
Solving Japanese Puzzles with Heuristics

Sancho Salcedo-Sanz†, Emilio G. Ortı́z-Garcı́a†, Angel M. Pérez-Bellido†, Antonio Portilla-Figueras† and Xin Yao‡

†Department of Signal Theory and Communications
Universidad de Alcalá,

Spain
sancho.salcedo@uah.es

‡School of Computer Science
The University of Birmingham,

United Kingdom
x.yao@cs.bham.ac.uk

Abstract— This paper presents two heuristics algorithms
to solve Japanese puzzles, both black and white puzzles and
color puzzles. First, we present ad-hoc heuristics which use
the information in rows, columns, and puzzle’s constraints to
obtain the solution of the puzzle. The best heuristic developed
for black and white puzzles is then extended to solving color
Japanese puzzles. We show the performance of the proposed
heuristics in several examples from a well known web page
devoted to this kind of puzzles. Comparison with an existing
solver based on constraint programming and with a genetic
algorithm is carried out.

Keywords: Japanese puzzles, Nonograms, Puzzles solver,
Heuristics.

I. INTRODUCTION

Puzzles, board games and computer games in general
have been studied for many years in Computer Science,
Mathematics and Artificial Intelligence fields [1]-[3]. They
not only provide challenging problems, but also good test-
beds for comparing algorithms, and novel ideas to be applied
in real world problems. In the last few years, the interest in
applying heuristic approaches to solving games and puzzles
have been massive [4]-[7], which has contributed to the
development of this kind of algorithms. The work we present
here tackles the solution of a popular type of puzzles known
as Japanese puzzles, which have gained popularity in the last
few years.

A Japanese puzzle is a interesting and addictive game,
which take the form of a N ×M grid, with numbers situated
on the left and the top rows and columns. There are two types
of Japanese puzzles, black and white and color puzzles. In
black and white Japanese puzzles, the numbers in rows and
columns represent how many blocks of cells must be filled
in the grid, in the order they appear. If there are two or more
numbers, the blocks of cells in the grid must be separated by
at least one blank square. For example, Figure 1 (b) shows
the solution to the Japanese puzzle displayed in Figure 1 (a).

Note that in the first row, 3 and then 7 blocks must be
filled, whereas in the second row 1, 2, 5, 1 and finally another
block of 1 must be filled, with at least one blank between
them. Columns in the puzzle follow the same rules. When all
requirements in rows and columns are fulfilled, the puzzle
is solved, and a nice picture can be seen, in this case the
draw of King-Kong up to the Empire State Building in New

(a)

(b)

Fig. 1. Example of a black and white Japanese puzzle; (a) Grid
with conditions; (b) Solution.

York. Color Japanese puzzles follows similar rules than black
and white puzzles, but taking into account that blocks of the
same color must be separated by at least one blank square,
and blocks of different color may or may be not separated by
blanks squares. See [8], [9] and [10] for examples on color
Japanese puzzles.

Japanese puzzles were independently created by Non
Ishida, a graphics editor, and Tetsuya Nishio, a professional
puzzler, in 1987. At the beginning, Japanese puzzles were

224

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

1-4244-0709-5/07/$20.00 ©2007 IEEE

also named Picture-forming logic puzzles. Soon, the puzzles
started appearing in several Japanese puzzle magazines and
gaining popularity, until 1990, when the newspaper The
Sunday Telegraph starts publishing them on a weekly basis.
In the United Kingdom the name for this kind of puzzles
were Nonograms.

In 1993, Non Ishida published the first book of Nonograms
in Japan, and later, the Sunday Telegraph published another
book in the United Kingdom entitled the book of Nonograms.
Japanese puzzles quickly spread through the whole world,
and start being published in the United States, Sweden, South
Africa, Israel and several other countries.

In the last few years the popularity of these puzzles has
increased a lot. There are several companies which publish
magazines and web pages only devoted to Japanese puzzles
[8], [11], [12], [13], in countries like Spain, Germany, The
Netherlands, Italy, Finland etc.

These puzzles are so addictive because they mix math-
ematics related to constrained combinatorial optimization
problems with the surprise and challenge of discovering the
secret of the image in the puzzle. For this reason, Japanese
puzzles are really adequate for educational purposes, and
also, we will show that they can be used as test bed problems
in the development of new computational algorithms. In this
sense, Japanese puzzles can be seen as NP-hard combinato-
rial optimization problems as well [14].

In this paper we propose two different computer ad-hoc
heuristics for solving black and white Japanese puzzles, and
the extension of one of them to solve color puzzles. We
test the performance of our approaches by solving a set of
puzzles downloaded from a well known web page devoted
to these puzzles (see [8]), and we will show that the Logic
Ad-hoc heuristic we propose is able to solve all the puzzles
tested (black and white and color ones) within seconds. We
compare our approaches to black and white puzzles with
a popular solver which can be free downloaded from the
Internet. We also provide the results obtained by our Logic
Ad-hoc algorithm in color puzzle examples.

The rest of the paper is structured as follows: next section
gives some indications to begin the process of solving a
Japanese puzzle. Section III describes the computer algo-
rithms we propose in this paper, and Section IV shows the
performance of our heuristics in a set of Japanese puzzles.
Section V closes de paper giving some final remarks.

II. SOLVING JAPANESE PUZZLES

Japanese puzzles are thought to be solved by people
through the use of logic thinking. Japanese puzzles must be
unique-solution puzzles, so, if the reasonings of the solver
are right, he will finally get the solution to the puzzle. The
main idea to solve a Japanese puzzle is to discover squares
in the grid which must be filled, or must be blanks, using the
logic of the problem, i.e. using that the puzzle has associated
several constraints because of its structure in a grid. In the
case of a color puzzle, the same idea but using several colors
instead of two.

There are several hints to solve Japanese puzzles by hand
explained in [10], which is a nice way to familiarize with
the puzzles and get the logic behind them. Some of these
hints can be easily implemented in an algorithmic form, so
we describe them.

A. Hints for black and white puzzles

1) Complete fill: Consider a row or a column in a
Japanese puzzle with a single number, such that it is equal to
the length of the puzzle grid (N for rows, M for columns)
(see Figure 2 (a), with N or M equal to 15). The only
possibility for this case is to fill the complete row or column,
as can be seen in Figure 2 (b).

(a)

(b)

Fig. 2. (a) Example of a full line preprocessing condition; (b) Full
line fixed.

2) Complete fill with definite blanks: A similar situation
is the case of a row or column with a several numbers ni (let
us consider k numbers), which fulfil the following condition:

∑
i

ni + (k − 1) = M (1)

for rows, or

∑
i

ni + (k − 1) = N (2)

for columns. Note that the term (k − 1) is the minimum
number of blanks possible for the row or column (see Figure
3 (a) as an example).

(a)

(b)

Fig. 3. (a) Example of a full line with blanks preprocessing
condition; (b) Full line with blanks fixed.

In this situation, the only possibility is to fill the corre-
sponding squares and also mark k− 1 definite blanks as can
be seen in Figure 3 (b).

3) Partial fills: Let us consider now the case in Figure 4
(a).

This example shows a 15-length row or column with a
single number, 10 in a Japanese puzzle. Note that, indepen-
dently of the initial first square we choose, at least the five
central squares of the row will be filled, as shown in Figure

225

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

(a)

(b)

Fig. 4. (a) Example of a partial fixed condition in a line; (b) Squares
fixed.

4 (b). It is immediate that, in a situation like this, one can
fill ni − l squares if

ni − l > 0. (3)

where l = M − (
∑

i ni + (k − 1)).
A more complicated situation is considered in Figure 5

(a).

(a)

(b)

Fig. 5. (a) Example of multiple partial condition in a line; (b)
Squares fixed.

In this situation, the number of filled squares depend on
the row or column length and the numbers ni (k numbers).
Consider the given example in Figure 5. The first number
ni = 3, in this case let us suppose that we are dealing with a
row, so M = 20, and k = 5. Note that the first square where
the number ni = 3 can start is square 1, and the last square
is given by the expression

Initial square + M −
(∑

i

ni + (k − 1)

)
(4)

since any other beginning square will make impossible to
allocate the rest of filled squares and corresponding blanks.
In this example, the initial square to be filled is the square
1 as was stated above, and the last starting square is square
2. Since the ni = 3, no matter that we start in square 1 or
2, squares 2 and 3 will always be filled, so they are definite
filled squares and we can mark them (see Figure 5 (b)). The
rest of filled squares of the example can be obtained in a
similar way.

The strategies outlined above for black and white puzzles
are applicable to color puzzles, but there are several extra
rules which must be taken into account. We have not included
figures explaining these extra rules due to rules of the
workshop discourage color graphs, however, the reader can
find a good introduction to color Japanese puzzles in [10].

B. Preprocessing: the initial solution

The above subsections have shown us how the constraints
of the puzzles can be used to get definite blanks or filled
squares in a given puzzle. Moreover, it is straight forward
that any algorithm for solving Japanese puzzles should start
looking for define blanks and filled squares using the rules
described above. This can be seen as a preprocessing, in
which for every row and column of the puzzle we look for
complete fills, complete fills with definite blanks and partial
fills. It is immediate that the more squares can be filled or be
defined as blanks in the preprocessing stage, the easier will
be to get the solution of the Japanese puzzle.

III. AD-HOC HEURISTICS FOR SOLVING JAPANESE

PUZZLES

In this section we present two ad-hoc algorithms, we have
called Combinatorial ad-hoc and Logic ad-hoc heuristics.
These heuristics are general approaches for solving black
and white Japanese puzzles, and the logic ad-hoc can be
extended to solve color puzzles.

1) Combinatorial Ad-hoc heuristic: The first ad-hoc ap-
proach we propose is based on trying feasible combinations
of solutions in each row and column of the puzzle. It starts
with the preprocessing procedure described in Section II-B.
This procedure provides the initial filled and blanks squares
in the puzzle. We sort then the columns and rows, in such
a way that we will process first the columns or rows with
most fixed (filled or blanks) squares. Starting with the row
or column with most fixed squares, we try all the possible
feasible combinations of solutions for that line, which keep
the status of the fixed squares. In this process, we look for
squares not yet fixed, and which are filled or blank in all the
combinations tried. Note that, if a square is filled in a given
combination, and blank in another combination, we cannot
decide on it, and we mark it as unknown. In the case that a
square is blank or filled with all the possible combinations,
it is fixed, and the corresponding row (if we are dealing
with a column) or column (if we are dealing with a row) is
also modified. The algorithm continues the search in the row
(or column) which more fixed squares. Note that if all the
squares of a line appears as unknown, we stop trying more
combinations, and we carry on the algorithm in the next line
(row or column) with most fixed squares.

The pseudo-code of our Ad-hoc heuristic for black and
white puzzles is the following:

Combinatorial ad-hoc heuristic for Japanese puzzles:
Launch the Preprocessing procedure.
while(There are unknown squares)
Choose the line (row or column) with most

fixed or blanks squares (i).
Try all the possible feasible combinations for line i.

if(a given square j is always filled or blank) then
fixed square j to be filled or blank.

else
mark j as unknown.

endif

226

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

endwhile

2) Logic ad-hoc heuristic: The second ad-hoc heuristic
proposed is based on logical aspects of the Japanese puzzles.
This heuristic also starts with the preprocessing procedure
described in Section II-B. This heuristic is based on the
calculation of the feasible right-most and left-most solution
for a given line, where right-most stands for the feasible
solution which has the first filled square of each condition
(nk) most in the right, and left-most stands for the feasible
solution with the first filled square of each condition most
in the left, see Figure 6 as an example. The heuristic is
also based on that fixed squares or blanks are maintained
along the procedure. We implement then several logic sub-
procedures to complete the puzzle.

(a)

(b)

4 45 5

5 5

Fig. 6. Example of right-most and left-most solutions; (a) Right-
most solution; (b) Left-most solution.

Sub-procedure 1: After the calculation of the right-most
and left-most possible solutions, we can fix those filled
squares in the same condition number nk in which both
solutions coincide. For example, in a situation given by
Figure 7 (a) we could fix the squares shown in Figure 7
(d). Figures 7 (b) and (c) show the right-most and left-most
solutions, respectively.

(a)

(b)

4 4

4 45 5

(d)

5 5

5 5

5 5 x

x

x

x

(c)

Fig. 7. Example for sub-procedure 1 (Logic ad-hoc heuristic); (a)
Initial line with a fixed blank (marked as a X in the figure); (b)
Right-most solution; (c) Left-most solution; (d) Squares fixed with
this procedure.

Sub-procedure 2: Sub-procedure 2 fixes blank squares
between to consecutive conditions nk and nk+1 belonging to
the right-most and left-most solutions, respectively. Figure 8
shows an example of how this procedure works. Figure 8 (a)
represents a possible row or column in a Japanese puzzle,
with two already fixed squares. Figures 8 (b) and (c) stands

for the left-most and right-most solutions for this example,
respectively. Figure 8 (d) shows the blank squares that can
be fixed in this case.

(a)

(b)

4 4

4 44 4

4 4

4 4

(c)

(d)

x x xx x x

Fig. 8. Example for sub-procedure 2 (Logic ad-hoc heuristic); (a)
Initial line with two filled squares; (b) Left-most solution; (c) Right-
most solution; (d) Squares fixed with this procedure.

Sub-procedure 3: Sub-procedure 3 looks for a fixed con-
secutive blank and filled squares or viceversa (see Figure 9).
Once it has located a filled and blank squares together, it
looks among all the conditions which may contain the filled
square, selects the smallest one, and fills the corresponding
squares. Figure 9 shows an example of this procedure. Let
us imagine that we have the situation in Figure 9 (a), where
there are two consecutive squares fixed, one blank and one
filled. Figures 9 (b) and (c) show the right-most and left-most
solutions respectively, in this case. These solutions allow us
to fix as many squares as the smallest condition in the line,
in this case 3 squares.

(a)

(b)

4 4

4 43 5

(d)

3 5

3 5

3 5 x

x

x

x

(c)

Fig. 9. Example for sub-procedure 3 (Logic ad-hoc heuristic);
(a) Initial line with a filled and a blank squares fixed; (b) Right-
most solution; (c) Left-most solution; (d) Squares fixed with this
procedure.

Sub-procedure 4: Sub-procedure 4 deals with cases where
there are groups of unknown squares smaller than a given
condition nk. Figure 10 shows an example of this situation.
Figure 10 (a) shows the initial state of the line, with one
filled and several blank squares fixed. Note that the unknown
square number 7 is between two fixed blanks squares, and it
is smaller than the remaining not assigned condition, which

227

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

in this case is n1 = 2. Figures 10 (b) and (c) show the left-
most and right-most conditions respectively, and Figure 10
(d) shows that square 7 can be fixed as a blank square.

(a)

1 2 xx x x x x x x xx

1 2 xx x x x x x x xx

1 2 xx x x x x x x xx

1 2 xx x x x x x x xxx

(b)

(c)

(d)

Fig. 10. Example for sub-procedure 4 (Logic ad-hoc heuristic); (a)
Initial line with a filled and several blank squares fixed; (b) Left-
most solution; (c) Right-most solution; (d) Squares fixed with this
procedure.

Sub-procedure 5: Sub-procedure 5 is the final search we
implement. It tries to fix blank squares. This sub-procedure
deals with cases in which there are consecutive filled squares
previously fixed (see Figure 11 (a)). We try then the right-
most and left-most solutions. These solutions gives you the
limits of each condition, and then we know which conditions
could be in a given fixed square (not all the condition will
be able to be in a given fixed square, see Figure 11 (b) and
(c)). Then, we check that there is a blank square besides
any feasible condition. This blank can be fixed in the puzzle
(Figure 11 (d).

(a)

(b)

(c)

(d)

1 1 3 4

1 1 3 4

1 1 3 4

1 1 3 4 x

Fig. 11. Example for sub-procedure 5 (Logic ad-hoc heuristic); (a)
Initial line with a filled square fixed; (b) Left-most solution; (c)
Right-most solution; (d) Squares fixed with this procedure.

The Complete Logic Ad-hoc heuristic: The complete
Logic Ad-hoc heuristic starts with the preprocessing stage.
The line with most modified (fixed) squares is selected to be
processed by applying the sub-procedures described above.
After this, another line is selected and the sub-procedures
are applied until there is not an unknown square in the
puzzle. The pseudo-code of the Logic Ad-hoc heuristic is
the following:

Logic ad-hoc heuristic for Japanese puzzles:
Launch the Preprocessing procedure.
while(There are unknown squares)
Choose the line (column or row) with
the most modified squares in the previous step.
Find the right-most and left-most solution.

Apply sub-procedure 1.
Apply sub-procedure 2.
Apply sub-procedure 3.
Apply sub-procedure 4.
Apply sub-procedure 5.

endwhile

A. Extension of the logic ad-hoc heuristic to color puzzles

The resolution of color puzzles requires taking into ac-
count the extra rules for color puzzles given in [10]. In
this paper we present an extension of the Logic Ad-hoc
heuristic to color puzzles. It is the most efficient heuristic
that we have implemented to solve black and white puzzles,
and its extension to color puzzles is not complicated. The
structure of the Logic ad-hoc heuristic to color puzzles is
the same that the heuristic for black and white puzzles.
However, the right-most and left-most solutions will vary
now in function of the possible colors of the squares. Again,
we are constrained by the impossibility of showing color
graphs, but basically the Ad-hoc Logic color heuristic adds
an extra sub-procedure which substitutes black and white
sub-procedures 1 and 2, maintaining sub-procedures 3, 4 and
5 with the same structure than the black and white logic
heuristic, but modified to deal with colors (numbers 0, 1, 2,
3, etc, instead of only 0s and 1s).

Sub-procedure color: This procedure runs over all lines
(rows and columns) in the puzzle, in its natural order. For
the current line, we calculate the right-most and left-most
solutions. For each square, we calculate a list of the possible
colors that the square can have (including also color white
for the background of the puzzle), depending on the puzzle
conditions and on the right-most and left-most solutions. We
try to eliminate as many colors as possible at each square,
in such a way that at the end, only one color survives on
each square. The right-most and left-most solutions vary
dynamically when colors are eliminated from squares.

IV. COMPUTER SIMULATIONS AND RESULTS

In order to show the performance of our heuristics, we
have applied them to solve several Japanese puzzles, which
can be found in [9]. In this web page there are puzzles

228

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

of different type, size and difficulty, which can be free
downloaded, and serve as a benchmark problems. Table I
show the characteristics of the puzzles we have solved. In
the case of the black and white puzzles, the smallest puzzle
we consider is the charlie one, a 15×15 puzzle. The largest
one is the so-called jazz puzzle, 60 × 145. We have applied
the two ad-hoc heuristics presented in this paper to all the
puzzles. We stop the algorithms when it obtains the final
solution of the puzzle or after one hour of calculation. In
order to compare our approaches with a previous algorithm,
we have used the solver in [11], and a genetic algorithm
(GA) proposed in [15]. Briefly, this GA uses a gene-based
encoding and modified operators in which conditions in
columns are fulfilled, and the GA looks for the solution
which fulfils conditions in rows. This is achieved by defining
the columns of the puzzle as genes in the encoding. The
crossover operator is performed then interchanging genes,
as Figure 12 shows. Mutation operator is carried out by
means of adding a new randomly generated column to the
puzzle which fulfils the puzzle constraints. A local search is
hybridized with the modified genetic algorithm in order to
obtain better results.

(a)

(b)

Fig. 12. Example of the modified crossover used in the genetic
algorithm in [15].

In the case of color puzzles we have tackled 8 puzzles, the
smallest one is the 20 × 20 puzzle “Earth”, and the largest
puzzle is “Parrot2” 35 × 35. For color puzzles we provide
the results obtained by the Logic ad-hoc color heuristic1. All

1No solver for color puzzles was found available for comparison.

the simulations were performed in a PC with a Pentium IV
(3 GHz) processor and 1Mb of RAM memory.

TABLE I

MAIN CHARACTERISTICS OF THE JAPANESE PUZZLES TACKLED (FROM

[9])

Puzzle Rows Columns type
Charlie 15 15 B&W
Popeye 20 20 B&W

Van Gogh 35 25 B&W
King Kong 30 30 B&W

Kabuki 40 40 B&W
Sheriff 45 45 B&W
Liberty 50 35 B&W
Parrot1 55 60 B&W

Da Vinci 75 55 B&W
Fishing 50 70 B&W
King 60 75 B&W
Jazz 60 145 B&W
Earth 20 20 Color

Egyptian 25 25 Color
Flower 30 30 Color
Ship 30 30 Color
Flag 30 30 Color
Girl 30 30 Color
Fred 30 30 Color

Parrot2 35 35 Color

Table II shows the results obtained by the heuristics
proposed in the black and white puzzles. It is easy to see
that the GA only achieves to solve the puzzles solution in
the smallest ones, charlie and popeye. In the rest of puzzles
the GA was not able to complete the puzzles’ solution after
one hour of computation.

The combinatorial ad-hoc heuristic perform much better,
solving all the puzzles but the hardest ones fishing, king and
jazz, where it cannot find a solution in less than one hour. The
main problem with the combinatorial heuristic is that it tries
all the feasible combinations for a line (row or column), and
there may be quite a lot of combinations in large puzzles
if the initial solutions has not fixed enough squares. This
heuristics works well in small puzzles and in puzzles where
the preprocessing is able to fix many squares, like in puzzle
parrot.

The logic ad-hoc heuristic is the best heuristic we have
implemented for black and white puzzles. It is apparent from
Table II that it outperforms the algorithm in [11]. First,
our Logic ad-hoc heuristic is able to solve all the puzzles
considered, within a 1 second, whereas solver in [11] fails
to finish fishing puzzle. It also takes larger times than the
Logic ad-hoc to finish the rest of the puzzles. Our Logic ad-
hoc is also much faster than the combinatorial one in all the
puzzles considered, and obtains the solutions for the hardest
puzzles fishing, king and jazz.

Figures 13, 14 and 15 shows the evolution of the GA,
combinatorial and logic heuristic, respectively, in the charlie
puzzle. It is interesting to appreciate the differences among
how the heuristic construct the solutions. First, the GA does
not consider unknown squares, it constructs the final solution
of the puzzle from feasible solutions in columns, moving the

229

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

TABLE II

RESULTS OF THE PROPOSED HEURISTICS IN THE BLACK AND WHITE

JAPANESE PUZZLES CONSIDERED. THE TABLE SHOWS THE TIME TO

FINISH THE PUZZLE IN SECONDS. N/A STANDS FOR THE CASE WHERE

THE HEURISTIC IS NOT ABLE TO FIND A SOLUTION WITHIN AN HOUR.

Puzzle GA Combinatorial Logic Solver in [11]
Charlie 100.9 0.03 0.01 0.02
Popeye 297.8 0.1 0.03 0.05

Van Gogh N/A 0.7 0.09 0.7
King Kong N/A 0.6 0.09 0.6

Kabuki N/A 0.8 0.1 0.7
Sheriff N/A 16.4 0.2 1.0
Liberty N/A 47.9 0.2 0.9
Parrot1 N/A 3.6 0.2 1.0

Da Vinci N/A 116.0 0.5 1.1
Fishing N/A N/A 0.6 N/A
King N/A N/A 0.8 18.1
Jazz N/A N/A 1.0 2.3
Earth N/A N/A 0.031 N/A

Egyptian N/A N/A 0.11 N/A
Flower N/A N/A 0.281 N/A
Ship N/A N/A 0.359 N/A
Flag N/A N/A 0.125 N/A
Girl N/A N/A 0.328 N/A
Fred N/A N/A 0.25 N/A

Parrot2 N/A N/A 0.297 N/A

rows. The images in Figure 13 correspond to the best individ-
ual of the GA population each 10 generations. On the other
hand, combinatorial and logic heuristics consider unknown
squares (grey squares in the figures). Both heuristic start from
the same solution, which comes from the application of the
preprocessing procedure, see Figures 14 and 15.

5 10 15

5

10

15
5 10 15

5

10

15

5 10 15

5

10

15
5 10 15

5

10

15

5 10 15

5

10

15
5 10 15

5

10

15

Fig. 13. Evolution of the best solution in the Genetic Algorithm in
the puzzle “charlie”.

The evolution of the algorithms is, however, different. We
display six stages of both algorithms to show how they
construct the solution to the puzzle. In the case of color
puzzles, our Logic ad-hoc heuristic is able to solve all the
puzzles tackled within seconds, as can be seen in Table II.

5 10 15

5

10

15
5 10 15

5

10

15

5 10 15

5

10

15
5 10 15

5

10

15

5 10 15

5

10

15
5 10 15

5

10

15

Fig. 14. Evolution of the solution given by the Combinatorial ad-
hoc heuristic in the puzzle “charlie”.

A. Discussion

The ad-hoc heuristics presented in this paper are able
to solve both black and white and color Japanese puzzles.
They are fast algorithms which takes profit of the structure
of the problem to obtain its solution. We have shown that
the Combinatorial ad-hoc heuristic may fail in solving large
puzzles, due to it has to try all possible combinations of
feasible solutions for each row and column in the puzzle.
The Logic ad-hoc is able to finish all the Japanese puzzles
tested, even the largest ones, within seconds. In addition,
this heuristic admits an extension for color puzzles, which
has been proven to be very effective as well. It is therefore
the best heuristic proposed in this paper.

V. CONCLUSIONS

In this paper we have tackled the resolution of Japanese
puzzles using computer heuristics. Specifically we have
proposed two ad-hoc heuristics, a combinatorial one and a

5 10 15

5

10

15
5 10 15

5

10

15

5 10 15

5

10

15
5 10 15

5

10

15

5 10 15

5

10

15
5 10 15

5

10

15

Fig. 15. Evolution of the solution given by the Logic ad-hoc
heuristic in the puzzle “charlie”.

230

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

logic one. We have shown that all the heuristics proposed are
able to find solutions to Japanese puzzles. We have shown
that the best algorithm tested has been the Logic heuristic,
which is able to find a solution to every benchmark puzzle,
including the color ones, within seconds.

ACKNOWLEDGEMENT

The authors would like to thank Conceptis Puzzles and
Pléyades Ediciones for granting the permission to reproduce
their copyrighted puzzles. The authors really appreciate the
support and help of Dave Green, from Conceptis Puzzles.

REFERENCES

[1] J. E. Laird, “Using a computer game to develop advanced AI”, IEEE
Computer, vol. 34, no. 7, pp. 70-75, 2001.

[2] H. J. Herik, H. van Den and H. Iida, (eds.), Games in AI Research,
Universiteit Maastricht, Maastricht, 2000.

[3] A. Khoo, R. Zubek, “Applying inexpensive AI techniques to computer
games”, IEEE Intelligent Systems, vol. 17, no. 4, pp.48-53, 2002.

[4] J. M. Vaccaro, C. C. Guest, “Planning an endgame move set for the
game RISK: a comparison of search algorithms”, IEEE Transactions
on Evolutionary Computation, vol. 9, no. 6, pp. 641- 652, 2005.

[5] C. Jefferson, A. Miguel, I. Miguel and T. Armagan, “Modelling and
solving English Peg Solitaire,” Computers & Operations Research, In
Press, 2005.

[6] K. D. Smith, “Dynamic programming and board games: A survey,”
European Journal of Operational Research, In Press, 2005.

[7] S. S. Lucas and G. Kendall, “Evolutionary computation and games,”
IEEE Computational Intelligence Magazine, vol. 1, no. 1, pp. 10-18,
2006.

[8] http://www.conceptispuzzles.com
[9] http://www.conceptispuzzles.com\products\picapix

\puzzle samples.htm
[10] M. Dorant, “A begginer’s guide to solving picture forming logic

puzzles,” http://www.conceptispuzzles.com\products\picapix
\solving a puzzle.htm.

[11] http://www.comp.lancs.ac.uk\computing\users\ss\nonogram
\index.html

[12] G. Duncan, “Puzzle Soving”, B.Sc. Degree Final Project Report,
University of York, Computer Science Department, 1999.

[13] G. Duncan Solver, http://www-users.c.york.ac.uk\∼tw\projects
\nonograms\

[14] N. Ueda and T. Nagao, “NP-completeness results for nonograms
via parsimonious reductions,” Internal Report, University of Tokyo,
Computer Science Department, 1996.

[15] S. Salcedo-Sanz, J. A. Portilla-Figueras, E. G. Ortı́z-Garcı́a, A. M.
Pérez-Bellido, and X. Yao, “Teaching advanced features of evolutionary
algorithms using Japanese puzzles”, IEEE Transactions on Education,
accepted for publication, 2006.

[16] B. J. Batenburg, B. J. and W. A. Kosters, “A discrete tomography
approach to Japanese puzzles”, In Proceedings of the Belgian-Dutch
Conference on Artificial Intelligence, pp. 243-250, 2004.

[17] J. Benton, R. Snow and N. Wallach, “A combinatorial problem
associated with nonograms,” Internal Report, University of Standford,
Artificial Intelligence Department, 2005.

[18] D. E. Goldberg, Genetic algorithms in search, optimization and
machine learning, Reading:MA, Addison-Wesley, 1989.

[19] V. Kumar, “Algorithms for constraints satisfaction problems: a survey,”
The AI Magazine, vol. 13, no. 1, pp. 32-44, 1992.

[20] G. Pesant, “A regular language membership constraint for finit se-
quences of variables,” In Proc. of the 10th Int. Conf. on Principles
and Practice of Constraint Programming, Lecture Notes in Computer
Science, vol. 3258, pp. 482-495, 2004.

231

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

