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Abstract— Learning controllers for the space combat game 
Xpilot is a difficult problem.  Using evolutionary computation 
to evolve the weights for a neural network could create an 
effective/adaptive controller that does not require extensive 
programmer input.  Previous attempts have been successful in 
that the controlled agents were transformed from aimless 
wanderers into interactive agents, but these methods have not 
resulted in controllers that are competitive with those learned 
using other methods.  In this paper, we present a neural 
network learning method that uses a genetic algorithm to select 
the network inputs and node thresholds, along with connection 
weights, to evolve competitive Xpilot agents. 
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I. INTRODUCTION

In previous research, we used a genetic algorithm to 
evolve the weights for a neural network in the game Xpilot.  
In one experiment, we evolved a single layer perceptron 
network in a simple map against one opponent [1].  In the 
second experiment, we evolved three separate specialized 
networks; one to shoot, one to dodge bullets, and one to fly 
toward the enemy.  These specialized networks were 
combined into a larger network in an attempt to create a 
good general combat robot [2].  The controllers evolved in 
these previous papers used a simple weight system and the 
inputs to the network were chosen by the researchers. In the 
research reported in this paper, we evolve a two-layer neural 
network without incrementally evolving specialized 
networks.  The inputs to the neural network are selected by 
the GA from a large list of possibilities. In addition, we 
changed the weight system to include thresholds and 
inverted thresholds between every connected node, which 
allowed for more decisive behavior. 

Most of the previous work done by other researchers in 
the area of evolving game-playing has been done with 
thought games, such as board games, where the agent 
competes against a single opponent.  Work was done by 
Konidaris, Shell, and Oren to evolve a neural network to 
capture in the game Go [3].  Fogel conducted his famous 
research with Checkers [4].  Hingston and Kendall did 
research to solve the iterated prisoner's dilemma problem 
[5].  In the area of action computer games, Funes and 
Pollack created their Java Tron applet, which evolved 

controllers for light-cycles against human opponents [6].  
Cole, Louis, and Miles evolved robot parameters for the 3D 
first person shooter game Counterstrike [7],  Hallam and 
Yannakakis evolved "fun" ghost opponents for the game 
Pac-Man [8], Stanley, Bryant, and Miikkulainen evolved 
neural networks to control agents that could learn in real-
time through a series of training exercises in the NERO 
video game [9], Priesterjahn, Kramer, Weimer, and Goebels 
evolved controllers for artificial players in the game Quake3 
[10], and Miles and Louis evolved game playing strategies 
for opponents in a game that they created called Lagoon 
[11]. 

In previous work, we evolved controllers for Xpilot using 
a cyclic genetic algorithm (CGA) [12].  While these were 
our most successful controllers, they required a large amount 
of intelligent design on the part of the researcher, and lacked 
the variation of output of a neural network.  In the research 
reported in this paper, we evolve a neural network that uses 
a new weight system and evolved inputs, which is 
comparable in skill to the CGA controller, but without any 
predefined behaviors and with a larger variety of possible 
actions. 

II. XPILOT

Xpilot is a 2-dimensional multiplayer space combat game 
playable over a network and the internet.  The player 
controls a space ship which can mainly either thrust, turn, or 
shoot.  The game physics have a realistic feel with an 
accurate representation of acceleration, velocity, and 
momentum in a frictionless space environment.  Though the 
few control keys are simple to learn, a good "feel" for the 
physics is required to skillfully pilot the ship, shoot 
opponents, and avoid their shots. 

The standard versions of Xpilot include a server 
controlled robot with a respectably good artificially 
intelligent controller.  There was no interface provided to 
allow people to reprogram the server robot, and few ever 
did.  Recently, a group of researchers developed an easy-to-
use interface for using AI to control a player's ship in Xpilot 
which is called Xpilot-AI (www.xpilot-ai.org).  Because 
Xpilot is open-source, they were able to modify the Xpilot 
client, making new functions to control the ship and to read 
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variables about the surrounding environment.  Because it is 
a modification of the client, these AI controlled ships are 
able to connect to any Xpilot server and play along with 
other AIs and human players. 

Xpilot is a game with few controls that requires complex 
behavior to successfully pilot the ship, so it is naturally a 
good environment to test neural network controllers, which 
usually take several inputs and produce a few outputs. 

III. NEURAL NETWORK CONTROLLER

A. Inputs 

Choosing inputs that are valuable to the neural network is 
difficult because we do not know what the neural network 
needs to produce the desired behavior.  In past research, we 
chose whatever inputs we thought were required and then 
perhaps added a few more that might be valuable, usually 
creating a set of inputs more numerous than needed.  
Conversely, we might choose too few, not including an 
input because it did not seem necessary to us, and yet to a 
neural network it might actually be useful.  

In this experiment, we chose to evolve which inputs to 
use in the network, rather than choosing them ourselves.  
We created a list of 64 possible inputs which covered a 
broad range of the possible inputs in the game; most of them 
seemingly useful, and some that did not seem to us to be 
particularly so, yet were included in the off chance that the 
network could use them. These were selected to be useful in 
combat against any Xpilot opponent as opposed to being 
modeled specifically for a known enemy. There were two 
main types of inputs, with about 32 of each type.  The value 
range of the inputs was normalized by reducing it to a value 
between -1.0 and 1.0. 

B. Direct Input 

Variables that are directly read from the game 
environment are the "direct" inputs.  For example, several of 
our direct inputs are: Self velocity, Enemy velocity, Enemy 
distance, Bullet intercept distance, Bullet intercept time, 
Wall distance directly in front of ship, etc., as well a few 
unchanging inputs, such as 1.0, 0.0, and -1.0. 

C. Comparison Input 

The comparison input compares two angles and returns 
their difference.  The difference between the ship's heading 
(direction it is pointing), and another angle, perhaps the 
direction to the enemy ship, is the number of degrees that 
the ship should turn to be pointing at that angle.  The 
difference between the ship's track (direction of velocity) 
and some other angle can reveal if the ship is flying in or 
close to that particular direction, which is helpful for flying 
towards or avoiding objects.  We have several difference 
comparisons between the self ship's track or heading and 
other angles, such as the Enemy's target direction, the 
Bullet's predicted nearest intercept angle, the Enemy's track, 
the Bullet's track, and so on. 

Each neural network input node was represented as a 6 bit 
gene, which was converted to a number between 0 and 63 
and matched with the corresponding input in the list of 
inputs.  We determined that 128 possible inputs were 
unnecessary and we did not want to increase the gene size to 
7 bits, so we kept with 64, although a few more inputs could 
have been useful.  For example, we wanted to have a "wall 
feeler" type input, which would detect walls within a certain 
range at an evolved angle from the ship.  However, because 
we had only 64 possible inputs, we only included wall 
feelers at 6 different angles, with two different ranges each: 
at +10/-10 degrees and +30/-30 degrees from the ship's 
velocity direction, and at +0 and +180 degrees from the 
ship's heading. 

Fig. 1.  A threshold is on every weight.  If it is a regular threshold, every 
input value between -t and t is ignored, and the allowed values are 
amplified. If it is an inverted threshold, the values above t or below -t are 
ignored, and the allowed values are amplified and inverted. 

D. Weights

In previous work [1,2], our neural networks had a simple 
system of weights with only one threshold per output node, 
where an input would simply be multiplied by a weight 
which was an evolved number between -1.0 and 1.0.  There 
are a few problems with this method.  One is that often times 
it may be beneficial for the controller to have neurons that 
perform no action when their input is below a certain level.  
For instance, if a bullet is far enough away, the ship might 
wish to completely ignore it, and yet it may need to perform 
drastic maneuvers when a bullet is too close.  With our 
simple multiplied weight of the past, the input is linearly 
affected by the weight, so that a harmless bullet that is far 
away still influenced the behavior of the ship unnecessarily, 
especially if the neuron required a high output when the 
bullet was dangerous.  Because all the neurons constantly 
affected the output of the network, the ships always 
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developed a spinning behavior which was a blend of 
necessary movements, rather than separate behaviors which 
depended on different environmental situations. 

Another problem with the old weights is that we always 
had to determine whether or not we should invert the input 
to the weight.  For instance, the shorter the distance that a 
bullet is from the ship, the more action should be taken by 
the network.  If we leave the input as just the distance to the 
bullet, when the bullet is nearest it is at 0.0, and farthest it is 
at 1.0.  So, we would determine to invert the input before it 
goes into the weight.  While this probably was a good idea 
for the bullet distance, for other inputs it's not so clear.  
Therefore we needed a way for the network to choose 
whether or not to invert it without our intervention. 

We have solved both these problems with our current 
system of weights.  Each weight is represented by two 6 bit 
genes.  The first gene determines the threshold (Fig. 1), with 
the first bit determining if it is an inverted threshold and the 
last 5 bits determining the value of the threshold.  Because 
the input to the weight can be anywhere between -1.0 and 
1.0, the value of a threshold is a number converted from the 
5 bits to a number between 0.0 and 1.0.  If the value of a 
threshold is t and the first bit determines it is a regular 
threshold, then any input values between -t and t are 
ignored, and the weight will output zero.  If the input value 
is greater than t or less than -t, then that input value, V, is 
amplified: newV = V * 1.0 / (1.0 - t)

If it is an inverted threshold, then any values greater than t
or less then -t are ignored.  Values between -t and t are 
inverted and amplified: newV = 1.0 / (V * 1.0 / t).  We 
invert the values here because if not, the value of the weight 
would grow greater as the input approached the threshold, 
so that the greatest action would occur right before choosing 
to ignore the input.  Normally, however, greater action 
should occur as the input gets further away from the 
threshold.  For instance, as the distance of the bullet 
decreases, more action is required; but as it gets further 
away, perhaps nearer to the weight's threshold, less action is 
required. 

Fig. 2.  The neural network is composed of 11 input, 5 middle, and three 
output nodes.  The 11 input nodes are evolved and chosen from a list of 64 
possible inputs.  Between each of the connected nodes is a weight, which 
consists of a threshold and a multiplier. 

The second gene of the weight is the multiplier, which is a 
number between -1.0 and 1.0.  It is multiplied by whatever is 
output after the input is run through the threshold.  This 
system of weights allows for more decisive behavior and 
control of the ship. 

E. Network Structure 

The neural network itself is made of 11 input nodes, 5 
middle (hidden) layer neurons, and 3 outputs (Fig. 2).  The 
inputs, as described above, are evolved and chosen from a 
list of 64 possible inputs.  The 5 middle layer neurons exist 
to increase the logical ability and variation of the behavior 
of the ship.  The three output neurons are turn, thrust, and 
shoot.  To thrust or shoot, the corresponding output neuron 
must be greater than or equal to 0.0.  For turning, the output 
is altered by an exponent of 0.15 and then multiplied by 
twenty degrees.  The exponent of 0.15 was chosen by 
observing what made a good average turn speed for the 
initial random population. 

There is a weight between each node of the network; each 
weight consists of two genes, 6 bits each.  The entire 
network consisted of 140 genes, plus the 11 genes 
determining the inputs, for a total of 151 genes, 906 bits 
total. 

Fig. 3. Figure of the simple map used in this experiment.  The starting bases 
are scattered about throughout the space.  The map is 32x32 tiles; about 50 
ship-lengths across. 

IV. EVOLVING THE NEURAL NETWORK

A. Setting 

We chose to evolve the neural network agent using a 
genetic algorithm in a setting similar to that of our previous 
experiments [1,12].  We used a simple square block map 
(Fig. 3) with an off-centered cross in the middle, and with 
many starting locations scattered around the map.  We set 
inside the same opponent from our previous tests: Sel bot, 
who is our best hand-coded Xpilot agent.  He has a good 
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aiming function, bullet-dodging, wall avoidance, and the 
ability to chase enemies around walls.  In previous 
experiments, we would reset Sel bot and the learning agent 
to their original locations after one of them died.  This made 
sure that each evolving agent had the same opportunities, 
but added greater complexity to the evolution and neglected 
the importance of controlling the ship after killing an 
opponent, at which time the explosion from the opponent's 
ship can crash the agent into a wall.  In this experiment, we 
do not make them both reset after one dies, but allow the 
other to keep floating around.  The new agents appear at a 
new random starting location after every death.  This is 
sometimes bad for the evolution, for example if Sel happens 
to be floating right by where a new agent appears.  
However, we give every agent three lives to display its 
fitness, so the fitter agents are still able to acquire a good 
fitness.   

B. Fitness 

Previously our fitness for the agents was based heavily 
upon staying alive [12].  This generally evolved defensive 
and passive agents, many who developed a constant spin and 
occasional thrust behavior, dodging Sel's bullets well, but 

not attempting to kill him.  We tried with our previous 
neural networks to award a good fitness bonus for killing 
Sel, but this evolved bots that converged prematurely on a 
solution which just involved spinning slowly in place and 
shooting constantly.  In this experiment we award the agent 
200 points for killing Sel and 1/4 a point for each frame of 
game play it stays alive.  While this fitness scheme would 
have worked poorly on our previous neural networks, 
probably because the neural networks themselves were so 
limited, it positively influences the evolution of the more 
complex neural network in this experiment.  More 
aggressive agents are evolved that also attempt to stay alive. 

The evolution was performed using a Queue Genetic 
Algorithm (QGA) [13], which essentially produces the same 
results as a regular genetic algorithm but is designed to be 
easily distributed among available computers to increase the 
speed of evolution.  The population size was 256 
individuals, but at the start was expanded to 1024 to increase 
diversity, then brought back down to 256.  Individuals were 
selected stochastically (roulette wheel selection).  The 
probability of crossover is 100% and there is a 1/300 chance 
of mutation per bit. 

Fig. 4. Graph showing the average of the average fitnesses of the 5 tested populations over 300 generations.  The line is fifth order 
polynomial a least squares fit. 
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Fig. 5. Graph showing the average of the best fitnesses of the 5 tested populations over 300 generations.  The line is a fifth order 
polynomial a least squares fit. 

V. RESULTS

We ran 5 tests, each to 256 generations.  We recorded the 
best individual for each generation as well as the average 
fitness of the population.  The graph of the growth in 
average fitness over time for the 5 populations shows clear 
improvement (Fig. 4).  The graph of the best fitnesses for 
the 5 populations has less obvious growth (Fig. 5), because 
often the best individual was merely the luckiest, and does 
not necessarily reflect the general health of the population or 
even of that individual. 

The agents showed visually their improvement in 
behavior over time.  At first they flew wildly about, 
smashing into walls, unresponsive to their speed or the 
location of the enemy.  Over time, they learned not to thrust 
as much, and to spin around in circles, still not really aiming 
at the enemy, but at least not smashing into the walls.  
Eventually they learned to aim at the enemy, tracking Sel 
and shooting whichever direction he flew.   

Because Sel attacked them, finding them wherever they 
were in the map, the agents did not need to be aggressive.  
Most learned to do nothing more than spin around shooting 
until Sel came, and then shoot at him.  They had access to 
both the angle of the enemy ship and the "aimdir" angle, 
which is a calculated aiming function which takes into 
account both ships' velocities.  The agents learned to use 

these angles, either singly or together, to such effect that it 
was more useful for them to constantly aim and shoot at Sel 
than to begin to learn to dodge Sel's bullets.   

Some agents, though it was not a dominant trait, learned 
to thrust away from the walls in order to avoid crashing into 
them.  These agents would shoot at Sel, and then give a puff 
of thrust as their back ends approached a wall (their 
shooting propelled them backwards).  Some other agents 
learned to thrust towards Sel to attack him, which was 
actually a very good strategy because Sel could not so 
quickly dodge their faster bullets.  However, these agents 
never combined their thrust-attack with useful wall-
avoidance, and their fast attacks became their undoing, as 
they flew dangerously fast past Sel and into a wall. 

The 5 evolved populations utilized less than half of their 
input nodes to perform this behavior.  The most common 
inputs were the comparison between self's heading and the 
enemy's "aimdir", between self's heading and the direction 
of the enemy's current location, and a wall feeler or two, 
either +/-10 or +/-30 degrees from self's direction of 
velocity.  Some tests had an input for some bullet attribute, 
and some had inputs that were constantly 1.0 or 0.0.  The 
input nodes that we determined to not be in use by the neural 
network changed seemingly randomly from individual to 
individual in the population.  Because the behavior remains 
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similar for each individual, even with the varied inputs, 
those inputs were probably muted by the weights of the 
network, so that they made little difference to the output. 

While the behavior was not as complex as we would like, 
it is by far the best we have evolved in Xpilot using a neural 
network.  The underutilization of the input nodes shows the 
power of a network with this type of weight structure to 
evolve successful behavior with only a few inputs.  The 
fitness function and simulation, which sent Sel bot quickly 
to attack and awarded mainly killing Sel, was not enough to 
warrant the network to evolve attacking, bullet dodging, and 
wall avoidance. 

VI. CONCLUSION

Our previous research in Xpilot using neural networks 
[1,2] used a simple multiplicative weight system with no 
input thresholds, making it more difficult for the agent to 
evolve decisive behavior.  We also guessed what inputs 
would be most useful to the network, often choosing too 
many unnecessary inputs, or not including less obvious 
inputs that may still be important.  We manually inverted the 
inputs as seemed necessary to us, though the neural network 
may have found it less useful.  We have addressed all of 
these problems by using a new weight structure with 
thresholds and inverted thresholds, allowing the network to 
choose to invert the inputs and to ignore the inputs after a 
certain point.  We also evolved the inputs to the network, 
chosen from a large list of 64 possible inputs, so that the 
genetic algorithm could decide which were most important. 

Our tests were run in a simple map against a single AI 
controlled bot.  The tests showed substantial improvement in 
fitness over the 300 generations.  The agents evolved to be 
well adapted to their environment, and became quite deadly 
to the enemy bot.  Because Sel charged toward them, and 
because they could aim so effectively, most agents found it 
best to wait for Sel and shoot at him when he came.  The 
networks seemed to utilize only about 4 or 5 of their input 
nodes on average, mainly using them for aiming, while 
muting the others. 

In future research, we intend to use this same neural 
network with a different simulation and fitness function.  
One option is to put each agent through several fitness tests, 
such as bullet dodging, approaching the enemy, and general 
combat.  We also intend to try this network with competitive 
co-evolution and in the Core, where all agents in the 
population simultaneously compete against one another, 
spreading their genes to those they kill [14].  Increasing the 
number of possible inputs would also be useful, especially 
adding more possible wall sensor angles.  This particular 

weight structure, used with evolved inputs, has been very 
successful in this initial test and will most likely be the 
backbone of much of our future research involving neural 
networks. 
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