
Abstract—Although the reinforcement learning and 
evolutionary algorithm show good results in board evaluation 
optimization, the hybrid of both approaches is rarely addressed 
in the literature. In this paper, the evolutionary algorithm is 
boosted using resources from the reinforcement learning. 1) The 
initialization of initial population using solution optimized by 
temporal difference learning 2) Exploitation of domain 
knowledge extracted from reinforcement learning. Experiments 
on Othello game strategies show that the proposed methods can 
effectively search the solution space and improve the 
performance.  

Keywords: Othello, Reinforcement Learning, Temporal 
Difference Learning, Domain Knowledge 

I. INTRODUCTION

Reinforcement learning [1] and evolutionary algorithm [2] 
are separately used to learn the strategies of board games. 
Although evolutionary algorithm is known for good 
performance in games, they require much computational 
resource compared to the reinforcement learning. Meanwhile, 
reinforcement learning can learn strategies quickly with 
relatively less computational resources. The hybridization of 
the both methods can improve the pure evolutionary 
algorithm for optimizing game evaluation function [3]. 

Because reinforcement learning can find a good solution 
quickly with less resource, it is promising to exploit 
reinforcement learning first and pass the results to the 
evolutionary algorithm for further optimization. In CEC 2006 
Othello competition, the hybrid of evolutionary algorithm 
and temporal difference learning method won the final league 
[4]. It showed relatively high generalization ability compared 
to other models using either temporal difference learning or 
evolutionary algorithm. The method used in the best player is 
to exploit the best individual from the temporal difference 
learning as a seed for the evolutionary algorithm.  

It is also promising to use domain knowledge extracted 
from reinforcement learning like self-playing in the 
evolutionary process. It is known that the incorporation of 
domain knowledge is useful for the pure evolution to improve 
the performance [5][6][7]. Its idea is to exploit previously 
easily accessible domain knowledge to leverage the pure 
evolutionary approach. Opening list, opening DB, endgame 

DB, and transcripts of previous games can be used as domain 
knowledge. Addition of such knowledge might minimize the 
evolution time and quality of final output. Because the 
domain knowledge could restrict the search space to be 
explored, it is expected that the evolutionary algorithm can 
find good solution easily and fast.  

Othello is a very short game that requires only 60 moves by 
both players. Because of this, the importance of opening is 
very important. Slight advantage in the early stage of game 
often becomes huge difference in the end of the game. 
Although advantage in the early stage doesn’t mean win of 
the game, it is true that the player with the advantage have 
more probability of winning. Also, the game is very difficult 
to estimate the results of the final score because there is huge 
fluctuation in the score at the end game stage. Expert players 
investigate all possible lines from the current board 
configuration and decide the best line at the endgame stage.  

Strong Othello programs like LOGISTELLO [8], NTEST 
[9] and WZEBRA [10] have their own opening book. It 
contains pre-calculated evaluation value for each move in the 
early stage of the game. The value is calculated from the 
self-playing of thousands of games. For each game, the final 
score is used to evaluate the opening used in the game. If the 
game is finalized with 34-30 as Black win, the opening used 
is evaluated with +4 for Black. Although this is a bit different 
from temporal difference learning, it is similar that the 
knowledge is from self-playing of one player.  

We propose two methods for hybrid the reinforcement 
learning and evolutionary algorithm. 1) Initialization of the 
population in evolutionary algorithm using solution 
optimized by temporal difference learning 2) Evolution of 
Othello strategies using opening book from self-playing and 
endgame solver that quickly calculates the goodness of the 
position in the endgame stage.  

II. RELATED WORKS

    There are many publications about the learning of game 
strategies using evolutionary computation. They can be 
categorized into pure evolution, the hybrid of evolutionary 
algorithm with domain knowledge, and hybrid of 
reinforcement learning with evolution.  

The most successful example of the pure evolutionary 
approach for the game is the Fogel’s checkers program [2]. 
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They have applied evolutionary neural network for the 
evaluation of checkers. Without help of domain knowledge, 
they can evolve master-level player and evaluate the 
performance in the game site.  

In Othello, Miikkulainen et al. applied neural network 
optimized by genetic algorithm without game tree [11]. They 
showed that their evolved neural network learnt the mobility 
strategy and the world-class level player checked the 
transcripts of the play with comments.  

Chong et al. evolved neural networks as an evaluation 
function in the game tree for Othello [12]. They observed the 
evolution of the neural networks based on the winning rates 
against static strategies. They reported that the evolutionary 
neural networks can improve their performance through the 
evolution. Also, they evaluated the effect of the spatial 
preprocessing layer, self-adaptive mutation, and tournament 
selection.  

Kim et al. used opening knowledge (well-known opening 
list) and endgame DB (from Chinook) for evolving checkers 
strategies [5]. In the middle stage of the game, speciation 
algorithm is used to generate diverse evolutionary neural 
networks for the evaluation of the leaf node in the game tree. 
They reported that the incorporation of expert knowledge can 
speed up the evolution and improve the performance.  

 Kim et al. used opening knowledge (well-known opening 
list) to boost the performance of evolutionary Othello players 
[6].  Opening list summarized by human experts is used in the 
early stage of each game played in the evolution. The 
experimental results show that the evolution with the opening 
knowledge show improved performance. Because they used 
position-based evaluation of board configuration, it is not 
possible to achieve comparable performance to the other 
programs. Also, they used only 1-ply game tree for the middle 
stage of the game.  

Fogel et al. used opening database and endgame database 
to evolve the evolutionary chess players. They used three 
object neural networks that cover different areas of chess 
boards. Also, they used material values of pieces and 
positional value tables. The evolved strategies showed good 
performance compared to previous knowledge-based players.  

The relationships between the reinforcement learning and 
the evolutionary algorithm are one of the interesting research 
issues. The both methods are compared separately or 
combined for synergism.  

Lucas et al. compared two learning methods for acquiring 
position evaluation for small Go boards [13]. The methods 
studied are temporal difference learning using the self-play 
gradient-descent method and co-evolutionary learning using 
an evolutionary strategy. They concluded that the temporal 
difference learning usually performs better than the 
co-evolutionary algorithm in the standard setup. However, in 
the right configuration, the co-evolutionary algorithm 
performs better than the counterpart.  

Lucas et al. compares the use of temporal difference 
learning (TDL) versus co-evolutionary learning (CEL) for 

acquiring position evaluation functions for the game of 
Othello [14]. For Othello, they reported that TDL learns 
much faster than CEL, but that properly tuned CEL can learn 
better playing strategies.  

Singer proposed the hybridization of evolutionary 
algorithm and reinforcement learning for Othello game 
strategy acquisition [3]. In each generation, reinforcement 
learning is used to train the individual of the population. They 
reported that the strategy evolved for 3 months played at 
roughly intermediate level.  

III. METHODS

A. The Game of Othello 
Othello is a deterministic game which is played by two 

players. It is usually played on 8 8 boards and there are 64 
squares. It is a kind of perfect information game and both 
players have no hidden information. Each disc is similar to 
coin but each side has different colors. One is white, the other 
is black. At the initial stage of the game, both players choose 
his color. If one player chooses white, the other player is 
black. The initial board configuration is shown figure 1. 
Initially, four discs are placed in the center of the board.

The game always starts with black player. The rule of the 
game is very simple. The only rule is sandwiching other 
player’s discs by using his discs and flipping the discs 
sandwiched to his disc color. The capturing is possible in any 
direction and multiple directional capturing is also available. 
The game is continued until there is no available move for 
both players. At the last stage of the game, the one with more 
discs wins the game.  If there is equal number of discs, the 
game called as draw.  

Figure 1. The initial board configuration (Image from 
WZEBRA) 

B. Overview of the Proposed Methods 
The proposed method is composed of two stages. At first, 

temporal difference learning is used to find premature 
solution. It discovers the area that has many high performance 
solutions. After finding the useful solution, it is used to find 
better strategies using evolutionary algorithm. The 
knowledge from the first strategy can be stored in a different 
form for the evolutionary search. For example, they (the 
knowledge from reinforcement learning) are weights of 
neural networks or opening DB. The evolutionary algorithm 
can be many different forms. Both of co-evolutionary 
algorithm and evolution with fixed evaluation function can be 
used.
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     The knowledge from the self-playing can be used to 
initialize the population of the evolutionary algorithm and it 
also can be directly used in the evaluation function of the 
evolution. By exploiting previously discovered knowledge 
from reinforcement learning, the evolutionary algorithm can 
discover better strategy.  

C. Initialization of Population Using TDL Results 
This section is related to the CEC 2006 competition and 

introduces the method used for winning the award [4]. The 
purpose of the competition is to promote the research on a 
new method for evolving Othello strategy. Othello is very 
complex game and enough to be used as a platform for many 
variants of evolutionary algorithms. They provided two 
different forms of strategy representation: weight matrix for 
positional strategy and multi-layer perceptrons. The 
preliminary round, the submitted strategies are evaluated 
using static opponent with standard heuristics. Because the 
game is a kind of deterministic one, there are only two 
different games between two strategies. To increase the 
number of games between them, 10% randomness is added to 
the selection of moves for both players.  

After playing 1000 games with the static strategy, the 
number of win, draw and loss are used to calculate score. 
Based on the score, the players are ranked. Because they are 
ranked based on the results against the static strategy, it is 
expected that player biased to the static strategy would get 
high rank. The final winner is determined from the 
competition among the best players from each person (final 
round). In this stage, the player that has more generalization 
capability against other best players of each person will get 
high probability of win the competition. In the competition, it 
is not allowed to see other player’s strategy and thus it was 
not possible to create a strategy specifically tailored to be 
superior to the other submitted strategies.  

1: /* TDL_B: The best strategy learnt from TDL */  
2: /* POP: Population of evolutionary search */  
3: /* POP[i] : ith individual of the population */  
4: /* POP_SIZE : Population size */  
5: /*MAX_GEN : The maximum number of 

generation*/  
6:  
7: FOR (i=1;i<POP_SIZE;i++) { POP[i]=TDL_B;}
8:  
9: FOR (i=1;i<MAX_GEN;i++) { 

10:   fitness_evaluation(POP);  
11:   roulette_wheel_selection(POP); 
12:   /* mutation */  
13: FOR(j=1;j<POP_SIZE;j++){
14: FOR (all segments of POP[j]) {  
15: IF(rand() < mutation_probability)  
16:   IF(rand()%2==0){
17:               Segment of POP[j]+=0.01;}
18:     ELSE{
19:               Segment of POP[j] = 0.01;}}} 
20:   elitist(POP); }  

Figure 2. The pseudo code of the hybrid algorithm. 

In the competition, we have used a hybrid of temporal 
difference learning and evolution for learning strategy. 
Temporal difference learning is a kind of reinforcement 
learning [15]. The strategy that is discovered from the 
temporal difference learning is used as a seed of evolutionary 
search. The pseudo code of the proposed method is described 
in figure 2. Temporal difference learning is useful to learn 
strategy fast but there is still room for adjusting the 
parameters of TDL results using evolutionary algorithm. 
Lucas et al. mentioned that evolutionary algorithm could 
produce better results compared to TDL but requires more 
computational resources and tuning [13][14]. The proposed 
algorithm can save the time for evolutionary algorithm by 
exploiting TDL that learns a good strategy quickly.  

D. Exploiting Knowledge from Self-Playing 
      Previously, we have used well-summarized opening list 
in the process of evolutionary Othello player [6]. The list has 
76 openings that are frequently used by human players. It has 
only the name and the sequence of the openings. There is no 
evaluation value for each opening. Also, it is limited to the 
most popular openings and it cannot deal with variations of 
popular openings.  Strong Othello programs have their own 
opening books that cover huge number of opening lines. They 
learn the opening book automatically from their self-playing 
games and transcripts of top-players [16]. They adjust and 
expand the opening book based on the results of the game.  
       There are two ways to construct opening books for strong 
Othello programs [17][18]. The first method is manually 
constructing books with the help of experts and transcripts. It 
selects popular and important opening lines manually. The 
second method is based on the results of the huge number of 
games. If the game of result is loss, the opening used get 
negative reward. The assumption of this approach is that the 
result of the game is largely related to the selection of opening 
and errors on the other stages have relatively low effect on the 
results. However, this assumption is not true for real-world 
situation. Although the player selects bad opening, it can 
make a win by the mistake of the other players at the end of 
the game. The way to overcome this shortcoming is to use 
self-play of strong programs with high depth because it 
makes relatively low error and reveals the effect of openings 
clearly.
      In this paper, the opening knowledge from self-play and 
games between top players is used in the process of evolution. 
The knowledge can be regarded as results of reinforcement 
learning. The results of games are used to give reward of 
openings. By playing more games, the relevance of openings 
are continuously updated based on reward value. If the 
knowledge can be exploited, the scope that evolutionary 
algorithm covers is minimized. Furthermore, endgame solver 
can calculate the results of the game perfectly and quickly. 
Both of the knowledge can significantly reduce the 
complexity of learning Othello players. Figure 3 summarizes 
the pseudo code of the knowledge-incorporated evolutionary 
algorithm.  
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1: /* OPENING: Opening knowledge from self-play */ 
2: /* ENDGAME: Endgame solver */ 
3: /* POP: Population of evolutionary search */  
4: /* POP[i] : ith individual of the population */  
5: /* POP_SIZE : Population size */  
6: /*MAX_GEN : The maximum number of generation*/ 
7:  
8: FOR (i=1;i<MAX_GEN;i++) { 
9:    Offspring = mutate (POP);  

10:    FOR (j=1;j<POP_SIZE*2;j++){
11:       index_list=select_opponents(POP,Offspring); 
12:        /* do game between j and index_list */  
13: FOR(k=1;k<60;k++){
14: IF(current sequence is not out-of-opening)  
15:              OPENING;
16: ELSE IF(empty squares < threshold)  
17:              ENDGAME; 
18: ELSE
19:              execute_game_tree(); 
20:        } 
21:     }
22:     POP=select(POP+Offspring);    
23: }  
Figure 3. Knowledge incorporated evolutionary algorithm.  

IV. EXPERIMENTAL RESULTS

A. Hybrid of TDL and Evolution 
Kim et al. won the CEC 2006 Othello competition [4]. 

They initialized the population of evolutionary algorithm 
with known well-playing individual learnt from temporal 
difference learning. Their evolutionary algorithm used only 
simple mutation and the evolved strategy is slightly different 
from the original seed. But the competition results show that 
the evolved strategies have better generalization capability 
than other players including the original seed player.

The CEC competition has 904 entries (submissions) from 
more than 10 persons. Each person can submit more than one 
strategy. The strategy learnt from TDL is acquired from the 
competition website (organizer opened it) and it is ranked in 
the top 10. It is downloadable from http://algoval.essex. 
ac.uk:8080/othello/html/SampleMLP.txt. It is represented 
with multi-layer perceptron (MLP) with 64 input neurons, 32 
hidden neurons and 1 output neuron. The depth of the game 
tree is set to 1. It is because the purpose of the competition is 
to find a way to evolve strategies rather than optimizing the 
game tree search.  The parameters of hybrid algorithm are as 
follows. The population size is 50, the maximum number of 
generation is 100, and mutation rate is 0.01. There are two 
mutations: w`=w+0.01 and w`=w-0.01. The fitness of the 
individual is calculated from the following equation.  

Fitness = (Number of wins)  1.0 + (Number of draws)  0.5 

Each individual plays 1000 games against standard heuristics 
represented weights matrix [6].  

     Figure 4 shows the change of fitness and although it starts 
from the near 630, it converges to the 640. The analysis 
showed that only 80 parameters are different from the initial 
networks learnt from TDL among total 2113 parameters.  

Figure 4. The fitness change of hybrid evolution (each point 
is averaged the previous 20 generations to smooth the graph).  

 At the preliminary league, the best solution of the hybrid 
algorithm (kjkim-mlp-3) is ranked as 3rd among 904 
submissions. It is not the best player in the trial league. The 
final competition league shows that the proposed method 
performs better than other strategies. The result of the 
competition is from [4] and summarized in table I, II, and III. 
There are 12 finalists from 12 persons. In the table, 
mlp-again2 (2nd rank in the preliminary league, it is the same 
one with the player used for the initialization of population) 
shows low rank compared to the proposed one. Although the 
preliminary league showed that the proposed method gets low 
rank compared to the mlp-again2, the proposed method 
outperforms the mlp-again2 in the final round.   

TABLE I
SUMMARIZATION OF COMPETITION RESULTS (RANDOMNESS IN MOVE

SELECTION = 0%) EACH PLAYER HAS 2 GAMES WITH OTHER PLAYERS.
ran
k

Win Draw Loss Name 

1 20 0 2 kjkim-mlp-3 
2 17 1 4 Alez V 
3 17 0 5 NButtBradford1b
4 14 2 6 mlp-again2 
5 13 2 7 delete-me-cel-1-1

0
6 13 1 8 brookdale4 
7 8 2 12 tomy0 
8 7 1 14 fedevadeculo 
9 5 0 17 last weeb1 

10 5 1 16 jesz3 
11 5 2 15 Jorge 
12 1 2 19 tpr-tdl-01-500000

In the web page’s report, the proposed algorithm 
(kjkim-mlp-3) outperforms the player learnt from TDL which 
is used for initialization of the population of the hybrid 
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algorithm. For 1000 games (1% randomness), kjkim-mlp-3 
gets 723 wins and 10 draws.  

TABLE II
SUMMARIZATION OF COMPETITION RESULTS (RANDOMNESS IN MOVE

SELECTION = 1%) EACH PLAYER HAS 20 GAMES WITH OTHER PLAYERS.
ran
k

Win Draw Loss Name 

1 181 4 35 kjkim-mlp-3 
2 170 7 43 Alez V 
3 161 12 47 mlp-again2 
4 157 5 58 NButtBradford1b
5 138 10 72 brookdale4 
6 137 17 66 delete-me-cel-1-1

0
7 73 7 140 fedevadeculo 
8 70 14 136 tomy0 
9 58 17 145 Jorge 

10 55 7 158 jesz3 
11 46 2 172 last weeb1 
12 17 12 191 tpr-tdl-01-500000

TABLE III
SUMMARIZATION OF COMPETITION RESULTS (RANDOMNESS IN MOVE

SELECTION = 10%) EACH PLAYER HAS 20 GAMES WITH OTHER PLAYERS.
ran
k

Win Draw Loss Name 

1 163 1 56 kjkim-mlp-3 
2 161 4 55 mlp-again2 
3 158 3 59 Alez V 
4 153 9 58 brookdale4 
5 150 6 64 delete-me-cel-1-1

0
6 147 5 68 NButtBradford1b
7 73 7 140 Fedevadeculo 
8 71 5 144 Jorge 
9 68 4 148 jesz3 

10 67 3 150 tomy0 
11 58 6 156 last weeb1 
12 21 7 192 tpr-tdl-01-500000

B. Knowledge-Incorporated Evolution  
In the Othello community, the widely used Othello 

programs are WZEBRA and NTEST. They are one of the 
strongest programs in the world. The source code of the 
ZEBRA is available on the internet under GPL 
(http://radagast.se/othello/zebra.tar.gz). WZEBRA is a 
windows version of ZEBRA. It contains opening books with 
more than 500,000 positions. In this paper, we used the 
opening book in the evolution stage and endgame solver is 
used when the number of empty squares is below 4. To 
increase diversity of openings chosen from the opening DB, 
the opening is randomly selected among the best 3 moves. It 
will help the evolutionary player can deal with many 
variations of good openings.  

The neural network used for evaluating the configuration 
of board is the same with the Fogel’s method used for 
checkers [2]. Previously, Chung et al. used the architecture 

for Othello [12]. The depth of game tree used for evolution 
and competition among the final evolved strategies is 2. The 
population size is 20. Spatial preprocessing layer is used as 
the same with [12]. The number of games played for the 
fitness evaluation is 5. There are four different versions of 
evolution.  
EV, EV_O, EV_E, and EV_O_E. EV represents evolution, O 
represents opening and E represents endgame. EV_O_E 
represents evolution with opening and endgame knowledge. 
EV means pure evolution without domain knowledge. EV_O 
and EV_E mean the evolution with only one domain 
knowledge (either opening or endgame).  

Figure 5. The evolution time of the four different versions 
 (EV > EV_E > EV_O > EV_O_E) 

       Figure 5 shows the evolution time of the four different 
versions. Because opening knowledge save the time for game 
tree searching, it reduces much time for evolution. Also, 
endgame solver reduces the evolution time. It means that 
domain knowledge can significantly reduce required time for 
the evolution. Table IV compares the number of generations 
evolved for the same time span.  

TABLE IV
THE NUMBER OF GENERATIONS EVOLVED FOR 3 DAYS

 EV EV_E EV_O EV_O_E
# of 

generations 300 327 597 770 

   We have compared individuals evolved using the same time 
(computational resource). EV (300 generations), EV_E (327 
generations), EV_O (597 generations), and EV_O_E (770 
generations) are compared. The results are summarized in 
table V. It shows that if they used the same computational 
resource, the one with opening and endgame performs the 
best. However, the effect of endgame is relatively high. The 
number of games is 800 (20 individuals  20 individuals  2 
games (change of colors)).  

We have compared individuals evolved with the same 
number of generations (450 generations). Table VI 
summarizes the results. In this case, the EV_O_E 
outperforms other strategies clearly. Meanwhile, the EV_O 
performs worse than EV.  This results show that the 
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incorporation of knowledge can save the time and discover 
better strategies combined with knowledge.  

TABLE V
THE COMPARISON OF FOUR VERSIONS WITH THE SAME COMPUTATIONAL

CONSUMPTION

 Win Draw Loss 
EV_O_E vs. EV 498 24 278 

EV_O_E vs. EV_O 509 26 265 
EV_O_E vs. EV_E 392 19 389 

EV_O vs. EV 386 29 385 
EV_E vs. EV 545 13 242 

EV_E vs. EV_O 496 28 276 

TABLE VI
THE COMPARISON OF FOUR VERSIONS WITH THE SAME NUMBER OF 

GENERATIONS

 Win Draw Loss 
EV_O_E vs. EV 494 21 285 

EV_O_E vs. EV_O 532 17 251 
EV_O_E vs. EV_E 399 22 379 

EV_O vs. EV 355 28 417 
EV_E vs. EV 463 18 319 

EV_E vs. EV_O 517 24 259 

Figure 6 shows the analysis the game between EV_O_E 
and EV (with the same number of generations). EV_O_E 
leads the game in the early stage of the game using opening 
knowledge. After 12 moves of the white, the game is 
out-of-opening. From the point, the EV_O_E used 
evolutionary neural networks to evaluate the board 
configuration with game tree (depth = 2). Because of the big 
mistake of EV_O_E at 15th move, the game is led by EV. 
However, after 22nd move of the EV, the game is again leaded 
by the EV_O_E and it controls the game to the end of the 
game.  

  The reason that the EV_O performs worse than EV_E is 
the early out-of-opening. Although EV_E has low 
performance at the early stage of the game, it can reverse the 
results at the end stage of the game. It is better to go 
out-of-opening as earlier as possible because it minimizes the 
effect of opening knowledge. Figure 7 shows the situation 
that describes such phenomenon. At the early stage of the 
game, the game is leaded by EV_O. Until 10th move, the 
game is not out-of-opening and EV_O has gained advantage. 
After the out-of-opening, the EV_E has gained control of the 
game slightly but it is returned to the EV_O after 30th moves. 
However, the EV_E performs better at the end stage of the 
game. Because the endgame solver has invoked when the 
number of empty squares is 4, the slight win at the end stage 
of the game means the win of the EV_E.  

Figure 8 shows the game between EV_O_E and EV_O. 
Because both players use the opening knowledge, the game is 
continued with tie score until 26th moves. After out-of-the 
opening, there is some fluctuation but the EV_O_E controls 
the game and finally the endgame solver leads the win of the 
EV_O_E.

Figure 9 shows the results between EV_E and EV_O_E. It 
shows that the EV_O_E has gained lead of the game at the 
early stage of the game. Although it loses the control 
immediately, the control of the game is returned to EV_O_E 
after 18th moves. Although the EV_E performs well in the 
middle of the game, it is not enough to reverse the results of 
the game. Because both players have the endgame solver, the 
good job of the EV_E at the middle stage of the game cannot 
regain the lead of the game.  

The analysis showed that the evolutionary neural networks 
has adapted to the domain knowledge and its synergy provide 
time save and performance improvement.   

Figure 6. The analysis of the game between EV_E_O 
(black) and EV (white). + means black leads the game. 

Figure 7. The analysis of the game between EV_O (black) 
and EV_E (white). 

Figure 8. Analysis of the game between EV_O_E (black) 
and EV_O (white).  
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Figure 9. The analysis of the game between EV_E (black) 
and EV_O_E (white). 

V. CONCLUSIONS

This work attempted to incorporate the results of 
reinforcement learning (TDL and self-playing) to the 
evolutionary neural networks. Strategy learned from TDL is 
used to initialize the evolutionary search and the evolved 
strategy performs better than the initial TDL strategy clearly. 
In our work, the effect of domain knowledge incorporation in 
the evolutionary Othello players is systematically evaluated.  
It shows that the effect of endgame is large than the one of 
opening DB. The use of the both knowledge performs better 
than one with single knowledge. Because the effect of 
knowledge is different, it is useful to control the level of 
performance and knowledge insertion effort effectively. As a 
future work, we have to expand the depth of game tree and 
adopt a deeper endgame solver.  
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