
Abstract—This paper presents an artificial neural network
with shared weights, trained to play the game of Othello by self-
play with Temporal Difference Learning (TDL). The network
performs as well as the champion of the CEC 2006 Othello
Evaluation Function Competition. The TDL-trained network
contains only 67 unique weights compared to 2113 for the
champion.

Keywords: Othello, temporal difference learning, shared
weights, neural network.

I. INTRODUCTION

The game of Othello has been of interest to the
computational intelligence community for many years [1].
Its moderately large state space and moderate branching
factor make it challenging enough such that it has not been
solved. It is different from games such as chess and draughts
(checkers) in that there is a large variation in board position
from ply to ply. Computer programs using efficient look-
ahead search algorithms have beaten the best human players
[2]. Strong programs use evaluation functions with many
weighted features; often the features used are selected by
human designers. There is still much to be learned about
how to make the most of limited resources, and how good
features can be learned by programs.

The winning entry in the CEC 2006 Othello Competition .
was a multi-layer perceptron with 32 hidden nodes and 2113
unique weights [3]. Also doing well was a weighted piece
counter (WPC), with 64 weights, found by Co-Evolutionary
Learning (CEL) [4]. Lucas and Runarsson showed how CEL
can evolve WPCs by mutation and selection. An evolved
WPC is selected to reproduce based on its ability to make
winning sequences of moves against multiple WPCs
(mutated from same parent). Additionally, they showed the
advantage of CEL over TDL with self-play. The network
used with TDL had 64 weights as in a WPC, plus a bias
weight and hyperbolic-tangent activation function. They
observe, “Note that, TD(0) is attempting to learn the
probability of winning from a given state (when following
the ε-greedy policy), while the ES is only learning the
relative ordering of the set of game states.” Their networks
trained using TDL did not perform as well as WPCs evolved
by CEL.

This paper analyzes the obstacles in training simple
networks to play Othello using TDL, describes the
architecture of a network that was trained by TDL and self-
play to beat the champion of the CEC 2006 Othello
Competition, and discusses potential reasons for its success.

II. CEC 2006 COMPETITION [3]

A. Player Constraints

Entries consisted of evaluation functions. The function
input was a board position consisting of 64 elements. The
function output was a single real number. The functions
were “feedforward”, with no recurrency or memory of prior
board positions.

B. Board Position

Board position was communicated to the player as a 64-
element vector. Each element (0 … 63) represented a
location (square) on the 8x8 game board as shown in Fig. 1.
The value of each element was +1 to indicate a Black piece
in the square, 0 to represent an empty square, and -1 to
represent a White piece.

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

Fig. 1. Square numbering

C. Move selection

To select among legal moves, the board position after
each possible legal move was presented to the player’s
evaluation function and the output recorded. Outputs were
interpreted as larger positive magnitudes are favourable to
Black, larger negative magnitudes favourable to White. If
the player was assigned the color Black, then the move
selected was the one with the most positive output
corresponding to the resulting board position. If two or more
positions had identical best evaluations, the move was
selected randomly from among that subset. The environment
provided the capability to, with probability ε, force a
uniformly random choice among legal moves.

D. Tournament format

Three round-robin tournaments were held, one each for ε
= 0, ε = 0.01, and ε = 0.1. With ε = 0, each player played
each other player twice (once with each color). With other
values of ε, players played each other ten times for each
color.

Temporal Difference Learning of an Othello Evaluation Function
for a Small Neural Network with Shared Weights

Edward P. Manning
Brookdale Community College, Lincroft, NJ, USA

emanning@brookdalecc.edu

216

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

1-4244-0709-5/07/$20.00 ©2007 IEEE

E. Architectures provided for

There were two standard architectures provided for entry
of evaluation functions. An entry for a weighted piece
counter (WPC) consisted of 64 weight values, one for each
square. The output of the WPC is the sum, over the squares,
of the product of the input value and the weight. A
“heuristic” WPC was made available as an opponent for
testing entries.

The other standard architecture was a fully-connected
multi-layer perceptron (MLP). The number of hidden units
and the number of layers were not restricted. A sample MLP
with one hidden layer of 32 units was provided as an
example. This MLP had been trained using TDL.

F. Champion entry

The champion entry had an architecture identical to the
sample MLP. The champion was the result of evolution over
100 generations. The population of 50 networks was
initialized to the sample MLP weights and mutated.
Probability of mutation of each of the 2113 weights was 1%.
Mutation of a weight was achieved by adding or subtracting
0.01 with equal probability. The fitness function was
performance over 1000 games, with ε = 0.1, against the
heuristic WPC. Roulette-wheel selection was used to
populate the next generation.

The champion entry won all three of the tournaments in
the competition.

III. ANALYSIS

A. Temporal Difference Learning and WPCs

Temporal Difference Learning attempts to learn the
expected value of reward based on the current state from the
expected value of reward associated with succeeding states
[5]. Perfect learning is dependent on the ability to access the
current evaluations for all states without interference from
other states, and on the experience of visiting all states an
infinite number of times. In contrast, updating the weights of
a WPC for one state affects the future evaluations of all
states. In a trained WPC of reasonable skill, the moves
selected at early plies lead to states that will have BOTH a
high evaluation and a high expected value of reward. At
many game states, the evaluations of winning and losing
actions may be very close. With a greedy or ε-greedy policy,
performance will be reasonable as long as the winning state
has a higher evaluation. With continued training, a losing
action may receive a higher evaluation for a state or set of
states. When this happens for an early game state, the
expected value of reward for following states may have no
relation to that learned for common, but similar, states
reached by the previous policy. Even if the advent of a
losing streak causes a return to the former move selection at
early plies, the evaluations at later plies may have changed,
and learning will have to start from a place of much lower
performance. This is known as “catastrophic forgetting” [6].
The learning environment enables this by:

• Training on one pattern affects the evaluation of
all patterns. The value of the learning rate
determines the degree of change for interference
as well as for learning.

• Target values are based on expected value of
reward, resulting in a distribution dense near
zero for evaluations of early plies. Closely-
spaced evaluations are more susceptible to
interference.

• Weights are changed to move the network output
toward the target without regard for the resulting
performance.

In contrast, in the CEL learning environment:
• Patterns are not used in learning.
• Weights are not constrained, so resulting

evaluations can be far apart.
• A good set of weights only has to rank winning

moves higher than losing moves (as often as
possible). The set does not have to track
expected reward – a winning move can have a
low evaluation as long as it is higher than the
losing moves available from the same state.

• A set of mutated weights only reproduces if it has
already performed well.

So why choose TDL?

IV. DESIGN CONSIDERATIONS

The original intent of this research was visualization of
Othello games. One concern in visualization is the number
of dimensions. An image of the game board allows
visualization of a single position in 64 dimensions (one for
each square), but does not allow visualization of the path of
positions through the course of a game in a single image. The
ouput of an evaluation function, such as used in the CEC
2006 Othello Competition, is one-dimensional – a path can
be plotted of function output versus ply number. However, it
would be difficult to distinguish dissimilar positions that
have similar evaluations. The symmetry of the Othello game
board suggests that a 4-dimensional representation is
possible.

 d c
 a b d
 b
 b
 d b a
 c d

Fig. 2. 4-way symmetry
Fig. 2 shows the position at the start of the game. There

are axes of symmetry on the two largest diagonals. The legal
opening moves are labeled ‘b’. Having chosen a first move
and resulting board position, note that there are three other
equivalent board positions that can be obtained by 1)
reflection about the upper-left-to-lower-right diagonal, 2)

217

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

reflection about the lower-left-to-upper-right diagonal, 3)
both reflections 1 and 2 in any order. Squares on the
diagonals (‘a’ and ‘c’) are mapped to themselves by
reflections about the same diagonal. Off-diagonal squares
(‘b’ and ‘d’) clearly show the 4-way symmetry.

Four dimensions may be harder to interpret than the two
or three usually used for visualization, but may overcome the
disadvantages of either 64 dimensions or a single dimension.

MLPs have been used for reducing the dimensionality of
representation [7]. This approach was selected because there
is an existing Othello environment [3] that accepts MLPs.
The 4 visualization dimensions can be produced by a 4-unit
hidden layer. The 4-way symmetry can be enforced by
weight-sharing throughout the network. The software used
allows for trivial encoder and decoder layers (pass-through
connections). This option was selected in order to “start
small”. Unlike [7], the ability to reproduce the inputs from
the reduced representation was not a design consideration.

For an example of the use of symmetry and weight-sharing
in Othello evaluation functions, see [8], which makes use of
8-way symmetry (disregarding the starting position). In this
work, four dimensions were chosen instead of eight because
eight dimensions would be harder to visually interpret. Also,
board positions resulting from reflection about additional
axes of symmetry (horizontally or vertically through the
board’s center) are not reachable early in a legal game.

An additional design consideration was the ability to
visualize positions (and paths) in terms of the expected value
of the game result (+1 for a Black win, -1 for a White win, 0
for a draw). The existing Othello environment accepts
MLPs with one output, which can be used to approximate the
expected value of the result. This can be achieved using
TDL, as described in the ANALYSIS section above.

V. ARCHITECTURE

The architecture is shown in Fig. 4. Hidden and output
units use a hyperbolic tangent activation function.

A. Input Units

There are 64 input units, one for each square of the 8x8
Othello board. Input units, like board squares in Fig. 1, are
labeled from 0 to 63. A Black disc on a square is
represented as +1 on the corresponding input, with 0 for
empty, and -1 for White. (Unit numbering and input
representation match that described in [4].)

B. Hidden Units

There are four hidden units, one for each dimension to be
displayed. All hidden units share a common bias weight.
Each hidden unit is connected to all the input units. Only 64
weights are used to make the full 256 connections with the
input units. The weights are ordered differently for each unit
according to the four directions of symmetry of the Othello
board (“Patterns of shared input weights” in Fig. 4). Inputs
representing off-diagonal squares are each connected by
different weights to each hidden unit (HU). For example,

Input 1 is connected to HU0 by w1, to HU1 by w8, to HU2

by w55, and to HU3 by w62. Input units representing
squares on the diagonals are associated with two weights,
each connecting to two hidden units.

C. Output Unit

The output unit has a bias weight and one other weight
which is used to connect to all four hidden units. The
purpose of the output unit is to propagate game-result
information to the hidden units. The intent is to satisfy the
design consideration that the visualization will provide
information about the expected value of the game result. As
a side effect, the network is also able to provide an
evaluation function.

D. Comparison to other weight-sharing architectures

In [8], the eight axes of symmetry divided the board into
eight triangles of board locations (inputs). For each hidden
unit (“feature map”), each set of eight similar inputs shared a
single weight. Multiple hidden units were used. Because of
the weight-sharing within hidden units, there could be no
hidden units with different weights among a group of similar
inputs. This would limit the ability of each hidden unit to
recognize patterns across the entire board.

The architecture of the “visualization tool” does not share
weights within a hidden unit. This allows a hidden unit to
recognize a pattern across the entire board. Since all hidden
units are connected with the same weight to the output unit,
an advantageous pattern can be recognized in any of four
orientations. The same approach is taken in [9] for an agent
for the game of Cellz. The agents have 8-way radial
symmetry in their sensory inputs. A neural network-based
controller module is associated with each direction of
symmetry. Each module takes input from all sensors.
Weights are shared across modules for inputs that have the
same relative angle to the module. For example, the weight
from the sensor at 135° to the module at 0° is shared with the
weight from the sensor at 90° to the module at -45° (and six
others with the same relative angle of 135°). This
arrangement takes advantage of symmetry in that a
successful set of weights for one module should be
successful for all modules.

VI. LEARNING ENVIRONMENT

The weights were initialized to random values uniformly
in the range –α to +α, where α is the learning rate. The
learning rate was set to 0.0001 in an attempt to reduce inter-
pattern interference. There was no decrease in the learning
rate over time as I did not intend a long run. If two or more
potential moves have equal evaluations higher than all
others, selection decisions are made randomly among them.
Random moves were forced at a rate ε of 0.1. Weights were
stored as single-precision floating-point numbers and
updates were done with single-precision arithmetic. The
network was trained for 250,000 games with samples of the

218

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

network taken every 10,000 games.

VII. RESULTS AND DISCUSSION

A. Competition

Because the visualization tool provides an evaluation
function output, it can also act as an Othello player.
Training with self-play provides no indication of how the
player will perform against other competition. To test the
“Othello knowledge” of the visualization tool, each of the
sampled networks played 1000 games against the CEC 2006
Othello Competition champion. (All games described in this
section were played with training turned off and ε = 0.1.)
The best performing sample (number 25 of 25) then played
10,000 games against the champion; with the results shown
in Table I:

TABLE I

Competition results
Player Color Player wins Draws Champion wins
Black 2478 147 2375
White 2476 154 2370

Total 4954 301 4745

Why did TDL succeed for this architecture while it did not
in [4] for an architecture with a similar number of weights?
Some hypotheses were investigated:

• Shared weights may cause cancellation of some
interference. Each weight is updated using
values for more than one input in the presented
pattern.

• Symmetry of weights may allow exploitation of
weaknesses in an asymmetric opponent. In
addition, any position which matched the
symmetry of the network could have two
equivalent actions which would be decided
randomly – an asymmetric network might not
have a counter-play for both actions.

• The learning rate may have been small enough
relative to the distance between typical first- and
second-choice move evaluations such that
interference was reduced.

B. Weight Values

The weight values of the Othello player/visualization tool
are shown in Fig. 3. The hidden-to-output weight is
negative, so squares with more negative input-to-hidden
weights are advantageous to be occupied by the player to
move. The corner squares have the most-negative weights.
The top row of weights, including C-squares, is negative;
allowing hidden unit 0 to encourage ownership of the top
edge; the other hidden units would encourage ownership of
the other edges. The other C-squares are positive,
discouraging them from being taken when the corresponding
edge is not available.

VIII. INVESTIGATION

A. Cancellation of Interference

The symptom of catastrophic forgetting is loss of past
performance against one opponent with continued training
against a different opponent. With self-play, the “different
opponent” is the player-in-training. For a network that has
achieved stable performance against a non-learning opponent
and forced random moves, the number of wins in N games
will approximately follow a binomial distribution (only exact
if both players do not learn). With catastrophic forgetting,
performance over a series of N game samples will have a
standard deviation much higher than that expected from a

binomial distribution ([Np(1-p)]½, where p is the probability
of winning). In this experiment, the “heuristic” player of [3]
and [4] is used as the non-learning opponent to allow
comparison with [4]. The sampled networks from the
original training (see LEARNING ENVIRONMENT) were each
played 1000 games against the heuristic opponent and their
performance was recorded. The first three samples were not
used as their performance was much lower than the others’,
indicating the network was not yet trained. Table II
compares the standard deviation of the set of samples to that
expected from a binomial distribution.

TABLE II
 Standard

deviation

Binomial estimate 15.8

Sampled networks 31.5

Standard deviation of the player’s performance (based on
a mean 508 wins in 1000 games) is significantly (< .01)
higher than expected from a static network. It compares with
the performance of TDL in [4].

B. Weight symmetry

To test the effect of symmetry, the sampled network
(“Player” as in Table I) played eight games with ε = 0
against the champion – one for each combination of color
and location of first move. The player won all four games as
Black (moving first), and two of the four games as White.
The same symmetric position occurred at ply 4 of both lost
games (giving the player a choice of moves). Both choices
resulted in a loss. There was no evidence that the player was
able to exploit symmetry of position. Note that the fitness
function used to create the champion was based on a
symmetric “heuristic” player. The champion demonstrated
success in all orientations by winning the CEC 2006
competition.

C. Learning rate

The training as in LEARNING ENVIRONMENT was repeated
for several values of learning rate α. The sampled networks
each played 1000 games against the champion. Table III

219

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

shows the number of wins achieved by the best network in
each run, and the standard deviation across the “trained”
networks in each run.

TABLE III
Comparison by learning rate

α
Wins vs.

Champion
[Best Network]

Std. Dev. Of Wins
[Trained

Networks]

.01 552 46.2

.0025 513 42.3

.0005 506 38.3

.0001 517 42.3

In each case, training with TDL found a network with
good playing ability despite the presence of catastrophic
forgetting.

D. Comparison to CEL

CEL was not selected as the learning mechanism because
it did not match with the design goals for the visualization
tool. As discussed in the ANALYSIS section, CEL has some
advantages over TDL in finding a good set of weights for
playing Othello. Without the limitation of network outputs
tracking expected reward, CEL might be able to find a better
set of weights (for playing) for the same architecture.

The learning environment was a (1, 10) ES as in [4]. The
mutation function was N(0, 1/67). The fitness function was
round-robin play, with ε = 0.1. Each mutated network
played each other network twice each generation, the second
time with colors reversed. The parent network was replaced
by a network with each weight equal to 95% of the weight
from the parent plus 5% of the weight from the highest-
performing mutated network. Evolution took place over
25,000 generations, with samples taken every 1000
generations. The eighth sample played the best against the
champion (Table IV). The weights that evolved are shown
in Fig. 5.

TABLE IV
CEL player vs. Champion

CEL Player
Color

CEL Player
wins

Draws
Champion

wins

Black 2771 150 2079

White 2547 156 2297

Total 5318 306 4376

The standard deviation of wins in 1000 games against the
champion across the CEL samples was 34.4, also
significantly (< .01) more than the binomial standard
deviation.

The CEL player did not perform as well as the TDL player
with the same architecture (Table V). It was also beaten by

the heuristic WPC from [3]and [4].

TABLE V
CEL Player vs. TDL Player

CEL Player
Color

CEL Player
wins

Draws
TDL Player

wins

Black 2219 191 2590

White 2328 198 2474

Total 4547 389 5064

The above CEL player was selected for its performance
against the CEC 2006 Othello champion. Other samples
from the same CEL run were found that outperformed the
TDL player.

IX. VISUALIZATION

Further investigation of visualization has been held up
while the playing ability of the visualization tool is being
researched. Some early examples of potential uses are
shown below. The game being visualized is between the
champion network and its ancestor network, with ε = 0. Fig.
6 shows the how the hidden unit outputs vary by ply number.
The outputs of hidden units 0 and 2 start to fall at ply 45,
indicating Black is strengthening its position in those
dimensions.

The four dimensions can be followed in two 2-D images
(Fig. 7 and 8). In both examples, positions favourable to
Black are in the lower left. Positions favourable to White
are in the upper right. Fig. 7 shows the path traced by the
course of the same game as in Fig. 6 using the outputs of
hidden units 0 and 2 as the visualization dimensions.The
path begins near the origin – there is maximum uncertainty
about the outcome at the beginning of the game. Fig. 8
shows the path traced by the course of the same game using
the outputs of hidden units 1 and 3 as the visualization
dimensions.

Champion(Black) vs. Sample MLP(White)

-1

-0.8
-0.6

-0.4
-0.2

0
0.2

0.4
0.6

0.8

1 6 11 16 21 26 31 36 41 46 51 56

Ply Number

U
n
it
 O

u
tp

u
t
V

al
u
es

HU0

HU1

HU2

HU3

Fig. 6

220

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1

Output of HU0

O
u

tp
u

t
o

f
H

U
2

Fig. 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

-1 -0.5 0 0.5

Output of HU1

O
u

tp
u

t
o

f
H

U
3

Fig. 8

X. CONCLUSION

The presented network architecture can be trained by TDL
or evolved by CEL to outperform the CEC 2006 Othello
Competition champion, despite having fewer weights and
hidden units. The architecture does not reduce or eliminate
catastrophic forgetting. This confirms the caveat from [4]
that the network taken from the end of a training run may not
be the best one that appeared in training. Finding a
successful set of weights resulted from sampling from the

 sequence of networks produced by training, then selecting
between the samples based on a performance measure.
Using a single opponent as a performance standard is
unreliable, as the simple Othello players are intransitive (e.g.
the CEL player beat the champion, which beat the heuristic
WPC, which beat the CEL player). A different choice of
opponent may result in a different sample being selected.

There is a match between this architecture and the Othello
game that allows “good” sets of weights to appear during
training or co-evolution. A good set of weights selects
moves such that the entire path through the game tree results
in a win against a variety of opposing strategies. The hidden
layer and non-linearities allow multiple inputs to be
considered together as a feature. The weight-sharing
according to board symmetry enables orientation-invariant
features to be found and exploited.

ACKNOWLEDGMENT

Thanks to Simon Lucas for his encouragement. Thanks to
Kyung-Joong Kim for his champion entry as described in
[3]. Thanks to the anonymous reviewers for their insights.

REFERENCES

[1] P. B. Maggs, “Programming strategies in the game of Reversi”, BYTE,
Vol. 4, Issue 11, pp. 66-79, 1979.

[2] M. Buro, “LOGISTELLO – a strong learning othello program,” 1997,
http://www.cs.ualberta.ca/ mburo/ps/log-overview.ps.gz.

[3] S. M. Lucas,and T. P. Runarsson, “CEC 2006 Othello Competition”,
2006, http://algoval.essex.ac.uk:8080/othello/html/Othello.html.

[4] S. M. Lucas, and T. P. Runarsson, “Temporal Difference Learning
Versus Co-Evolution for Acquiring Othello Position Evaluation”,
IEEE Symposium on Computational Intelligence and Games (2006),
pages: 52-59.

[5] R. S. Sutton, “Learning to Predict by the Method of Temporal
Differences”, Machine Learning 3:9-44, 1988.

[6] R. M. French, “Catastrophic Forgetting in Connectionist Networks”,
Trends in Cognitive Sciences, 3(4) 128-135, 1999.

[7] D. DeMers and G. Cotrell, “Non-Linear Dimensionality Reduction”,
Advances in Neural Information Processing Systems, vol. 5, pp. 580-
587, 1993.

[8] A. Leouski, “Learning of Position Evaluation in the Game of
Othello”, Master’s Project, Dept. of Computer Science, University of
Massachusetts, 1995.

[9] J. Togelius and S. M. Lucas, “Forcing neurocontrollers to exploit
sensory symmetry through hard-wired modularity in the game of
Cellz”, IEEE Symposium on Computational Intelligence and Games
(2005) , pp. 37– 43.

221

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Hidden unit bias: 0.046755

Input-to-hidden weights:

Row \ Col 0 1 2 3 4 5 6 7

 0 -0.412767 -0.086716 -0.137243 -0.116847 -0.108441 -0.132597 -0.082691 -0.447977

 1 0.095415 0.066026 0.081115 0.039152 0.037808 0.075500 0.060762 0.098185

 2 -0.014942 0.006509 -0.002831 -0.007430 -0.010424 -0.003539 0.018977 -0.011253

 3 0.018324 0.002287 0.014223 0.007309 0.006887 0.008938 -0.002179 0.025855

 4 0.008673 0.001184 -0.004982 -0.003349 -0.003205 -0.011319 -0.001403 0.014132

 5 -0.030202 -0.019950 -0.000659 -0.000770 -0.002035 -0.002382 -0.024284 -0.018793

 6 0.107028 0.068674 -0.015182 0.002003 0.002427 -0.016564 0.080611 0.101164

 7 -0.185074 0.113824 0.012961 0.036921 0.034189 0.020531 0.106863 -0.190973

Output bias: 0.051627

Hidden-to-output weight: -0.608910

Fig. 3. Connection Weights of TDL-trained player

0

1

2

3

 :
:

0

1

63

Output

Input
Units

Hidden
Units

Output
Unit

Fig. 4. Network Architecture

Shared Hidden
Unit Bias

Output Unit Bias

Shared hidden-
to-output weight

w0 .. w7

: :
w56 .. w63

w0 .. w56

: :
w7 .. w63

w63 .. w7

: :
w56 .. w0

w63 .. w56

: :
w7 .. w0

64 inputs
to each

hidden unit

64

64

Pattern of shared
input-to-hidden

weights

222

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Hidden unit bias: 0.074982

Input-to-hidden weights:

Row \ Col 0 1 2 3 4 5 6 7

0 0.176211 -0.016419 0.065518 -0.055454 -0.057461 0.100878 -0.098303 0.254570

1 -0.104481 -0.130790 0.0233256 -0.009091 -0.067571 0.065519 -0.152240 -0.108126

2 0.148707 -0.008260 -0.017373 -0.067466 -0.028830 -0.013478 -0.099959 0.097666

3 0.017459 -0.038781 0.064864 -0.040968 0.000638 -0.056187 0.012138 0.029352

4 -0.090786 -0.039387 -0.013869 0.003110 0.040638 -0.023122 0.034377 -0.068545

5 0.050908 0.057751 0.060624 0.107575 0.059930 0.043094 -0.088655 0.083757

6 -0.167291 -0.164509 -0.105543 0.007365 -0.052622 -0.074962 -0.062038 -0.054924

7 0.276004 0.064116 0.121930 0.061563 0.026529 0.063474 -0.009005 0.142357

Output bias: 0.054569

Hidden-to-output weight: 0.063101

Fig. 5. Connection Weights of CEL-evolved player

223

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

