
Matt Parker
Computer Science
Indiana University

Bloomington, IN, USA
matparker@cs.indiana.edu

Gary B. Parker
Computer Science

Connecticut College
New London, CT 06320

parker@conncoll.edu

Abstract— Learning controllers for the space combat game
Xpilot is a difficult problem. Using evolutionary computation
to evolve the weights for a neural network could create an
effective/adaptive controller that does not require extensive
programmer input. Previous attempts have been successful in
that the controlled agents were transformed from aimless
wanderers into interactive agents, but these methods have not
resulted in controllers that are competitive with those learned
using other methods. In this paper, we present a neural
network learning method that uses a genetic algorithm to select
the network inputs and node thresholds, along with connection
weights, to evolve competitive Xpilot agents.

Keywords: Xpilot, Genetic Algorithm, Neural Network,
Control, Autonomous Agent, Xpilot-AI

I. INTRODUCTION

In previous research, we used a genetic algorithm to
evolve the weights for a neural network in the game Xpilot.
In one experiment, we evolved a single layer perceptron
network in a simple map against one opponent [1]. In the
second experiment, we evolved three separate specialized
networks; one to shoot, one to dodge bullets, and one to fly
toward the enemy. These specialized networks were
combined into a larger network in an attempt to create a
good general combat robot [2]. The controllers evolved in
these previous papers used a simple weight system and the
inputs to the network were chosen by the researchers. In the
research reported in this paper, we evolve a two-layer neural
network without incrementally evolving specialized
networks. The inputs to the neural network are selected by
the GA from a large list of possibilities. In addition, we
changed the weight system to include thresholds and
inverted thresholds between every connected node, which
allowed for more decisive behavior.

Most of the previous work done by other researchers in
the area of evolving game-playing has been done with
thought games, such as board games, where the agent
competes against a single opponent. Work was done by
Konidaris, Shell, and Oren to evolve a neural network to
capture in the game Go [3]. Fogel conducted his famous
research with Checkers [4]. Hingston and Kendall did
research to solve the iterated prisoner's dilemma problem
[5]. In the area of action computer games, Funes and
Pollack created their Java Tron applet, which evolved

controllers for light-cycles against human opponents [6].
Cole, Louis, and Miles evolved robot parameters for the 3D
first person shooter game Counterstrike [7], Hallam and
Yannakakis evolved "fun" ghost opponents for the game
Pac-Man [8], Stanley, Bryant, and Miikkulainen evolved
neural networks to control agents that could learn in real-
time through a series of training exercises in the NERO
video game [9], Priesterjahn, Kramer, Weimer, and Goebels
evolved controllers for artificial players in the game Quake3
[10], and Miles and Louis evolved game playing strategies
for opponents in a game that they created called Lagoon
[11].

In previous work, we evolved controllers for Xpilot using
a cyclic genetic algorithm (CGA) [12]. While these were
our most successful controllers, they required a large amount
of intelligent design on the part of the researcher, and lacked
the variation of output of a neural network. In the research
reported in this paper, we evolve a neural network that uses
a new weight system and evolved inputs, which is
comparable in skill to the CGA controller, but without any
predefined behaviors and with a larger variety of possible
actions.

II. XPILOT

Xpilot is a 2-dimensional multiplayer space combat game
playable over a network and the internet. The player
controls a space ship which can mainly either thrust, turn, or
shoot. The game physics have a realistic feel with an
accurate representation of acceleration, velocity, and
momentum in a frictionless space environment. Though the
few control keys are simple to learn, a good "feel" for the
physics is required to skillfully pilot the ship, shoot
opponents, and avoid their shots.

The standard versions of Xpilot include a server
controlled robot with a respectably good artificially
intelligent controller. There was no interface provided to
allow people to reprogram the server robot, and few ever
did. Recently, a group of researchers developed an easy-to-
use interface for using AI to control a player's ship in Xpilot
which is called Xpilot-AI (www.xpilot-ai.org). Because
Xpilot is open-source, they were able to modify the Xpilot
client, making new functions to control the ship and to read

The Evolution of Multi-Layer Neural Networks

for the Control of Xpilot Agents

232

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

1-4244-0709-5/07/$20.00 ©2007 IEEE

variables about the surrounding environment. Because it is
a modification of the client, these AI controlled ships are
able to connect to any Xpilot server and play along with
other AIs and human players.

Xpilot is a game with few controls that requires complex
behavior to successfully pilot the ship, so it is naturally a
good environment to test neural network controllers, which
usually take several inputs and produce a few outputs.

III. NEURAL NETWORK CONTROLLER

A. Inputs

Choosing inputs that are valuable to the neural network is
difficult because we do not know what the neural network
needs to produce the desired behavior. In past research, we
chose whatever inputs we thought were required and then
perhaps added a few more that might be valuable, usually
creating a set of inputs more numerous than needed.
Conversely, we might choose too few, not including an
input because it did not seem necessary to us, and yet to a
neural network it might actually be useful.

In this experiment, we chose to evolve which inputs to
use in the network, rather than choosing them ourselves.
We created a list of 64 possible inputs which covered a
broad range of the possible inputs in the game; most of them
seemingly useful, and some that did not seem to us to be
particularly so, yet were included in the off chance that the
network could use them. These were selected to be useful in
combat against any Xpilot opponent as opposed to being
modeled specifically for a known enemy. There were two
main types of inputs, with about 32 of each type. The value
range of the inputs was normalized by reducing it to a value
between -1.0 and 1.0.

B. Direct Input

Variables that are directly read from the game
environment are the "direct" inputs. For example, several of
our direct inputs are: Self velocity, Enemy velocity, Enemy
distance, Bullet intercept distance, Bullet intercept time,
Wall distance directly in front of ship, etc., as well a few
unchanging inputs, such as 1.0, 0.0, and -1.0.

C. Comparison Input

The comparison input compares two angles and returns
their difference. The difference between the ship's heading
(direction it is pointing), and another angle, perhaps the
direction to the enemy ship, is the number of degrees that
the ship should turn to be pointing at that angle. The
difference between the ship's track (direction of velocity)
and some other angle can reveal if the ship is flying in or
close to that particular direction, which is helpful for flying
towards or avoiding objects. We have several difference
comparisons between the self ship's track or heading and
other angles, such as the Enemy's target direction, the
Bullet's predicted nearest intercept angle, the Enemy's track,
the Bullet's track, and so on.

Each neural network input node was represented as a 6 bit
gene, which was converted to a number between 0 and 63
and matched with the corresponding input in the list of
inputs. We determined that 128 possible inputs were
unnecessary and we did not want to increase the gene size to
7 bits, so we kept with 64, although a few more inputs could
have been useful. For example, we wanted to have a "wall
feeler" type input, which would detect walls within a certain
range at an evolved angle from the ship. However, because
we had only 64 possible inputs, we only included wall
feelers at 6 different angles, with two different ranges each:
at +10/-10 degrees and +30/-30 degrees from the ship's
velocity direction, and at +0 and +180 degrees from the
ship's heading.

Fig. 1. A threshold is on every weight. If it is a regular threshold, every
input value between -t and t is ignored, and the allowed values are
amplified. If it is an inverted threshold, the values above t or below -t are
ignored, and the allowed values are amplified and inverted.

D. Weights

In previous work [1,2], our neural networks had a simple
system of weights with only one threshold per output node,
where an input would simply be multiplied by a weight
which was an evolved number between -1.0 and 1.0. There
are a few problems with this method. One is that often times
it may be beneficial for the controller to have neurons that
perform no action when their input is below a certain level.
For instance, if a bullet is far enough away, the ship might
wish to completely ignore it, and yet it may need to perform
drastic maneuvers when a bullet is too close. With our
simple multiplied weight of the past, the input is linearly
affected by the weight, so that a harmless bullet that is far
away still influenced the behavior of the ship unnecessarily,
especially if the neuron required a high output when the
bullet was dangerous. Because all the neurons constantly
affected the output of the network, the ships always

233

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

developed a spinning behavior which was a blend of
necessary movements, rather than separate behaviors which
depended on different environmental situations.

Another problem with the old weights is that we always
had to determine whether or not we should invert the input
to the weight. For instance, the shorter the distance that a
bullet is from the ship, the more action should be taken by
the network. If we leave the input as just the distance to the
bullet, when the bullet is nearest it is at 0.0, and farthest it is
at 1.0. So, we would determine to invert the input before it
goes into the weight. While this probably was a good idea
for the bullet distance, for other inputs it's not so clear.
Therefore we needed a way for the network to choose
whether or not to invert it without our intervention.

We have solved both these problems with our current
system of weights. Each weight is represented by two 6 bit
genes. The first gene determines the threshold (Fig. 1), with
the first bit determining if it is an inverted threshold and the
last 5 bits determining the value of the threshold. Because
the input to the weight can be anywhere between -1.0 and
1.0, the value of a threshold is a number converted from the
5 bits to a number between 0.0 and 1.0. If the value of a
threshold is t and the first bit determines it is a regular
threshold, then any input values between -t and t are
ignored, and the weight will output zero. If the input value
is greater than t or less than -t, then that input value, V, is
amplified: newV = V * 1.0 / (1.0 - t)

If it is an inverted threshold, then any values greater than t
or less then -t are ignored. Values between -t and t are
inverted and amplified: newV = 1.0 / (V * 1.0 / t). We
invert the values here because if not, the value of the weight
would grow greater as the input approached the threshold,
so that the greatest action would occur right before choosing
to ignore the input. Normally, however, greater action
should occur as the input gets further away from the
threshold. For instance, as the distance of the bullet
decreases, more action is required; but as it gets further
away, perhaps nearer to the weight's threshold, less action is
required.

Fig. 2. The neural network is composed of 11 input, 5 middle, and three
output nodes. The 11 input nodes are evolved and chosen from a list of 64
possible inputs. Between each of the connected nodes is a weight, which
consists of a threshold and a multiplier.

The second gene of the weight is the multiplier, which is a
number between -1.0 and 1.0. It is multiplied by whatever is
output after the input is run through the threshold. This
system of weights allows for more decisive behavior and
control of the ship.

E. Network Structure

The neural network itself is made of 11 input nodes, 5
middle (hidden) layer neurons, and 3 outputs (Fig. 2). The
inputs, as described above, are evolved and chosen from a
list of 64 possible inputs. The 5 middle layer neurons exist
to increase the logical ability and variation of the behavior
of the ship. The three output neurons are turn, thrust, and
shoot. To thrust or shoot, the corresponding output neuron
must be greater than or equal to 0.0. For turning, the output
is altered by an exponent of 0.15 and then multiplied by
twenty degrees. The exponent of 0.15 was chosen by
observing what made a good average turn speed for the
initial random population.

There is a weight between each node of the network; each
weight consists of two genes, 6 bits each. The entire
network consisted of 140 genes, plus the 11 genes
determining the inputs, for a total of 151 genes, 906 bits
total.

Fig. 3. Figure of the simple map used in this experiment. The starting bases
are scattered about throughout the space. The map is 32x32 tiles; about 50
ship-lengths across.

IV. EVOLVING THE NEURAL NETWORK

A. Setting

We chose to evolve the neural network agent using a
genetic algorithm in a setting similar to that of our previous
experiments [1,12]. We used a simple square block map
(Fig. 3) with an off-centered cross in the middle, and with
many starting locations scattered around the map. We set
inside the same opponent from our previous tests: Sel bot,
who is our best hand-coded Xpilot agent. He has a good

234

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

aiming function, bullet-dodging, wall avoidance, and the
ability to chase enemies around walls. In previous
experiments, we would reset Sel bot and the learning agent
to their original locations after one of them died. This made
sure that each evolving agent had the same opportunities,
but added greater complexity to the evolution and neglected
the importance of controlling the ship after killing an
opponent, at which time the explosion from the opponent's
ship can crash the agent into a wall. In this experiment, we
do not make them both reset after one dies, but allow the
other to keep floating around. The new agents appear at a
new random starting location after every death. This is
sometimes bad for the evolution, for example if Sel happens
to be floating right by where a new agent appears.
However, we give every agent three lives to display its
fitness, so the fitter agents are still able to acquire a good
fitness.

B. Fitness

Previously our fitness for the agents was based heavily
upon staying alive [12]. This generally evolved defensive
and passive agents, many who developed a constant spin and
occasional thrust behavior, dodging Sel's bullets well, but

not attempting to kill him. We tried with our previous
neural networks to award a good fitness bonus for killing
Sel, but this evolved bots that converged prematurely on a
solution which just involved spinning slowly in place and
shooting constantly. In this experiment we award the agent
200 points for killing Sel and 1/4 a point for each frame of
game play it stays alive. While this fitness scheme would
have worked poorly on our previous neural networks,
probably because the neural networks themselves were so
limited, it positively influences the evolution of the more
complex neural network in this experiment. More
aggressive agents are evolved that also attempt to stay alive.

The evolution was performed using a Queue Genetic
Algorithm (QGA) [13], which essentially produces the same
results as a regular genetic algorithm but is designed to be
easily distributed among available computers to increase the
speed of evolution. The population size was 256
individuals, but at the start was expanded to 1024 to increase
diversity, then brought back down to 256. Individuals were
selected stochastically (roulette wheel selection). The
probability of crossover is 100% and there is a 1/300 chance
of mutation per bit.

Fig. 4. Graph showing the average of the average fitnesses of the 5 tested populations over 300 generations. The line is fifth order
polynomial a least squares fit.

235

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Fig. 5. Graph showing the average of the best fitnesses of the 5 tested populations over 300 generations. The line is a fifth order
polynomial a least squares fit.

V. RESULTS

We ran 5 tests, each to 256 generations. We recorded the
best individual for each generation as well as the average
fitness of the population. The graph of the growth in
average fitness over time for the 5 populations shows clear
improvement (Fig. 4). The graph of the best fitnesses for
the 5 populations has less obvious growth (Fig. 5), because
often the best individual was merely the luckiest, and does
not necessarily reflect the general health of the population or
even of that individual.

The agents showed visually their improvement in
behavior over time. At first they flew wildly about,
smashing into walls, unresponsive to their speed or the
location of the enemy. Over time, they learned not to thrust
as much, and to spin around in circles, still not really aiming
at the enemy, but at least not smashing into the walls.
Eventually they learned to aim at the enemy, tracking Sel
and shooting whichever direction he flew.

Because Sel attacked them, finding them wherever they
were in the map, the agents did not need to be aggressive.
Most learned to do nothing more than spin around shooting
until Sel came, and then shoot at him. They had access to
both the angle of the enemy ship and the "aimdir" angle,
which is a calculated aiming function which takes into
account both ships' velocities. The agents learned to use

these angles, either singly or together, to such effect that it
was more useful for them to constantly aim and shoot at Sel
than to begin to learn to dodge Sel's bullets.

Some agents, though it was not a dominant trait, learned
to thrust away from the walls in order to avoid crashing into
them. These agents would shoot at Sel, and then give a puff
of thrust as their back ends approached a wall (their
shooting propelled them backwards). Some other agents
learned to thrust towards Sel to attack him, which was
actually a very good strategy because Sel could not so
quickly dodge their faster bullets. However, these agents
never combined their thrust-attack with useful wall-
avoidance, and their fast attacks became their undoing, as
they flew dangerously fast past Sel and into a wall.

The 5 evolved populations utilized less than half of their
input nodes to perform this behavior. The most common
inputs were the comparison between self's heading and the
enemy's "aimdir", between self's heading and the direction
of the enemy's current location, and a wall feeler or two,
either +/-10 or +/-30 degrees from self's direction of
velocity. Some tests had an input for some bullet attribute,
and some had inputs that were constantly 1.0 or 0.0. The
input nodes that we determined to not be in use by the neural
network changed seemingly randomly from individual to
individual in the population. Because the behavior remains

236

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

similar for each individual, even with the varied inputs,
those inputs were probably muted by the weights of the
network, so that they made little difference to the output.

While the behavior was not as complex as we would like,
it is by far the best we have evolved in Xpilot using a neural
network. The underutilization of the input nodes shows the
power of a network with this type of weight structure to
evolve successful behavior with only a few inputs. The
fitness function and simulation, which sent Sel bot quickly
to attack and awarded mainly killing Sel, was not enough to
warrant the network to evolve attacking, bullet dodging, and
wall avoidance.

VI. CONCLUSION

Our previous research in Xpilot using neural networks
[1,2] used a simple multiplicative weight system with no
input thresholds, making it more difficult for the agent to
evolve decisive behavior. We also guessed what inputs
would be most useful to the network, often choosing too
many unnecessary inputs, or not including less obvious
inputs that may still be important. We manually inverted the
inputs as seemed necessary to us, though the neural network
may have found it less useful. We have addressed all of
these problems by using a new weight structure with
thresholds and inverted thresholds, allowing the network to
choose to invert the inputs and to ignore the inputs after a
certain point. We also evolved the inputs to the network,
chosen from a large list of 64 possible inputs, so that the
genetic algorithm could decide which were most important.

Our tests were run in a simple map against a single AI
controlled bot. The tests showed substantial improvement in
fitness over the 300 generations. The agents evolved to be
well adapted to their environment, and became quite deadly
to the enemy bot. Because Sel charged toward them, and
because they could aim so effectively, most agents found it
best to wait for Sel and shoot at him when he came. The
networks seemed to utilize only about 4 or 5 of their input
nodes on average, mainly using them for aiming, while
muting the others.

In future research, we intend to use this same neural
network with a different simulation and fitness function.
One option is to put each agent through several fitness tests,
such as bullet dodging, approaching the enemy, and general
combat. We also intend to try this network with competitive
co-evolution and in the Core, where all agents in the
population simultaneously compete against one another,
spreading their genes to those they kill [14]. Increasing the
number of possible inputs would also be useful, especially
adding more possible wall sensor angles. This particular

weight structure, used with evolved inputs, has been very
successful in this initial test and will most likely be the
backbone of much of our future research involving neural
networks.

REFERENCES

[1] Parker, G., Parker, M., and Johnson, S. (2005). “Evolving
Autonomous Agent Control in the Xpilot Environment,” Proceedings
of the 2005 IEEE Congress on Evolutionary Computation (CEC
2005), Edinburgh, UK., September 2005.

[2] Parker, G. and Parker, M. (2006). “The Incremental Evolution of
Attack Agents in Xpilot,” Proceedings of the 2006 IEEE Congress on
Evolutionary Computation (CEC 2006), Vancouver, BC, Canada, July
2006.

[3] Konidaris, G., Shell, D., and Oren, N. “Evolving Neural Networks for
the Capture Game,” Proceedings of the SAICSIT Postgraduate
Symposium, Port Elizabeth, South Africa, September 2002.

[4] Fogel, D. Blondie24: Playing at the Edge of AI, Morgan Kaufmann
Publishers, Inc., San Francisco, CA., 2002.

[5] Hingston, P. and Kendall, G. “Learning versus Evolution in Iterated
Prisoner's Dilemma,” Proceedings of the International Congress on
Evolutionary Computation 2004 (CEC'04), Portland, Oregon, 20-23
June 2004, pp 364-372.

[6] Funes, P. and Pollack, J. “Measuring Progress in Coevolutionary
Competition,” From Animals to Animats 6: Proceedings of the Sixth
International Conference on Simulation of Adaptive Behavior. 2000,
pp 450-459.

[7] Cole, N., Louis, S., and Miles, C. “Using a Genetic Algorithm to Tune
First-Person Shooter Bots,” Proceedings of the International Congress
on Evolutionary Computation 2004 (CEC’04), Portland, Oregon,
2004, pp 139–145.

[8] Yannakakis, G. and Hallam, J. "Evolving Opponents for Interesting
Interactive Computer Games,'' Proceedings of the 8th International
Conference on the Simulation of Adaptive Behavior (SAB'04); From
Animals to Animats 8, 2004, pp 499-508.

[9] Stanley, K., Bryant, B., and Miikkulainen, R. (2005). “Evolving
Neural Network Agents in the NERO Video Game.” Proceedings of
the IEEE 2005 Symposium on Computational Intelligence and Games
(CIG 2005).

[10] Priesterjahn, S., Kramer, O., Weimer, A., and Goebels, A. (2006).
“Evolution of Human-Competitive Agents in Modern Computer
Games.” Proceedings of the 2006 IEEE Congress on Evolutionary
Computation (ECE 2006), Vancouver, BC, Canada, July 2006.

[11] Miles, C. and Louis, S. (2006). “Towards the Co-Evolution of
Influence Map Tree Based Strategy Games Players.” Proceedings of
the 2006 IEEE Symposium on Computational Intelligence and Games
(CIG 2006).

[12] Parker, G., Doherty, T., and Parker, M. (2006). “Generation of
Unconstrained Looping Programs for Control of Xpilot Agents,”
Proceedings of the 2006 IEEE Congress on Evolutionary Computation
(CEC 2006), Vancouver, BC, Canada, July 2006.

[13] Parker, M. and Parker, G. (2006). “Using a Queue Genetic Algorithm
to Evolve Xpilot Control Strategies on a Distributed System,”
Proceedings of the 2006 IEEE Congress on Evolutionary Computation
(CEC 2006), Vancouver, BC, Canada, July 2006.

[14] Parker, G. and Parker, M. (2006). “Learning Control for Xpilot
Agents in the Core,” Proceedings of the 2006 IEEE Congress on
Evolutionary Computation (CEC 2006), Vancouver, BC, Canada, July
2006.

237

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

