of its
parts. We have also provided evidence that the 64-2N-N-
1configuration formed by [7, 10, 21] may be less effective
than other topologies if network topology is allowed to
evolve.

As future work, it will be interesting to train networks
using our hybrid methods evaluating their fitness based on
their performance on test data to avoid further overfitting, to
investigate the effectiveness of our neural network as a
component of an effective game player and to investigate the
performance of hybrid learning methods for other game
environments.

REFERENCES
[1] Lee, S.W., “Off-line recognition of totally unconstrained hand-written

numerals using multiplayer cluster neural network”, IEEE Trans.
Pattern Analysis and Machine Intelligence, Vol .8, 1996, pp: 648-652.

[2] Omatu, S., and Yoshioka, M., “Self-tuning neuro-PID control and
applications”, in the proceedings of IEEE International Conference on
Systems, Man, and Cybernetics No. 3, 1997, pp: 1985-1989.

[3] Schaffer, J.D., Caruana, R.A., and Eshelman, L.J., “Using genetic
search to exploit the emergent behavior of neural networks”, Phys. D,
Vol. 42, 1990, pp: 244-248.

[4] Harp, S.A., Samad, T., and Guha, A., “Toward the genetic synthesis
of neural networks”, In the proceedings of 3rd International
Conference on Genetic Algorithms and Their Applications 1989, San
Mateo, CA, pp.360-369.

[5] Kim, H.B., Jung, S.H., Kim, T.G., and Park, K.H., “Fast learning
method for back-propagation neural network by evolutionary
adaptation of learning rates”, Neurocomputing Vol. 11, No.1, pp: 101-
106.

[6] Castillo, P.A., Rivas, V., Merelo, J.J., Gonzalez, J., Prieto, A. and
Romero, G., “G-PROP-II: Global Optimization of Multilayer
Perceptrons using Gas”, in the Proceedings of the Congress on
Evolutionary Computation, 1999, Mayflower Hotel, Washington D.C.:
IEEE Congress on Evolutionary Computation, pp: 2022-2028.

[7] Fahlman, S.E., “Faster-Learning Variations on Back-Propagation: An
Empirical Study”, In the proceedings of the 1988 Connectionist
Models Summer School, Morgan Kaufmann. CA.

[8] Stanley, K.O., Bryant, B.D. and Miikkulainen, R., “Realtime
Neuroevolution in NERO Video Game”, IEEE Transactions on
Evolutionary Computation, Vol.9, No. 6, 2005.

[9] Rumelhart, D.E., McMlelland, J.L., and the PDP Research Group.,
“Parallel Distributed Processing”, Exploration in the Microstructure of
Cognition, Vol.1, MIT Press, 1986..

[10] Riedmiller, M., and Braun, H., “A direct adaptive method for faster
backpropagation learning: the Rprop algorithm”, in the Proceedings of
the IEEE International Conference on Neural Networks 1993, pp: 586-
591.

[11] Igel, C. and Husken, M., “Empirical Evaluation of the Improved
RPROP Learning Algorithms”, Neurocmputing , Vol. 50 (C), 2003,
pp: 105-123.

[12] Campbell, M., Jr. Haone, A.J., Hsu, F-h., “Deep Blue”, Artificial
Intelligence, Vol.134, 2002, pp: 57-83.

[13] Fogel, D.B. and K, Chellapilla., “ Verifying Anaconda’s expert rating
by competing against Chinook: experiments in co-evolving a neural
checkers player”, Neurocomputing, Vol. 42, 2002, pp: 69-86.

[14] Cowling, P.I., “Board Evaluation for the Virus Game”, in the
Proceedings of CIG 2005, Graham Kendall and Simon Lucas
(editors), Essex.: IEEE Symposium on computational Intelligence and
Games 2005.

[15] Cowling, P.I., Naveed, M.H., and Hossain, M.A., “A Coevolutionary
Model for the Virus Game”, IEEE Symposium on computational
Intelligence and Games 2006, 22-26 May, 2006, University of
Nevada, Reno, USA

[16] Cowling, P.I. Fennell, R. Hogg, R. King, G. Rhodes, P. Sephton, N.,
“Using Bugs and Viruses to Teach Artificial Intelligence”, in the
proceedings of 5th International Conference on Computer Games:
Artificial Intelligence, Design and Education, Reading.: The
International Computer Games Conference, 2004, pp:360-364.

[17] Haykin, S. Neural Networks: A Comprehensive Foundation.
NewYork: Macmillan College Publishing Company, 1994.

[18] Witten, I.H. and Frank, E. Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations. San Francisco:
Morgan Kaufmann Publishers, 1999.

[19] Mitchell, M. An Introduction to Genetic Algorithms, MIT Press, 1998.
[20] Fogel, D.B. Evolving Artificial Intelligence. PhD diss, University of

California, San Diego, 1992.
[21] Bäck, T. and Schwefel, H.-P., “An overview of evolutionary

algorithms for parameter optimization”, Evolutionary Computation
1993; Vol.1, No.1, pp: 1-23

202

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

