
Abstract—This paper presents an artificial neural network 
with shared weights, trained to play the game of Othello by self-
play with Temporal Difference Learning (TDL).  The network 
performs as well as the champion of the CEC 2006 Othello 
Evaluation Function Competition.  The TDL-trained network 
contains only 67 unique weights compared to 2113 for the 
champion. 

Keywords: Othello, temporal difference learning, shared 
weights, neural network. 

I. INTRODUCTION

The game of Othello has been of interest to the 
computational intelligence community for many years [1].  
Its moderately large state space and moderate branching 
factor make it challenging enough such that it has not been 
solved.  It is different from games such as chess and draughts 
(checkers) in that there is a large variation in board position 
from ply to ply.  Computer programs using efficient look-
ahead search algorithms have beaten the best human players 
[2].  Strong programs use evaluation functions with many 
weighted features; often the features used are selected by 
human designers.  There is still much to be learned about 
how to make the most of limited resources, and how good 
features can be learned by programs. 

The winning entry in the CEC 2006 Othello Competition .  
was a multi-layer perceptron with 32 hidden nodes and 2113 
unique weights [3].  Also doing well was a weighted piece 
counter (WPC), with 64 weights, found by Co-Evolutionary 
Learning (CEL) [4].  Lucas and Runarsson showed how CEL 
can evolve WPCs by mutation and selection.  An evolved 
WPC is selected to reproduce based on its ability to make 
winning sequences of moves against multiple WPCs 
(mutated from same parent).  Additionally, they showed the 
advantage of CEL over TDL with self-play.  The network 
used with TDL had 64 weights as in a WPC, plus a bias 
weight and hyperbolic-tangent activation function.  They 
observe, “Note that, TD(0) is attempting to learn the 
probability of winning from a given state (when following 
the ε-greedy policy), while the ES is only learning the 
relative ordering of the set of game states.”  Their networks 
trained using TDL did not perform as well as WPCs evolved 
by CEL. 

This paper analyzes the obstacles in training simple 
networks to play Othello using TDL, describes the 
architecture of a network that was trained by TDL and self-
play to beat the champion of the CEC 2006 Othello 
Competition, and discusses potential reasons for its success. 

II. CEC 2006 COMPETITION [3] 

A. Player Constraints 

Entries consisted of evaluation functions.  The function 
input was a board position consisting of 64 elements.  The 
function output was a single real number.  The functions 
were “feedforward”, with no recurrency or memory of prior 
board positions. 

B. Board Position 

Board position was communicated to the player as a 64-
element vector.  Each element (0 … 63) represented a 
location (square) on the 8x8 game board as shown in Fig. 1.  
The value of each element was +1 to indicate a Black piece 
in the square, 0 to represent an empty square, and -1 to 
represent a White piece. 

0 1 2 3 4 5 6 7 
8 9 10 11 12 13 14 15 

16 17 18 19 20 21 22 23 
24 25 26 27 28 29 30 31 
32 33 34 35 36 37 38 39 
40 41 42 43 44 45 46 47 
48 49 50 51 52 53 54 55 
56 57 58 59 60 61 62 63 

Fig. 1.  Square numbering 

C. Move selection 

To select among legal moves, the board position after 
each possible legal move was presented to the player’s 
evaluation function and the output recorded.  Outputs were 
interpreted as larger positive magnitudes are favourable to 
Black, larger negative magnitudes favourable to White.  If 
the player was assigned the color Black, then the move 
selected was the one with the most positive output 
corresponding to the resulting board position. If two or more 
positions had identical best evaluations, the move was 
selected randomly from among that subset.  The environment 
provided the capability to, with probability ε, force a 
uniformly random choice among legal moves. 

D. Tournament format 

Three round-robin tournaments were held, one each for ε
= 0, ε = 0.01, and  ε = 0.1.  With ε = 0, each player played 
each other player twice (once with each color).  With other 
values of ε, players played each other ten times for each 
color. 

Temporal Difference Learning of an Othello Evaluation Function 
for a Small Neural Network with Shared Weights 

Edward P. Manning 
Brookdale Community College, Lincroft, NJ, USA 

emanning@brookdalecc.edu 

216

Proceedings of the 2007 IEEE Symposium on 
Computational Intelligence and Games (CIG 2007)

1-4244-0709-5/07/$20.00 ©2007 IEEE



E. Architectures provided for 

There were two standard architectures provided for entry 
of evaluation functions.  An entry for a weighted piece 
counter (WPC) consisted of 64 weight values, one for each 
square.  The output of the WPC is the sum, over the squares, 
of the product of the input value and the weight.  A 
“heuristic” WPC was made available as an opponent for 
testing entries. 

The other standard architecture was a fully-connected 
multi-layer perceptron (MLP).  The number of hidden units 
and the number of layers were not restricted.  A sample MLP 
with one hidden layer of 32 units was provided as an 
example.  This MLP had been trained using TDL. 

F. Champion entry 

The champion entry had an architecture identical to the 
sample MLP.  The champion was the result of evolution over 
100 generations.  The population of 50 networks was 
initialized to the sample MLP weights and mutated.  
Probability of mutation of each of the 2113 weights was 1%.  
Mutation of a weight was achieved by adding or subtracting 
0.01 with equal probability.  The fitness function was 
performance over 1000 games, with  ε = 0.1, against the 
heuristic WPC.  Roulette-wheel selection was used to 
populate the next generation. 

The champion entry won all three of the tournaments in 
the competition. 

III. ANALYSIS 

A. Temporal Difference Learning and WPCs 

Temporal Difference Learning attempts to learn the 
expected value of reward based on the current state from the 
expected value of reward associated with succeeding states 
[5].  Perfect learning is dependent on the ability to access the 
current evaluations for all states without interference from 
other states, and on the experience of visiting all states an 
infinite number of times.  In contrast, updating the weights of 
a WPC for one state affects the future evaluations of all 
states.  In a trained WPC of reasonable skill, the moves 
selected at early plies lead to states that will have BOTH a 
high evaluation and a high expected value of reward.  At 
many game states, the evaluations of winning and losing 
actions may be very close.  With a greedy or ε-greedy policy, 
performance will be reasonable as long as the winning state 
has a higher evaluation.  With continued training, a losing 
action may receive a higher evaluation for a state or set of 
states.  When this happens for an early game state, the 
expected value of reward for following states may have no 
relation to that learned for common, but similar, states 
reached by the previous policy.  Even if the advent of a 
losing streak causes a return to the former move selection at 
early plies, the evaluations at later plies may have changed, 
and learning will have to start from a place of much lower 
performance.  This is known as “catastrophic forgetting” [6].  
The learning environment enables this by: 

• Training on one pattern affects the evaluation of 
all patterns.  The value of the learning rate 
determines the degree of change for interference 
as well as for learning. 

• Target values are based on expected value of 
reward, resulting in a distribution dense near 
zero for evaluations of early plies.  Closely-
spaced evaluations are more susceptible to 
interference. 

• Weights are changed to move the network output 
toward the target without regard for the resulting 
performance. 

In contrast, in the CEL learning environment: 
• Patterns are not used in learning. 
• Weights are not constrained, so resulting 

evaluations can be far apart. 
• A good set of weights only has to rank winning 

moves higher than losing moves (as often as 
possible).  The set does not have to track 
expected reward – a winning move can have a 
low evaluation as long as it is higher than the 
losing moves available from the same state. 

• A set of mutated weights only reproduces if it has 
already performed well. 

So why choose TDL? 

IV. DESIGN CONSIDERATIONS

The original intent of this research was visualization of 
Othello games.  One concern in visualization is the number 
of dimensions. An image of the game board allows 
visualization of a single position in 64 dimensions (one for 
each square), but does not allow visualization of the path of 
positions through the course of a game in a single image. The 
ouput of an evaluation function, such as used in the CEC 
2006 Othello Competition, is one-dimensional – a path can 
be plotted of function output versus ply number.  However, it 
would be difficult to distinguish dissimilar positions that 
have similar evaluations.  The symmetry of the Othello game 
board suggests that a 4-dimensional representation is 
possible. 

        
     d c  
  a b   d  
  b    
   b   
 d   b a   
 c d      
        

Fig. 2. 4-way symmetry  
Fig. 2 shows the position at the start of the game.  There 

are axes of symmetry on the two largest diagonals.  The legal 
opening moves are labeled ‘b’.  Having chosen a first move 
and resulting board position, note that there are three other 
equivalent board positions that can be obtained by 1) 
reflection about the upper-left-to-lower-right diagonal, 2) 
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reflection about the lower-left-to-upper-right diagonal, 3) 
both reflections 1 and 2 in any order.  Squares on the 
diagonals (‘a’ and ‘c’) are mapped to themselves by 
reflections about the same diagonal.  Off-diagonal squares 
(‘b’ and ‘d’) clearly show the 4-way symmetry. 

Four dimensions may be harder to interpret than the two 
or three usually used for visualization, but may overcome the 
disadvantages of either 64 dimensions or a single dimension. 

MLPs have been used for reducing the dimensionality of 
representation [7].  This approach was selected because there 
is an existing Othello environment [3] that accepts MLPs.  
The 4 visualization dimensions can be produced by a 4-unit 
hidden layer.  The 4-way symmetry can be enforced by 
weight-sharing throughout the network.  The software used 
allows for trivial encoder and decoder layers (pass-through 
connections).  This option was selected in order to “start 
small”.  Unlike [7], the ability to reproduce the inputs from 
the reduced representation was not a design consideration.   

For an example of the use of symmetry and weight-sharing 
in Othello evaluation functions, see [8], which makes use of 
8-way symmetry (disregarding the starting position).  In this 
work, four dimensions were chosen instead of eight because 
eight dimensions would be harder to visually interpret.  Also, 
board positions resulting from reflection about additional 
axes of symmetry (horizontally or vertically through the 
board’s center) are not reachable early in a legal game.  

An additional design consideration was the ability to 
visualize positions (and paths) in terms of the expected value 
of the game result (+1 for a Black win, -1 for a White win, 0 
for a draw).  The existing Othello environment accepts 
MLPs with one output, which can be used to approximate the 
expected value of the result.  This can be achieved using 
TDL, as described in the ANALYSIS section above. 

V. ARCHITECTURE

The architecture is shown in Fig. 4.  Hidden and output 
units use a hyperbolic tangent activation function.

A. Input Units 

There are 64 input units, one for each square of the 8x8 
Othello board.    Input units, like board squares in Fig. 1, are 
labeled from 0 to 63.  A Black disc on a square is 
represented as +1 on the corresponding input, with 0 for 
empty, and -1 for White. (Unit numbering and input 
representation match that described in [4].)  

B. Hidden Units  

There are four hidden units, one for each dimension to be 
displayed.  All hidden units share a common bias weight.  
Each hidden unit is connected to all the input units.  Only 64 
weights are used to make the full 256 connections with the 
input units.  The weights are ordered differently for each unit 
according to the four directions of symmetry of the Othello 
board (“Patterns of shared input weights” in Fig. 4).  Inputs 
representing off-diagonal squares are each connected by 
different weights to each hidden unit (HU).  For example, 

Input 1 is connected to HU0 by w1, to HU1 by w8, to HU2 

by w55, and to HU3 by w62.  Input units representing 
squares on the diagonals are associated with two weights, 
each connecting to two hidden units. 

C. Output Unit 

The output unit has a bias weight and one other weight 
which is used to connect to all four hidden units.  The 
purpose of the output unit is to propagate game-result 
information to the hidden units.  The intent is to satisfy the 
design consideration that the visualization will provide 
information about the expected value of the game result.  As 
a side effect, the network is also able to provide an 
evaluation function. 

D. Comparison to other weight-sharing  architectures 

In [8], the eight axes of symmetry divided the board into 
eight triangles of board locations (inputs).  For each hidden 
unit (“feature map”), each set of eight similar inputs shared a 
single weight.  Multiple hidden units were used.  Because of 
the weight-sharing within hidden units, there could be no 
hidden units with different weights among a group of similar 
inputs.  This would limit the ability of each hidden unit to 
recognize patterns across the entire board. 

The architecture of the “visualization tool” does not share 
weights within a hidden unit.  This allows a hidden unit to 
recognize a pattern across the entire board.  Since all hidden 
units are connected with the same weight to the output unit, 
an advantageous pattern can be recognized in any of four 
orientations.  The same approach is taken in [9] for an agent 
for the game of Cellz.  The agents have 8-way radial 
symmetry in their sensory inputs.  A neural network-based 
controller module is associated with each direction of 
symmetry.  Each module takes input from all sensors.  
Weights are shared across modules for inputs that have the 
same relative angle to the module.  For example, the weight 
from the sensor at 135° to the module at 0° is shared with the 
weight from the sensor at 90° to the module at -45° (and six 
others with the same relative angle of 135°).  This 
arrangement takes advantage of symmetry in that a 
successful set of weights for one module should be 
successful for all modules. 

VI. LEARNING ENVIRONMENT

The weights were initialized to random values uniformly 
in the range –α to +α, where α is the learning rate.  The 
learning rate was set to 0.0001 in an attempt to reduce inter-
pattern interference.  There was no decrease in the learning 
rate over time as I did not intend a long run. If two or more 
potential moves have equal evaluations higher than all 
others, selection decisions are made randomly among them. 
Random moves were forced at a rate ε of 0.1. Weights were 
stored as single-precision floating-point numbers and 
updates were done with single-precision arithmetic.  The 
network was trained for 250,000 games with samples of the 
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network taken every 10,000 games.  

VII. RESULTS AND DISCUSSION

A. Competition 

Because the visualization tool provides an evaluation 
function output, it can also act as an Othello player.  
Training with self-play provides no indication of how the 
player will perform against other competition. To test the 
“Othello knowledge” of the visualization tool, each of the 
sampled networks played 1000 games against the CEC 2006 
Othello Competition champion.  (All games described in this 
section were played with training turned off and ε = 0.1.) 
The best performing sample (number 25 of 25) then played 
10,000 games against the champion; with the results shown 
in Table I: 

TABLE I  

Competition results 
Player Color Player wins Draws Champion wins 
Black 2478 147 2375 
White 2476 154 2370 

Total 4954 301 4745 

Why did TDL succeed for this architecture while it did not 
in [4] for an architecture with a similar number of weights? 
Some hypotheses were investigated: 

• Shared weights may cause cancellation of some 
interference.  Each weight is updated using 
values for more than one input in the presented 
pattern. 

• Symmetry of weights may allow exploitation of 
weaknesses in an asymmetric opponent.  In 
addition, any position which matched the 
symmetry of the network could have two 
equivalent actions which would be decided 
randomly – an asymmetric network might not 
have a counter-play for both actions. 

• The learning rate may have been small enough 
relative to the distance between typical first- and 
second-choice move evaluations such that 
interference was reduced. 

B. Weight Values 

The weight values of the Othello player/visualization tool 
are shown in Fig. 3.  The hidden-to-output weight is 
negative, so squares with more negative input-to-hidden 
weights are advantageous to be occupied by the player to 
move.  The corner squares have the most-negative weights.  
The top row of weights, including C-squares, is negative; 
allowing hidden unit 0 to encourage ownership of the top 
edge; the other hidden units would encourage ownership of 
the other edges.  The other C-squares are positive, 
discouraging them from being taken when the corresponding 
edge is not available. 

VIII. INVESTIGATION

A. Cancellation of Interference 

The symptom of catastrophic forgetting is loss of past 
performance against one opponent with continued training 
against a different opponent.  With self-play, the “different 
opponent” is the player-in-training.  For a network that has 
achieved stable performance against a non-learning opponent 
and forced random moves, the number of wins in N games 
will approximately follow a binomial distribution (only exact 
if both players do not learn).  With catastrophic forgetting, 
performance over a series of N game samples will have a 
standard deviation much higher than that expected from a 

binomial distribution ([Np(1-p)]½, where p is the probability 
of winning).  In this experiment, the “heuristic” player of [3] 
and [4] is used as the non-learning opponent to allow 
comparison with [4].  The sampled networks from the 
original training (see LEARNING ENVIRONMENT) were each 
played 1000 games against the heuristic opponent and their 
performance was recorded.  The first three samples were not 
used as their performance was much lower than the others’, 
indicating the network was not yet trained.  Table II 
compares the standard deviation of the set of samples to that 
expected from a binomial distribution. 

TABLE II 
 Standard 

deviation 

Binomial estimate 15.8 

Sampled networks 31.5 

Standard deviation of the player’s performance (based on 
a mean 508 wins in 1000 games) is significantly (< .01) 
higher than expected from a static network.  It compares with 
the performance of TDL in [4]. 

B. Weight symmetry 

To test the effect of symmetry,  the sampled network 
(“Player” as in Table I) played eight games with ε = 0 
against the champion – one for each combination of color 
and location of first move.  The player won all four games as 
Black (moving first), and two of the four games as White.  
The same symmetric position occurred at ply 4 of both lost 
games (giving the player a choice of moves).  Both choices 
resulted in a loss.  There was no evidence that the player was 
able to exploit symmetry of position.  Note that the fitness 
function used to create the champion was based on a 
symmetric “heuristic” player.  The champion demonstrated 
success in all orientations by winning the CEC 2006 
competition.   

C. Learning rate 

The training as in LEARNING ENVIRONMENT was repeated 
for several values of learning rate α.  The sampled networks 
each played 1000 games against the champion.  Table III 

219

Proceedings of the 2007 IEEE Symposium on 
Computational Intelligence and Games (CIG 2007)



shows the number of wins achieved by the best network in 
each run, and the standard deviation across the “trained” 
networks in each run. 

TABLE III 
Comparison by learning rate 

α
Wins vs. 

Champion 
[Best Network] 

Std. Dev. Of Wins 
[Trained 

Networks] 

.01 552 46.2 

.0025 513 42.3 

.0005 506 38.3 

.0001 517 42.3 

In each case, training with TDL found a network with 
good playing ability despite the presence of catastrophic 
forgetting.   

D. Comparison to CEL 

CEL was not selected as the learning mechanism because 
it did not match with the design goals for the visualization 
tool.  As discussed in the ANALYSIS section, CEL has some 
advantages over TDL in finding a good set of weights for 
playing Othello.  Without the limitation of network outputs 
tracking expected reward, CEL might be able to find a better 
set of weights (for playing) for the same architecture. 

The learning environment was a (1, 10) ES as in [4].  The 
mutation function was N(0, 1/67).  The fitness function was 
round-robin play, with ε = 0.1.  Each mutated network 
played each other network twice each generation, the second 
time with colors reversed.  The parent network was replaced 
by a network with each weight equal to 95% of the weight 
from the parent plus 5% of the weight from the highest-
performing mutated network.  Evolution took place over 
25,000 generations, with samples taken every 1000 
generations.  The eighth sample played the best against the 
champion (Table IV).  The weights that evolved are shown 
in Fig. 5. 

TABLE IV  
CEL player vs. Champion 

CEL Player 
Color 

CEL Player 
wins 

Draws 
Champion  

wins 

Black 2771 150 2079 

White 2547 156 2297 

Total 5318 306 4376 

The standard deviation of wins in 1000 games against the 
champion across the CEL samples was 34.4, also 
significantly (< .01) more than the binomial standard 
deviation. 

The CEL player did not perform as well as the TDL player 
with the same architecture (Table V).  It was also beaten by 

the heuristic WPC from [3]and [4]. 

TABLE V  
CEL Player vs. TDL Player

CEL Player 
Color 

CEL Player 
wins 

Draws 
TDL Player 

wins 

Black 2219 191 2590 

White 2328 198 2474 

Total 4547 389 5064 

The above CEL player was selected for its performance 
against the CEC 2006 Othello champion.  Other samples 
from the same CEL run were found that outperformed the 
TDL player. 

IX. VISUALIZATION

Further investigation of visualization has been held up 
while the playing ability of the visualization tool is being 
researched.  Some early examples of potential uses are 
shown below.  The game being visualized is between the 
champion network and its ancestor network, with ε = 0.  Fig. 
6 shows the how the hidden unit outputs vary by ply number.  
The outputs of hidden units 0 and 2 start to fall at ply 45, 
indicating Black is strengthening its position in those 
dimensions.   

The four dimensions can be followed in two 2-D images 
(Fig. 7 and 8).  In both examples, positions favourable to 
Black are in the lower left.  Positions favourable to White 
are in the upper right.  Fig. 7 shows the path traced by the 
course of the same game as in Fig. 6 using the outputs of 
hidden units 0 and 2 as the visualization dimensions.The 
path begins near the origin – there is maximum uncertainty 
about the outcome at the beginning of the game.  Fig. 8 
shows the path traced by the course of the same game using 
the outputs of hidden units 1 and 3 as the visualization 
dimensions. 
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X. CONCLUSION

The presented network architecture can be trained by TDL 
or evolved by CEL to outperform the CEC 2006 Othello 
Competition champion, despite having fewer weights and 
hidden units. The architecture does not reduce or eliminate 
catastrophic forgetting. This confirms the caveat from [4] 
that the network taken from the end of a training run may not 
be the best one that appeared in training.  Finding a 
successful set of weights resulted from sampling from the

 sequence of networks produced by training, then selecting 
between the samples based on a performance measure.  
Using a single opponent as a performance standard is 
unreliable, as the simple Othello players are intransitive (e.g. 
the CEL player beat the champion, which beat the heuristic 
WPC, which beat the CEL player).  A different choice of 
opponent may result in a different sample being selected. 

There is a match between this architecture and the Othello 
game that allows “good” sets of weights to appear during 
training or co-evolution.  A good set of weights selects 
moves such that the  entire path through the game tree results 
in a win against a variety of opposing strategies.  The hidden 
layer and non-linearities allow multiple inputs to be 
considered together as a feature.  The weight-sharing 
according to board symmetry enables orientation-invariant 
features to be found and exploited. 

ACKNOWLEDGMENT

Thanks to Simon Lucas for his encouragement.  Thanks to 
Kyung-Joong Kim for his champion entry as described in 
[3].  Thanks to the anonymous reviewers for their insights. 

REFERENCES

[1] P. B. Maggs, “Programming strategies in the game of Reversi”, BYTE, 
Vol. 4, Issue 11, pp. 66-79, 1979. 

[2] M. Buro, “LOGISTELLO – a strong learning othello program,” 1997, 
http://www.cs.ualberta.ca/ mburo/ps/log-overview.ps.gz. 

[3] S. M. Lucas,and  T. P. Runarsson, “CEC 2006 Othello Competition”, 
2006, http://algoval.essex.ac.uk:8080/othello/html/Othello.html. 

[4] S. M. Lucas, and T. P. Runarsson, “Temporal Difference Learning 
Versus Co-Evolution for Acquiring Othello Position Evaluation”, 
IEEE Symposium on Computational Intelligence and Games (2006), 
pages: 52-59. 

[5] R. S. Sutton, “Learning to Predict by the Method of Temporal 
Differences”, Machine Learning 3:9-44, 1988. 

[6] R. M. French, “Catastrophic Forgetting in Connectionist Networks”, 
Trends in Cognitive Sciences, 3(4) 128-135, 1999. 

[7] D. DeMers and G. Cotrell, “Non-Linear Dimensionality Reduction”, 
Advances in Neural Information Processing Systems, vol. 5, pp. 580-
587, 1993. 

[8] A. Leouski, “Learning of Position Evaluation in the Game of 
Othello”, Master’s Project, Dept. of Computer Science, University of 
Massachusetts, 1995. 

[9] J. Togelius and S. M. Lucas, “Forcing neurocontrollers to exploit 
sensory symmetry through hard-wired modularity in the game of 
Cellz”, IEEE Symposium on Computational Intelligence and Games 
(2005) , pp. 37– 43. 

221

Proceedings of the 2007 IEEE Symposium on 
Computational Intelligence and Games (CIG 2007)



Hidden unit bias: 0.046755  
  
Input-to-hidden weights: 

Row \ Col 0 1 2 3 4 5 6 7 

 0 -0.412767 -0.086716 -0.137243 -0.116847 -0.108441 -0.132597 -0.082691 -0.447977 

 1 0.095415 0.066026 0.081115 0.039152 0.037808 0.075500 0.060762 0.098185 

 2 -0.014942 0.006509 -0.002831 -0.007430 -0.010424 -0.003539 0.018977 -0.011253 

 3 0.018324 0.002287 0.014223 0.007309 0.006887 0.008938 -0.002179 0.025855 

 4 0.008673 0.001184 -0.004982 -0.003349 -0.003205 -0.011319 -0.001403 0.014132 

 5 -0.030202 -0.019950 -0.000659 -0.000770 -0.002035 -0.002382 -0.024284 -0.018793 

 6 0.107028 0.068674 -0.015182 0.002003 0.002427 -0.016564 0.080611 0.101164 

 7 -0.185074 0.113824 0.012961 0.036921 0.034189 0.020531 0.106863 -0.190973 

Output bias: 0.051627   

Hidden-to-output weight:  -0.608910 

Fig. 3.  Connection Weights of TDL-trained player 
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Hidden unit bias: 0.074982
  
Input-to-hidden weights: 

Row \ Col 0 1 2 3 4 5 6 7 

0 0.176211 -0.016419 0.065518 -0.055454 -0.057461 0.100878 -0.098303 0.254570 

1 -0.104481 -0.130790 0.0233256 -0.009091 -0.067571 0.065519 -0.152240 -0.108126 

2 0.148707 -0.008260 -0.017373 -0.067466 -0.028830 -0.013478 -0.099959 0.097666 

3 0.017459 -0.038781 0.064864 -0.040968 0.000638 -0.056187 0.012138 0.029352 

4 -0.090786 -0.039387 -0.013869 0.003110 0.040638 -0.023122 0.034377 -0.068545 

5 0.050908 0.057751 0.060624 0.107575 0.059930 0.043094 -0.088655 0.083757 

6 -0.167291 -0.164509 -0.105543 0.007365 -0.052622 -0.074962 -0.062038 -0.054924 

7 0.276004 0.064116 0.121930 0.061563 0.026529 0.063474 -0.009005 0.142357 

Output bias: 0.054569

Hidden-to-output weight: 0.063101 

Fig. 5.  Connection Weights of CEL-evolved player 
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