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Abstract—In this paper we present a new method for 

evolving autonomous agents that are competitive in the space 
combat game Xpilot.  A genetic algorithm is used to evolve the 
parameters related to the sensitivity of the agent to input 
stimuli and the agent's level of reaction to these stimuli.  The 
resultant controllers are comparable to the best hand 
programmed artificial Xpilot bots, are competitive with human 
players, and display interesting behaviors that resemble human 
strategies. 

Keywords: Xpilot, Genetic Algorithm, Control, 
Autonomous Agent, Xpilot-AI 

I. INTRODUCTION 
Xpilot is a two dimensional interactive combat game set in 

the space environment. We developed a system, called 
Xpilot-AI, that allows researchers to create their own agents 
and test them in the Xpilot arena. In previous work (details 
in Section 3), we used the system to evolve controllers while 
avoiding the use of predefined functions. Although our 
evolving agents learned and were capable of reasonable 
combat, they were no match for human players or for our 
own hand programmed agent. With the further development 
of Xpilot-AI, a function set that includes advanced features 
such as an aiming function was made available at 
www.Xpilot-AI.org.  In order to evolve an agent controller 
suitable to enter the CIG2007 Xpilot competition, we 
determined that our best chance was to use whatever 
features were available.  The results are reported in this 
paper. 

There has been significant use of evolutionary 
computation to learn game play although much of this has 
been to learn strategies for playing board games such as 
checkers [1] and go [2] or for beating an opponent playing 
the prisoner’s dilemma problem. However evolutionary 
computation has also been used to learn controllers for 
interactive games.  Funes and Pollack evolved controllers 
for light-cycles against human opponents in their online Java 
Tron applet [3],  Yannakakis and Hallam evolved interesting 
ghost opponents for the game Pac-Man [4], and other 
researchers evolved controllers for opponents operating in 
real-time combat strategy games such as the commercial 
games Counter-Strike [5] and Quake3 [6] and in games 
developed by the authors such as Lagoon [7].  Stanley et al 
used a method for evolving artificial neural networks to 
control agents that could learn in real-time through a series 
of training exercises in the NERO video game [8].  

II. XPILOT-AI 
Xpilot-AI was developed as a means for researchers in 

artificial intelligence to test methods of the generating 
autonomous controllers.  It uses the interactive Internet 
game Xpilot as a training/testing environment. 

Xpilot is an open-source 2-dimensional multiplayer space 
combat game.  Fig. 1 shows a typical game in play.  The 
large area on the right is called the screen; it gives the 
players a detailed look at what’s happening near their own 
ship.  The two triangles are ships engaged in combat. In this 
case, the one at the top is the ship being controlled by the 
operator running the client producing the graphic interface.  
The other triangle, with the label Sel_41913 is the opponent 
or enemy ship.  The boxes on the screen area are walls.  The 
numbers 1 2 3 show the location for 3 bases, one each for 
ships from teams 1, 2, and 3.  The light dots behind Sel are 
the result of Sel activating its thruster.  The brighter dot 
behind Sel is a bullet shot by the operators’ ship, which just 
missed as Sel accelerated to avoid it.  The top left of the 
graphic shows the entire map, with the ships shown as dots.  
This is referred to as the radar.  Below it is a list of the 
players with their scores.  Also listed are the teams and their 
scores.  The player controls a ship using the keyboard or 
mouse and must destroy enemy ships while avoiding being 
killed by the enemy or a wall collision.  There are different 
maps that vary in size and objectives, with team play, 
capture the flag, or free-for-all combat.  There are often ship 
upgrades made available that enhance a ship's abilities with 
added weapons like lasers or triple fire, or with ship 
upgrades such as cloaking or increased fuel.  At this point 
only simple maps, with only bullets provided as offensive 
weapons, have been used for Xpilot-AI.  Xpilot uses a 
client/server approach to support multiple players. It has 
realistic physics and solid networking code.   

Xpilot has a predetermined networking protocol, which 
made it a good platform for developing Xpilot-AI.  The 
Xpilot server and client are synchronized frame by frame.  
For each frame, the server sends packets to the client with 
information about what to display.  The client receives this 
information, parses it, and displays it graphically on the 
screen.  The client sends back to the server information 
about mouse movement and what keys the player is pressing 
on the keyboard.  Xpilot-AI parses the information received 
by the client and stores it in easily accessible variables.  In 
addition,  we have added modules with structures containing 
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Fig. 1.  Xpilot game in progress.  Evolved agent Morton has just attempted to shoot the enemy ship Sel, but the shot went behind its target. 
 
 

useful  information about the player's ship,  the enemy ships, 
the bullets, the radar, and the map.  The structures contain 
information like X and Y coordinates, velocities, 
accelerations, distances, etc.  The Xpilot-AI modules also 
include commonly used functions for aiming, calculating 
distances, finding walls, etc.  

Xpilot-AI controls the ship by simulating keyboard key 
presses and mouse movement.  To turn the ship, it sends a 
packet to the server saying the mouse has moved a certain 
amount.  To thrust, shoot, and do other controls it sends a 
packet saying a particular key has been pressed on the 
keyboard.   Between the sending and receiving, an AI 
function can be inserted that takes as inputs environment 
information and outputs the control for every frame.  
Because all this is done in the client, any number of AI 
controlled clients may be connected to play against one 
another or against real people.  Xpilot-AI programs in C and 
Scheme are available online at www.Xpilot-AI.org. 

III. PREVIOUS XPILOT RESEARCH 
Autonomous Xpilot agents learning to combat a single 

agent have been evolved using four learning methods, all of 
which attempted to make minimal use of predefined 
functions.  In all of these works, the agent being evolved 

was engaged in combat with a single opponent. Both the 
learning agent and the opponent had three possible outputs: 
turn up to 15° left or right, thrust on or off, and shoot on or 
off.  The learned control program was to take in a number of 
inputs and determined these three outputs between each 
frame of the game. 

A. Evolving Weights for a Perceptron [9] 
In this research a genetic algorithm was used to learn the 

connection weights for a fixed artificial neural network 
controlling the agent as it engages in combat with a single 
opponent.  The AI ship controller was a single layer 
feedforward neural network with twenty-two inputs and 
three outputs.    The inputs included information about the 
agent, its enemy, bullets, the walls, and one was set to 1 to 
act as a threshold.  The chromosome was made up of 66 
genes, each of which was made up of six bits.  Each gene 
represented a weight and was converted to a number 
between -1 and 1 before use in the Perceptron controller. 

B. Evolving the Priorities and Responses of Production 
Rules [10]  
A set of 16 conditions important for reasonable play was 

developed.  This included conditions dealing with the ship’s 
position relative to walls, the enemy ship, and hostile fire.  A 
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binary coding was developed to represent the possible 
responses that were to be learned by the GA.  In addition, 
the GA learned the priorities of theses different rules to 
resolve conflicts if more than one fired at the same time.  
The Xpilot agent was represented by a chromosome of 16 
genes.  Each gene was represented as a segment of 14 bits, 
with each gene containing information for how the agent 
should behave in each of 16 different cases which serve as 
antecedents for a rule based system.    

C. Generating the Controller Program using a Cyclic 
Genetic Algorithm [11] 
The cyclic genetic algorithms (CGA) is a type of genetic 

algorithm in which the genes represent tasks to be 
performed rather than traits of a problem solution.  In 
addition, a group of these tasks can be set to repeat, which 
allows for cyclic behavior.  The CGA was initially 
developed to generate the cycles required for hexapod robot 
walking gaits, which required only single cycles.  In further 
work, the CGA has been extended to give it the capability of 
generating multi-loop control programs, which is how it was 
used in this application to evolve Xpilot controllers.  These 
controllers were represented by a chromosome of 64 genes, 
with each gene being 11 bits, so a chromosome was 
comprised of 704 bits.  Each 11-bit gene either contained 
information for how the robot should act in a given frame, or 
an instruction to jump to another gene to look for control 
information.   

D. Incrementally Evolving a Multi-Layer Neural Network 
[12] 
In this research we used incremental evolution to learn the 

neural network (NN) controllers. In the first increment we 
used specific training environments to learn specific facets 
of control.  These were then used in the second increment to 
evolve a two layer NN that used a separate NN to control its 
second layer connection weights.  Fig. 2 shows a diagram of 
the entire incremental network.  The enemy distance and 
bullet alert are inputs to a network whose outputs are the 
weights between the specialized networks’ outputs and the 
three resultant outputs.  Although the agent learned each 
specific facet, the combination was not as competitive as 
hoped, plus it was significant work to evolve. 

Fig 2.  Incremental network evolved in previous work. 
 

All of these attempts were successful in that reasonable 
agents were developed from random, but they were not good 
enough to compete with the standard human player.   

IV. EVOLVING PARAMETERS  
For the researcher reported in this paper we started with 

an agent controller made available at the Xpilot-AI web site.  
This agent, which the developers call Morton, has a hand 
coded controller that takes into account walls, bullets, and 
the enemy ship, but is still only moderately competitive.  
Our initial work was to expand this program to make it take 
into account different levels of wall collision danger, bullet 
danger, and to be able to consider more than one enemy and 
bullet at a time.  In addition, we included cases where it 
could recognize if there was a wall between it and the enemy 
and/or bullet.  The program was a large case statement made 
up of 18 cases, which were ordered in what we considered 
to be of greatest importance.  For example, if a bullet was 
close and had a high probability of hitting our agent ship, 
this took priority over a moderate chance of wall collision.  
The turn and thrust setting of the agent for that frame was 
determined by the applicable case statement.  To control 
whether the ship was to shoot, a separate if statement was 
used since turn and thrust are always of importance and 
shoot is purely offensive. 

The program was originally written with the developers’ 
best guess for the many parameters such as angle of wall 
feelers and the turn to be made in case of an approaching 
wall.  This resulted in a reasonable agent but we found it 
difficult to find the correct set of parameters to make it 
competitive. Our next step was to determine all of the 
parameters needed to be set and their appropriate ranges. We 
extended these beyond what we thought appropriate in case 
our preconceived notions of what they should be were 
hindering us. We identified 22 parameters and determined 
that we could set them all using a range of 0 to 15. Some 
were multiplied, some were divided into plus or minus 
possibilities, while still others were added to previous 
parameters to set their parameter. 

The set of parameters that were learned are shown in Fig. 
3.  Some of these parameters have to do with general use 
functions, such as “same”, which was used to define what 
should be considered equal in reference to distances from 
the ship.  Some of the parameters are for specific situations.  
The ship uses feelers to determine the distance to walls at 
angles set relative to its track.  There were different feelers 
for different situations.  One set of feelers was to be used 
early in the case statement, which signifies that these were 
for higher priority situations.  The second set was only used 
when none of the prior cases were true.  When the initial 
program was written we used the same angle for both of 
these sets of feelers, then later determined that it might be 
advantageous to have different angles dependent on the 
priority.   Some of the parameters were used to determine 
when a case would be considered true (such as those dealing 
with feelers), others were used to determine what the action 
would be when the case true (such as those dealing with an 
angle required for the ship to turn to or an angle required 
before the ship would thrust or shoot).   
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• span – The angle between the line to a target location and the 
edge of the nearest wall. Used to determine how much the wall 
is blocking the ship from a bullet. 

• offsetinc – indicates the increments used to determine the turn 
direction needed for a ship to avoid a wall.  

• samespread – the difference allowed between the distances 
returned by 2 wall-feelers which would result in considering 
them the same. 

• wall-span1 – the angle off of the ship’s track used to feel for the 
closest wall. 

• wall-span2 – same as wall-span1, except used for a second set 
of feelers that are checked in a later case statement. 

• vd-bullet-dist – determines the bullet alert required to consider 
the bullet very dangerous. 

• d-bullet-dist – same as vd-bullet-dist, except located in a later 
case statement (value of this parameter is added to vd-bullet-dist 
to determine the distance). 

• vd-dodge-bullet-angle – the angle the ship will turn away from a 
bullet considered very dangerous in order to dodge it.   

• d-dodge-bullet-angle – the angle the ship will turn away from a 
bullet considered dangerous in order to dodge it.   

• close-wall-speed – this speed, in conjunction with the distance 
of the closest wall, determines if the ship shoot take action to 
avoid it. 

• medium-wall-speed – same as close-wall-speed, except used in 
a later case statement. 

• c-angle-before-thrust – the angle of the ship’s heading away 
from the closest wall before the ship will thrust. 

• m-angle-before-thrust – same as c-angle-before-thrust, except 
used in a later case statement. 

• wall-avoid-angle – how small the angle has to be between the 
ship’s heading and its desired track to avoid a wall before it will 
thrust. 

• screen-thrust-speed – if the ship’s speed is lower than this and it 
is turning to attack an enemy on the screen, it will thrust.  

• radar-nothrust-speed - if the ship’s speed is lower than this and 
it is turning to attack an enemy on radar, it will thrust. 

• ship-error-to-shoot – the maximum angular difference between 
the desired aim direction and the ship’s heading before it will 
shoot at an enemy on the screen. 

• radar-error-to-shoot – the maximum angular difference between 
the desired aim direction and the ship’s heading before it will 
shoot at an enemy on radar. 

• wall-turn-angleR – the angle between the ship’s track and 
heading that the ship turns to avoid colliding with a wall when 
responding to a right feeler indicating a wall that is too close. 

• wall-turn-angleL – the angle between the ship’s track and 
heading that the ship turns to avoid colliding with a wall when 
responding to a left feeler indicating a wall that is too close. 

• wall-turn-angleB – the angle between the ship’s track and 
heading that the ship turns to avoid colliding with a wall when 
responding to an equal distance from both walls.  

• shoot-dir-rand – the angular range that the ship will use to 
randomly affect its direction to aim.  

Fig. 3. Set of parameters that were evolved by the genetic algorithm. 

V. GENETIC ALGORITHM 
A standard GA with a population of 128 chromosomes 

was used to learn the parameters, which we plugged into the 
agent while it competed in the Xpilot arena (Fig. 3).  The 
chromosome used was 88 bits with 22 genes (parameters), 

each made up of 4 bits (allowing raw values from 0 to 15). 
Selection was determined by putting the agent in the arena 

with a standard opponent. The opponent used, named Sel, is 
a hand-coded agent that up until this point has been our most 
successful combatant, which is competitive with a standard 
human player.  It is available to compete against on the 
Xpilot-AI server, but its code is not available.  The example 
code for an agent, Morton, which is given on the web page, 
is what we used to create our learning agent.  Each 
chromosome of the genetic algorithm was used to control an 
agent that competed with Sel for one round, which ran until 
the death of the learning agent.  If during the round, Sel 
died, the competitors went back to their starting stations and 
competed again.  The learning agent gained one point of 
fitness for each frame that it survived and 1000 points for 
each time it killed Sel.  After all 128 individuals were tested 
in the arena and assigned a fitness, the GA perform 
stochastic selection. Individuals selected were crossed over 
with a 100% chance of crossover and were mutated with a 1 
in 300 probability of flipping each bit.   

VI. RESULTS  
Five test runs using five randomly generated populations 

were run for 240 generations of training.  At each generation 
the best and average fitness of the population was saved. 
The results are shown in figures 4 and 5.  Fig. 4 shows the 
average fitness over time (generations) as the individuals 
evolved.  Fig. 5 shows the fitness of the best individual of 
the population at each generation.  The graphs show all 
these data points with different symbols used for each of the 
populations. In addition, fifth polynomial least squares trend 
lines are used to help visualize the growth of fitness.  The 
fitnesses were highly variable since the starting locations for 
the ship and enemy were changed before each generation.  
However, generalizations about the learning progress can be 
made.  There was significant improvement as the evolution 
took place.  In the case of the average fitnesses, they started 
out at below 200 and rose to above an average of 700.  In 
the case of the best individual at each generation, the fitness 
started out at approximately 1500 and rose to be over 5000. 

These empirical results were backed up by observations 
of the agents as they engaged in combat.  One could observe 
significant improvements as the agents evolved. Most 
started out with a slow spinning in place motion for a slight 
drift until the enemy approach, at which time they would 
take some action in response, which would often result in a 
wall collision. Others turned left and then right as they 
darted in a somewhat random manner on the map.  They 
would usually shoot, but not necessarily in the direction of 
the enemy.  While watching several individuals in the 
population positive characteristics for many were observed.  
Some had a tendency to be good at avoiding wall collisions, 
others reacted well to approaching bullets, and still others 
tended to shoot in the general direction of the enemy.  These 
positive  attributes  are  probably  what  the  GA  built  on  to  
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Fig. 4.  Average of the fitnesses of all individuals in the population at each generation during training.  Five tests are shown.  A fifth 
order polynomial least squares trend line helps to show the learning curve. 

 
 

 
Fig. 5.  The fitness of the best individual in the population at each generation during training.  Five tests are shown.  A fifth order 
polynomial least squares trend line helps to show the learning curve. 
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make competent combat agents. As the generations 
progressed, the individuals started to get better at each of the 
positive attributes and, in some cases, combine useful skills. 

By the end of training, all 5 tests produced excellent 
autonomous controllers that gave their agents skills 
comparable to that of Sel.  In some aspects they were better 
and in others not as good.  Sel is equipped with very good 
aiming and chasing capabilities.  It is programmed to 
maneuver around a wall and quickly/accurately attack its 
enemy.  The evolved agents were not as aggressive (due to 
the fitness function) and had to learn their parameters for 
accurate aiming.  Sel is also pre-programmed with good 
angles for dodging bullets and avoiding wall collisions; the 
evolved agents needed to learn these.  Nevertheless, these 
agents learned to compete with Sel bot.  This could be 
observed as the training progressed by looking at the Xpilot 
scores of each of the combatants.  By the end of training the 
scores for Sel and the training agent are consistently within 
1% of each other.  Sometimes Sel is ahead and sometimes 
the evolving agents.  This shows that the population of 
agents, or average performance of the population’s 
individuals, is equal to that of Sel. 

In addition to competing with Sel, the trained agents are 
very competitive with human players.  Tests were done with 
the fitness evaluations being done on the Xpilot-AI server.  
Human players could join the game and compete against 
both Sel and the individuals evolving in the population.  
This makes for interesting competition since both Sel and 
the agents (added to the publicly accessible game after 
several generations of training) are very good and far 
superior to the Xpilot game supplied bots.  It makes for 
particularly interesting combat because Sel is very consistent 
in its behaviors, but the bot representing the evolving agents 
varies slightly each time the game restarts (which happens 
after all but one have died) because all individuals of the 
population are being tested using it.  We have had several 
human players join the game and in most cases, they are not 
as good as our evolved bots.  

Trained individuals in the later generations start to 
develop some very interesting behaviors.  Although they are 
controlled only by a set of simple cases, the behaviors they 
exhibit make them appear to have complicated controllers 
equipped with combat strategies.  Due to the simplicity of 
the controller, we consider these to be emergent behaviors.  
One such behavior is the agent’s apparent use of walls to 
shield it from the enemy.  As an enemy approaches, an agent 
using this strategy will move in a direction to place the wall 
in between it and the enemy.  It will then make quick moves 
out to the edge of the wall, just clearing it enough to take a 
shot and the then return for cover.  This strategy is not only 
effective but gives the agent a human controlled appearance. 

VII. CONCLUSIONS AND FUTURE WORK 
Learning controllers for Xpilot agents using the evolution 

of decision and action parameters can produce excellent 

controllers that are competitive with human players.  The 
agents produced are not only competitive, but learn 
emergent behaviors that make them appear to use complex 
combat strategies.  In addition, by using a publicly 
accessible Xpilot-AI server to continue evolution after 
several generations of initial training, human players can 
compete against seemingly non-deterministic bots that will 
adapt (given sufficient time) to their style of play. 

In future work, we will continue to build the complexities 
of the controller to allow it to take on additional tasks such 
as base capture.  In addition, experiments will be done with 
alternate fitness functions to produce different behaviors.  
The agents evolving in this paper were fairly passive; 
reducing the reward for kills by how long it takes to attain 
them should produce more aggressive resultant agents.  The 
learning method presented in this paper, which produces 
competitive combat agents, greatly opens up the possibilities 
for future expansions of the use of evolved agents in the 
Xpilot environment.   
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