
Effect of look-ahead search depth in learning position evaluation

functions for Othello using ε-greedy exploration

Thomas Philip Runarsson
Science Institute

University of Iceland, Iceland
tpr@hi.is

Egill O. Jonsson
Science Institute

University of Iceland, Iceland
egilljon@hi.is

Abstract— This paper studies the effect of varying the depth
of look-ahead for heuristic search in temporal difference (TD)
learning and game playing. The acquisition position evaluation
functions for the game of Othello is studied. The paper
provides important insights into the strengths and weaknesses
of using different search depths during learning when ε-greedy
exploration is applied. The main findings are that contrary to
popular belief, for Othello, better playing strategies are found
when TD learning is applied with lower look-ahead search
depths.

Keywords: Temporal difference learning, heuristic search,
look-ahead depth, ε-greedy exploration, Othello.

I. INTRODUCTION

A common means of realizing game playing strategies for
board games is by heuristic search, where a heuristic value
function is used to evaluate board positions. In order to select
the best move a player will try all possible moves, resulting
in a number of so called afterstates [7]. Each afterstate is
evaluated using the heuristic value function and the move
corresponding to the highest afterstate value chosen. This is
also known as 1-ply heuristic search.

Samuel’s checker players [6] were one of the first to use
heuristic search and apply a learning method that would
improve the heuristic value function over time. Consider a
typical game tree as the one depicted in Fig. 1. The open
and black circles represent the afterstates for two opponents
playing a game. Each afterstate, s, has the value, V (s).
The afterstate values can be improved during game play as
follows,

V (s) ← V (s) + α
(
V (sB)− V (s)

)

actual events

predicted events

backup

1-ply (afterstate)

2-ply

3-ply

4-ply

5-ply

6-ply

7-ply

s

s
′

ŝ

Fig. 1. Game search tree and backup diagram for TD learning. Black
circles represent afterstate positions for opponent to move.

where sB is the backed up state, α a step size parameter, and(
V (sB) − V (s)

)
is the so called temporal-difference (TD).

A backup based on a single step, i.e. V (s′) corresponds to
actual events. However, if one could foresee the moves of the
opponent, for example by knowing its value function, future
events may be predicted. For example, a 7-ply backup may
be applied, as depicted in Fig. 1, using the value of afterstate
ŝ.

When learning through self-play both players use and
update the same value function. One player chooses moves
so as to maximize the value of the resulting game positions
while the other attempts to find positions of minimum value.
Since the players use the same value function both have a
model of their opponent and are capable of predicting the
moves ahead. The benefits of searching deeper than one step
is to obtain better move selections. If one has a perfect model
of the opponent and an imperfect value function, then it
is believed that deeper search will usually produce better
moves. This was found to be the case for Tesauro’s TD-
gammon [8]. Furthermore, if the search results in an end
game state, then the effect of the imperfect value function is
removed, and the move determined must be optimal.

The computational cost of a deep look-ahead search can
be high and is therefore often limited to a number of steps.
Although clearly look-ahead is useful during play, as noted
above, it remains unknown to what extent look-ahead is
helpful during learning. For example, does a value-function
learned at 2-ply play a better game at 4-ply than a value
function learned at 4-ply playing at the same ply? Clearly
there is a tradeoff as to the number of games that can be
played and the depth of look-ahead applied during learning
within a pre-specified computing time. Look-ahead does,
however, propose a way deciding a distribution of backups
that may result in faster and a better approximation of
the optimal or greedy value function. Optimal in self-play
implies playing optimally against a copy of itself. However,
a self-play player may also learn to play better against many
opponents.

Based on the arguments above one may assume that
playing at a deeper ply during learning should result in better
value functions. However, the experimental result presented
here show the opposite to be the case for Othello when
the value function is approximated using a weighted piece
counter and ε-greedy exploration is employed.

The paper is organized as follows. In section II a brief

210

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

1-4244-0709-5/07/$20.00 ©2007 IEEE

description of the game Othello is given. In section III the
implementation of TD learning is described in full detail.
This is followed by an extensive set of experimental results
and evaluation of value functions learned in section IV. The
paper is then concluded with a discussion and summary of
main findings.

II. OTHELLO

The game of Othello is played on an 8× 8 board, with a
starting configuration as shown in Fig. 2 with the middle 4
squares occupied. Black plays first, and the game continues
until the board is full (after 60 turns), or until neither player
is able to move. Note that a player must move if able to,
passing only happens when a player has no legal moves
available.

A legal move is one which causes one or more opponent
counters to be flipped. Counters are flipped when they lie on
a continuous line (horizontal, vertical, or diagonal) between
the newly placed counter, and another counter of the placing
player. Counters placed in one of the four corners can never
satisfy this condition, and can therefore never be flipped.
Hence, the corners play a pivotal role in the game, and
valuing them highly tends to be the first thing learned. Indeed
the weighted piece counter (WPC) [9] used as a benchmark
in that study also reflects this. There the highest value of 1
is given to all four corners. To hinder the possibility of an
opponent getting a corner, the squares next to them should
be avoided. For this reason they are given the lowest value
−0.25. As a consequence the WPC encourages the players
to place its counter at advantageous squares. The total set
of weights for this heuristic player is given in Fig. 3. Note
that the weights of this heuristic player are symmetric under
reflection and rotation, and have just 10 distinct values out of
a possible 64. It would be possible to simplify the learning
task by enforcing this kind of symmetry, and adjusting just 10
parameters instead of 64. This would mean building in more
expert knowledge however, and could also place undesirable
constraints on the value function.

The first strong learning Othello program developed was
Bill [3], [4]. Later, the first program to beat a human

1

2

3

4

Fig. 2. The initial Othello board, showing the four possible first moves,
which are all equivalent under reflection and rotation (black moves first).

1.00 -0.25 0.10 0.05 0.05 0.10 -0.25 1.00
-0.25 -0.25 0.01 0.01 0.01 0.01 -0.25 -0.25
0.10 0.01 0.05 0.02 0.02 0.05 0.01 0.10
0.05 0.01 0.02 0.01 0.01 0.02 0.01 0.05
0.05 0.01 0.02 0.01 0.01 0.02 0.01 0.05
0.10 0.01 0.05 0.02 0.02 0.05 0.01 0.10

-0.25 -0.25 0.01 0.01 0.01 0.01 -0.25 -0.25
1.00 -0.25 0.10 0.05 0.05 0.10 -0.25 1.00

Fig. 3. The weights (w) for the heuristic player [9].

champion was Logistello [2], the best Othello program from
1993–1997. Logistello also uses a linear weighted evaluation
function but with more complex features than just the plain
board. Nevertheless, the weights are tuned automatically
using self-play. Logistello also uses an opening book based
on over 23, 000 tournament games and fast game tree search
[1].

III. IMPLEMENTATION

The heuristic value function, a WPC, to be learned is
described by:

f(x) =
8×8∑

i=1

wixi + w0 (1)

where xi is the value at square i on the board, which is 0
when Empty, 1 if Black, and −1 for White. The single scalar
output of function f(x) is interpreted as follows. The value
indicates which position is most favorable for a particular
player, with larger values favoring Black, and smaller values
White.

In TD learning the weights of the evaluation function are
updated during game play using a gradient-descent method.
Let x be the board observed by a player about to move, and
similarly x′ the board after a number of predicted moves.
Then the evaluation function may be updated during play as
follows [7, p.199]:

wi ← wi + α
[
v(x′)− v(x)

]∂v(x)
∂wi

(2)

= wi + α
[
v(x′)− v(x)

](
1− v(x)2

)
xi

where

v(x) = tanh(f(x)) =
2

1 + exp(−2f(x))
− 1 (3)

is used to force the value function v to be in the range −1
to 1. This method is known as gradient-descent TD(0) [7].
If x′ is a terminal state then the game has ended and the
following update is used:

wi ← wi + α
[
r − v(x)

](
1− v(x)2

)
xi

where r corresponds to the final utilities: +1 if the winner
is Black, −1 when White, and 0 for a draw. Similarly, when
a predicted state x′ is terminal their values will correspond
to these final utilities.

The update rule is perhaps the simplest version of temporal
difference learning and works quite well on this task. If the
step size parameter α, in (2), is reduced properly over time

211

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

1 if u() < ε do
2 make purely random legal move
3 else
4 make best legal move based on the state evaluation function
5 od

Fig. 4. The ε-greedy technique for forcing random moves, where u()
returns a random number drawn from a uniform distribution ∈ [0 1].

this method will also converge [7, p. 13]. During game play,
with probability ε = 0.1, a random or exploratory move is
forced. This is known as an ε-greedy policy and is described
in Fig 4.

Note that, TD(0) is attempting to learn the probability of
winning from a given state (when following the ε-greedy
policy). However, at higher ply than 1-ply the moves are
predicted on the assumption that a greedy policy is followed,
i.e. ε = 0. This assumption, and the fact that a WPC is used
to approximate the value function, may lead to a curious
result.

IV. EXPERIMENTAL RESULTS

The C-program developed and described in [5] was used
to perform the experiments described in this section. Each
of the experiments is repeated 10 times. Initially α = 0.01
which is then reduced by a factor of 0.95 every 500 games
with a total of 50.000 games played per experiment. The
exploration rate was kept constant at the rate of ε = 0.1 and
the initial weights, w, are set to zero in each case. These
settings were found to give the best results in a previous study
[5], when learning at 1-ply. A second set of experiments are
then conducted where ε is reduced every 500 games by a
factor of 0.9. The aim here is to reduce the effects caused
by randomness inherent in the ε-greedy approach, which may
disrupt learning as the number of ply depth increases.

A. Evaluation

Value functions approximated by the WPC described in
the previous section are learned through self-play. Each
experiment is performed ten times, using 1 to 5–ply look-
ahead search, resulting in a total of 50 independently derived
approximate value functions. Each player trained at a given
ply was then matched with all of the players trained at a
different ply. Leagues are held by forcing players to play
at pre-specified ply. In other words, each of the ten players
trained at a given ply will play each of the ten players trained
at a another ply, once in each color, resulting in a total of
200 games. Note that forced random moves are not used in
these leagues, i.e. ε = 0. In the case of a draw both players
receive half a win.

When the players play against each other, at the very ply
they were trained at, the result is as shown in table I. Here,
for example, one can see that the ten players trained at 5–
ply, and playing at 5–ply, will win 187.5 games out of 200
against the ten players playing and trained at 1–ply. The
number of games won then decreases as the number of ply
of the opponents increase. This result is as one may have

TABLE I
Number of wins out of 200 games when players play at the same ply as

they were trained at.

v’s 1–ply 2–ply 3–ply 4–ply 5–ply
∑

wins
1–ply – 33.5 25 9.5 12.5 80.5
2–ply 166.5 – 81 53 26.5 327
3–ply 175 119 – 92.5 66 452.5
4–ply 190.5 147 107.5 – 78.5 523.5
5–ply 187.5 173.5 134 121.5 – 616.5

expected. The total number of wins are summed up in the
last column. In all cases players trained and playing at higher
ply exhibit the best performance. Is this due to the quality
of the value function learned, greater look-ahead used during
play or perhaps both? In order to answer this question two
kinds of player evaluation are performed.

Firstly, players trained at a given ply are allowed to
compete amongst themselves at different ply. These results
are given in the following section IV-B. The results illustrate
the effect of look-ahead on the quality of play. Secondly, in
order to evaluate the quality of the value function learned,
when training at different ply, the players compete with a
fixed look-ahead depth. If, for example, we expect the quality
of the value functions learned using greater lookahead to be
the best, then the corresponding players should win most
games, or at least do so at the ply they trained at. These
results are presented in section IV-C.

In order to investigate the impact ε has on the quality of
the learned value function additional experiments are needed.
Section IV-D presents results for when the above experiments
are repeated, however, with the ε exploratory noise reduced
slowly during learning. In section IV-E, the quality of the
values function found for a fixed ε = 0.1 are compared with
the ones found using a slowly reduced ε.

Finally, as an additional test of the quality of the value
functions found, the players compete with the heuristic value
function represented in Fig. 3. In this case only 20 games
are played as this represents only a single player. This result
is presented in section IV-F.

B. Players trained at n-ply competing amongst themselves
at different ply.

Here the ten players trained at a given ply compete among
each other but using different look-ahead search depths
during play. In all the five different cases it is clear, from

TABLE II
The players playing at their trained ply against themselves at different ply.

The rows are the players training ply, and the columns the ply they played

against themselves.

1 2 3 4 5
1-ply – 45 32 16.5 4.5
2-ply 173 – 53 60.5 27
3-ply 189 138.5 – 68.5 27
4-ply 195 154 149.5 – 76.5
5-ply 197 176.5 177 139 –

212

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

table II, that playing with a deeper look-ahead search will
result in the most number of wins. For example, the players
trained at 5-ply and playing at 5-ply against themselves at
only 1-ply will result in 197 games won out of 200. This
number gradually reduces to 139 as the ply played increases
from 1 to 4, see bottom row in table II. The empty bottom
right cell correspond to 5-ply versus 5-ply which necessarily
results in 100 games won for both sides.

The results in table II confirm that playing at higher ply
will in all cases result in a better game playing strategy,
regardless of the depth of search applied during the learning
of the value function.

C. Players competing at the same ply

In this section value functions found by applying different
search depths during learning are compared directly. The ten
players, using the different value functions learned, compete
with one another using a fixed depth of search from 1 to
5–ply.

When all players are forced to play at 1-ply the players
trained at a higher ply perform significantly worse. This
result may be seen in table III. The table shows how the
1–ply players win 95 games against the players trained at 2–
ply, 103 against the 3–ply players, 131.5 against the 4–ply,
and finally 148.5 against the 5–ply players. Clearly, players
trained at a higher ply should not play at a lower ply. In
this league the 2–ply and 5–ply players perform worst with
a total of 349 and 333.5 wins out of 800 respectively. The

TABLE III
Number of wins out of 200 games when all players are forced to play at

1–ply.

1–ply 2–ply 3–ply 4–ply 5–ply
∑

wins
1–ply – 95 103 131.5 148.5 478
2–ply 105 – 64.5 96 83.5 349
3–ply 97 135.5 – 105.5 117.5 455
4–ply 68.5 104 94.5 – 117 459
5–ply 51.5 116.5 82.5 83 – 333.5

TABLE IV
Number of wins out of 200 games when all players are forced to play at

2–ply.

1–ply 2–ply 3–ply 4–ply 5–ply
∑

wins
1–ply – 68 91 94.5 98.5 352
2–ply 132 – 131 137.5 112.5 513
3–ply 109 69 – 123.5 136.5 438
4–ply 105.5 62.5 76.5 – 99 343.5
5–ply 101.5 87.5 63.5 101 – 353.5

TABLE V
Number of wins out of 200 games when all players are forced to play at

3–ply.

1–ply 2–ply 3–ply 4–ply 5–ply
∑

wins
1–ply – 65.5 78.5 113 106.5 363.5
2–ply 134.5 – 98 135.5 119 487
3–ply 121.5 102 – 120.5 117.5 461.5
4–ply 87 64.5 79.5 – 102 333
5–ply 93.5 81 82.5 98 – 355

TABLE VI
Number of wins out of 200 games when all players are forced to play at

4–ply.

1–ply 2–ply 3–ply 4–ply 5–ply
∑

wins
1–ply – 53 42 71.5 90 256.5
2–ply 147 – 119.5 119.5 115 501
3–ply 158 80.5 – 96 133.5 468
4–ply 128.5 80.5 104 – 100 413
5–ply 110 85 66.5 100 – 361

TABLE VII
Number of wins out of 200 games when all players are forced to play at

5–ply.

1–ply 2–ply 3–ply 4–ply 5–ply
∑

wins
One – 57.5 58.5 93 84.5 293
Two 142.5 – 116.5 121.5 121.5 502
Three 141.5 83.5 – 104 129.5 458
Four 107 78.5 96 – 111 392.5
Five 116 78.5 70.5 89 – 354

best performance is observed for the players actually trained
at 1–ply with 478 wins in total.

The experiment is repeated, this time playing at a fixed ply
of 2, 3, 4, and 5. These results are shown in tables IV, V, VI
and VII respectively. This is where a curious observation is
made. With the exception of the players trained at 1-ply, the
players trained at lower ply than they are currently playing at
consistently perform better than those trained at a higher ply.
This result is perhaps clearest in table VII. In general, the
overall best result is clearly for the players trained at only
2–ply, followed by 3–ply, 4–ply and 5–ply, in that order. The
worst performance is exhibited at 1–ply, unless the intention
is to actually play at 1–ply.

D. Players using reduced ε trained at n-ply competing
amongst themselves at different ply.

The result in the previous section may be due to the
increased uncertainty of the backed up state due to the ε-
greedy policy followed by the players. To minimize this
effect it was decided to reduce ε every 500 games by a factor
of 0.9.

The experiments conducted in the previous section IV-C
were repeated, using this modification, and these results are
presented in tables VIII to XII. When the players are forced
to compete at 1–ply the players trained at 3–ply are the best
followed by 1–ply (as before). In general there seems to be a
greater variation in the number of games won, compared to
the results in section IV-C. However, when playing at higher
ply, once again the 2–ply players are the overall winners.
When all play at 5–ply (see fig XII) the ordering remains
basically the same with the exception that now the 4–ply
players perform better than the 3–ply players (note that the
3–ply players played overall best at 1–ply).

It would be interesting to know whether the players learned
in this section have greater or lesser performance to those of
section IV-C. This is investigated in the following section.

213

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

TABLE VIII
Number of wins out of 200 games when all players (with reduced ε) are

forced to play at 1–ply.

1–ply 2–ply 3–ply 4–ply 5–ply
∑

wins
1-ply 0 122 106 147.5 109.5 485
2-ply 78 0 56.5 152.5 96 383
3-ply 94 143.5 0 151 122.5 511
4-ply 52.5 47.5 49 0 69 218
5-ply 90.5 104 77.5 131 0 403

TABLE IX
Number of wins out of 200 games when all players (with reduced ε) are

forced to play at 2–ply.

1–ply 2–ply 3–ply 4–ply 5–ply
∑

wins
1-ply 0 62 65 104.5 85.5 317
2-ply 138 0 98.5 154.5 122.5 513.5
3-ply 135 101.5 0 125 112.5 474
4-ply 95.5 45.5 75 0 90 306
5-ply 114.5 77.5 87.5 110 0 389.5

TABLE X
Number of wins out of 200 games when all players (with reduced ε) are

forced to play at 3–ply.

1–ply 2–ply 3–ply 4–ply 5–ply
∑

wins
1-ply 0 36.5 75.5 93 87 292
2-ply 163.5 0 114.5 143.5 123 544.5
3-ply 124.5 85.5 0 115.5 121 446.5
4-ply 107 56.5 84.5 0 100 348
5-ply 113 77 79 100 0 369

TABLE XI
Number of wins out of 200 games when all players (with reduced ε) are

forced to play at 4–ply.

1–ply 2–ply 3–ply 4–ply 5–ply
∑

wins
1-ply 0 20.5 30 43.5 59.5 153.5
2-ply 179.5 0 110 138 128 555.5
3-ply 170 90 0 97 111 468
4-ply 156.5 62 103 0 126.5 448
5-ply 140.5 72 89 73.5 0 375

TABLE XII
Number of wins out of 200 games when all players (with reduced ε) are

forced to play at 5–ply.

1–ply 2–ply 3–ply 4–ply 5–ply
∑

wins
1-ply 0 32.5 57 56.5 59.5 205.5
2-ply 167.5 0 141 106 135.5 550
3-ply 143 59 0 100.5 125 427.5
4-ply 143.5 94 99.5 0 121 458
5-ply 140.5 64.5 75 79 0 359

E. Players using reduced ε competing with fixed ε players
at different ply.

When the ten players trained with ε reduced slowly during
learning are matched against the players using a fixed ε the
results are as shown in table XV. Here one notices that
reducing ε resulted in overall better players when applying
2,3 and 5–ply search, but worse players at 1 and 4–ply search.

TABLE XIII
Players trained at various ply (reduced ε) versus the players at fixed ε at

different ply.

1-ply 2-ply 3-ply 4-ply 5-ply
∑

wins
1-ply 70 62 72.5 66.5 89.5 360.5
2-ply 83 123.5 103.5 121.5 142 573.5
3-ply 100 110 90 105 115 520
4-ply 39 88 80 124 117 448
5-ply 82.5 115.5 79 126.5 119.5 523

F. Players trained at different ply versus heuristic player

As a final evaluation of the value functions learned, the
different players are compared with a player using the
heuristic value function represented in Fig. 3. Both opponents
will play at the same but varying search depths. This result is
depicted in table XIV for players trained with a fixed ε = 0.1.
Only 20 games are played in this instance as the heuristic
player represents only a single player and not ten different
players as in the previous evaluations. By this means of
evaluation it is found that the players trained at 3–ply perform
overall the best, followed by 2–ply and 1–ply. The higher ply
players again perform the worst. Table XV shows the same
results for the players using a slowly reduced ε. In this case
all players perform significantly worse when playing at 1–
ply, but significantly better at higher ply, with the exception
of players trained at 1–ply. Here, overall, the 4–ply players
are best.

TABLE XIV
Players trained at various ply versus the heuristic player at different ply.

1-ply 2-ply 3-ply 4-ply 5-ply
∑

wins
1-ply 10 13.5 15 16 16 70.5
2-ply 9 14.5 14 19 13.5 70
3-ply 12 15 15 19 16 77
4-ply 10 6 13 12 18 59
5-ply 7 9 14.5 10.5 10 51

TABLE XV
Players trained at various ply (reduced ε) versus the heuristic player at

different ply.

1-ply 2-ply 3-ply 4-ply 5-ply
∑

wins
1-ply 5 9 13 16.5 6 49.5
2-ply 4 15 15.5 14 19 67.5
3-ply 4.5 16 9 18 18 65.5
4-ply 6 17 13 17.5 18 71.5
5-ply 0 13 16.5 13 18 60.5

V. SUMMARY AND CONCLUSION

A number of WPC, using different depths of ply during
learning, were found using TD learning. Our expectations
were that better value functions would be learned when
training with deeper look-ahead search. However, this was
not found to be the case. This is an important result since
the cost of look-ahead is usually high. If deeper search is
not as useful, as one may have expected, then a significant
amount of computing time may be saved.

214

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

The main results are that, during game playing, better de-
cisions are made when deeper look-ahead is used. However,
when learning, a depth of 2–ply look-ahead search results in
the best value functions for Othello. That is, train at 2–ply
and play at the highest ply possible.

A plausible explanation for this may be that the predicted
backup values used for TD learning are not accurate, since a
ε-greedy policy is followed (see Fig. 4) rather than a purely
greedy one. However, reducing ε during learning did not help
confirm this suspicion. It is also possible that the WPC is
far too simple and unable to capture the value function to
be learned. This may also have a disruptive effect on the
gradient based TD algorithm.

The main conclusion of these experimental findings is that
one should not assume that deeper ply search will necessarily
result in better policies learned. Further studies are necessary
to explain this result.

REFERENCES

[1] M. Buro, “ProbCut: An effective selective extension of the Aalpha-Beta
algorithm,” ICGA Journal, vol. 18, pp. 71 – 76, 1995.

[2] ——, “LOGISTELLO – a strong learning othello program,” 1997,
http://www.cs.ualberta.ca/ mburo/ps/log-overview.ps.gz.

[3] K.-F. Lee and S. Mahajan, “A pattern classification approach to eval-
uation function learning,” Artificial Intelligence, vol. 36, pp. 1 – 25,
1988.

[4] ——, “The development of a world class othello program,” Artificial
Intelligence, vol. 43, pp. 21 – 36, 1990.

[5] S. Lucas and T. P. Runarsson, “Temporal difference learning versus
co-evolution for acquiring othello position evaluation,” in IEEE Com-
putational Intelligence and Games, 2006, pp. 52–58.

[6] A. Samuel, “Some studies in machine learning using the game of
checkers,” IBM Journal of Research and Development, vol. 3, pp. 211
– 229, 1959.

[7] R. Sutton and A. Barto, Introduction to Reinforcement Learning. MIT
Press, 1998.

[8] G. Tesauro, “Temporal difference learning and TD-gammon,” Commu-
nications of the ACM, vol. 38, no. 3, pp. 58–68, 1995.

[9] T. Yoshioka, S. Ishii, and M. Ito, “Strategy acquisition for the game
”othello” based on reinforcement learning,” in IEICE Transactions on
Information and Systems E82-D 12, 1999, pp. 1618–1626.

215

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

