

Gary B. Parker
Computer Science

Connecticut College
New London, CT 06320

parker@conncoll.edu

Matt Parker
Computer Science
Indiana University

Bloomington, IN, USA
matparker@cs.indiana.edu

Abstract—In this paper we present a new method for

evolving autonomous agents that are competitive in the space
combat game Xpilot. A genetic algorithm is used to evolve the
parameters related to the sensitivity of the agent to input
stimuli and the agent's level of reaction to these stimuli. The
resultant controllers are comparable to the best hand
programmed artificial Xpilot bots, are competitive with human
players, and display interesting behaviors that resemble human
strategies.

Keywords: Xpilot, Genetic Algorithm, Control,
Autonomous Agent, Xpilot-AI

I. INTRODUCTION
Xpilot is a two dimensional interactive combat game set in

the space environment. We developed a system, called
Xpilot-AI, that allows researchers to create their own agents
and test them in the Xpilot arena. In previous work (details
in Section 3), we used the system to evolve controllers while
avoiding the use of predefined functions. Although our
evolving agents learned and were capable of reasonable
combat, they were no match for human players or for our
own hand programmed agent. With the further development
of Xpilot-AI, a function set that includes advanced features
such as an aiming function was made available at
www.Xpilot-AI.org. In order to evolve an agent controller
suitable to enter the CIG2007 Xpilot competition, we
determined that our best chance was to use whatever
features were available. The results are reported in this
paper.

There has been significant use of evolutionary
computation to learn game play although much of this has
been to learn strategies for playing board games such as
checkers [1] and go [2] or for beating an opponent playing
the prisoner’s dilemma problem. However evolutionary
computation has also been used to learn controllers for
interactive games. Funes and Pollack evolved controllers
for light-cycles against human opponents in their online Java
Tron applet [3], Yannakakis and Hallam evolved interesting
ghost opponents for the game Pac-Man [4], and other
researchers evolved controllers for opponents operating in
real-time combat strategy games such as the commercial
games Counter-Strike [5] and Quake3 [6] and in games
developed by the authors such as Lagoon [7]. Stanley et al
used a method for evolving artificial neural networks to
control agents that could learn in real-time through a series
of training exercises in the NERO video game [8].

II. XPILOT-AI
Xpilot-AI was developed as a means for researchers in

artificial intelligence to test methods of the generating
autonomous controllers. It uses the interactive Internet
game Xpilot as a training/testing environment.

Xpilot is an open-source 2-dimensional multiplayer space
combat game. Fig. 1 shows a typical game in play. The
large area on the right is called the screen; it gives the
players a detailed look at what’s happening near their own
ship. The two triangles are ships engaged in combat. In this
case, the one at the top is the ship being controlled by the
operator running the client producing the graphic interface.
The other triangle, with the label Sel_41913 is the opponent
or enemy ship. The boxes on the screen area are walls. The
numbers 1 2 3 show the location for 3 bases, one each for
ships from teams 1, 2, and 3. The light dots behind Sel are
the result of Sel activating its thruster. The brighter dot
behind Sel is a bullet shot by the operators’ ship, which just
missed as Sel accelerated to avoid it. The top left of the
graphic shows the entire map, with the ships shown as dots.
This is referred to as the radar. Below it is a list of the
players with their scores. Also listed are the teams and their
scores. The player controls a ship using the keyboard or
mouse and must destroy enemy ships while avoiding being
killed by the enemy or a wall collision. There are different
maps that vary in size and objectives, with team play,
capture the flag, or free-for-all combat. There are often ship
upgrades made available that enhance a ship's abilities with
added weapons like lasers or triple fire, or with ship
upgrades such as cloaking or increased fuel. At this point
only simple maps, with only bullets provided as offensive
weapons, have been used for Xpilot-AI. Xpilot uses a
client/server approach to support multiple players. It has
realistic physics and solid networking code.

Xpilot has a predetermined networking protocol, which
made it a good platform for developing Xpilot-AI. The
Xpilot server and client are synchronized frame by frame.
For each frame, the server sends packets to the client with
information about what to display. The client receives this
information, parses it, and displays it graphically on the
screen. The client sends back to the server information
about mouse movement and what keys the player is pressing
on the keyboard. Xpilot-AI parses the information received
by the client and stores it in easily accessible variables. In
addition, we have added modules with structures containing

Evolving Parameters for Xpilot Combat Agents

238

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

1-4244-0709-5/07/$20.00 ©2007 IEEE

Fig. 1. Xpilot game in progress. Evolved agent Morton has just attempted to shoot the enemy ship Sel, but the shot went behind its target.

useful information about the player's ship, the enemy ships,
the bullets, the radar, and the map. The structures contain
information like X and Y coordinates, velocities,
accelerations, distances, etc. The Xpilot-AI modules also
include commonly used functions for aiming, calculating
distances, finding walls, etc.

Xpilot-AI controls the ship by simulating keyboard key
presses and mouse movement. To turn the ship, it sends a
packet to the server saying the mouse has moved a certain
amount. To thrust, shoot, and do other controls it sends a
packet saying a particular key has been pressed on the
keyboard. Between the sending and receiving, an AI
function can be inserted that takes as inputs environment
information and outputs the control for every frame.
Because all this is done in the client, any number of AI
controlled clients may be connected to play against one
another or against real people. Xpilot-AI programs in C and
Scheme are available online at www.Xpilot-AI.org.

III. PREVIOUS XPILOT RESEARCH
Autonomous Xpilot agents learning to combat a single

agent have been evolved using four learning methods, all of
which attempted to make minimal use of predefined
functions. In all of these works, the agent being evolved

was engaged in combat with a single opponent. Both the
learning agent and the opponent had three possible outputs:
turn up to 15° left or right, thrust on or off, and shoot on or
off. The learned control program was to take in a number of
inputs and determined these three outputs between each
frame of the game.

A. Evolving Weights for a Perceptron [9]
In this research a genetic algorithm was used to learn the

connection weights for a fixed artificial neural network
controlling the agent as it engages in combat with a single
opponent. The AI ship controller was a single layer
feedforward neural network with twenty-two inputs and
three outputs. The inputs included information about the
agent, its enemy, bullets, the walls, and one was set to 1 to
act as a threshold. The chromosome was made up of 66
genes, each of which was made up of six bits. Each gene
represented a weight and was converted to a number
between -1 and 1 before use in the Perceptron controller.

B. Evolving the Priorities and Responses of Production
Rules [10]
A set of 16 conditions important for reasonable play was

developed. This included conditions dealing with the ship’s
position relative to walls, the enemy ship, and hostile fire. A

239

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

binary coding was developed to represent the possible
responses that were to be learned by the GA. In addition,
the GA learned the priorities of theses different rules to
resolve conflicts if more than one fired at the same time.
The Xpilot agent was represented by a chromosome of 16
genes. Each gene was represented as a segment of 14 bits,
with each gene containing information for how the agent
should behave in each of 16 different cases which serve as
antecedents for a rule based system.

C. Generating the Controller Program using a Cyclic
Genetic Algorithm [11]
The cyclic genetic algorithms (CGA) is a type of genetic

algorithm in which the genes represent tasks to be
performed rather than traits of a problem solution. In
addition, a group of these tasks can be set to repeat, which
allows for cyclic behavior. The CGA was initially
developed to generate the cycles required for hexapod robot
walking gaits, which required only single cycles. In further
work, the CGA has been extended to give it the capability of
generating multi-loop control programs, which is how it was
used in this application to evolve Xpilot controllers. These
controllers were represented by a chromosome of 64 genes,
with each gene being 11 bits, so a chromosome was
comprised of 704 bits. Each 11-bit gene either contained
information for how the robot should act in a given frame, or
an instruction to jump to another gene to look for control
information.

D. Incrementally Evolving a Multi-Layer Neural Network
[12]
In this research we used incremental evolution to learn the

neural network (NN) controllers. In the first increment we
used specific training environments to learn specific facets
of control. These were then used in the second increment to
evolve a two layer NN that used a separate NN to control its
second layer connection weights. Fig. 2 shows a diagram of
the entire incremental network. The enemy distance and
bullet alert are inputs to a network whose outputs are the
weights between the specialized networks’ outputs and the
three resultant outputs. Although the agent learned each
specific facet, the combination was not as competitive as
hoped, plus it was significant work to evolve.

Fig 2. Incremental network evolved in previous work.

All of these attempts were successful in that reasonable
agents were developed from random, but they were not good
enough to compete with the standard human player.

IV. EVOLVING PARAMETERS
For the researcher reported in this paper we started with

an agent controller made available at the Xpilot-AI web site.
This agent, which the developers call Morton, has a hand
coded controller that takes into account walls, bullets, and
the enemy ship, but is still only moderately competitive.
Our initial work was to expand this program to make it take
into account different levels of wall collision danger, bullet
danger, and to be able to consider more than one enemy and
bullet at a time. In addition, we included cases where it
could recognize if there was a wall between it and the enemy
and/or bullet. The program was a large case statement made
up of 18 cases, which were ordered in what we considered
to be of greatest importance. For example, if a bullet was
close and had a high probability of hitting our agent ship,
this took priority over a moderate chance of wall collision.
The turn and thrust setting of the agent for that frame was
determined by the applicable case statement. To control
whether the ship was to shoot, a separate if statement was
used since turn and thrust are always of importance and
shoot is purely offensive.

The program was originally written with the developers’
best guess for the many parameters such as angle of wall
feelers and the turn to be made in case of an approaching
wall. This resulted in a reasonable agent but we found it
difficult to find the correct set of parameters to make it
competitive. Our next step was to determine all of the
parameters needed to be set and their appropriate ranges. We
extended these beyond what we thought appropriate in case
our preconceived notions of what they should be were
hindering us. We identified 22 parameters and determined
that we could set them all using a range of 0 to 15. Some
were multiplied, some were divided into plus or minus
possibilities, while still others were added to previous
parameters to set their parameter.

The set of parameters that were learned are shown in Fig.
3. Some of these parameters have to do with general use
functions, such as “same”, which was used to define what
should be considered equal in reference to distances from
the ship. Some of the parameters are for specific situations.
The ship uses feelers to determine the distance to walls at
angles set relative to its track. There were different feelers
for different situations. One set of feelers was to be used
early in the case statement, which signifies that these were
for higher priority situations. The second set was only used
when none of the prior cases were true. When the initial
program was written we used the same angle for both of
these sets of feelers, then later determined that it might be
advantageous to have different angles dependent on the
priority. Some of the parameters were used to determine
when a case would be considered true (such as those dealing
with feelers), others were used to determine what the action
would be when the case true (such as those dealing with an
angle required for the ship to turn to or an angle required
before the ship would thrust or shoot).

240

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

• span – The angle between the line to a target location and the
edge of the nearest wall. Used to determine how much the wall
is blocking the ship from a bullet.

• offsetinc – indicates the increments used to determine the turn
direction needed for a ship to avoid a wall.

• samespread – the difference allowed between the distances
returned by 2 wall-feelers which would result in considering
them the same.

• wall-span1 – the angle off of the ship’s track used to feel for the
closest wall.

• wall-span2 – same as wall-span1, except used for a second set
of feelers that are checked in a later case statement.

• vd-bullet-dist – determines the bullet alert required to consider
the bullet very dangerous.

• d-bullet-dist – same as vd-bullet-dist, except located in a later
case statement (value of this parameter is added to vd-bullet-dist
to determine the distance).

• vd-dodge-bullet-angle – the angle the ship will turn away from a
bullet considered very dangerous in order to dodge it.

• d-dodge-bullet-angle – the angle the ship will turn away from a
bullet considered dangerous in order to dodge it.

• close-wall-speed – this speed, in conjunction with the distance
of the closest wall, determines if the ship shoot take action to
avoid it.

• medium-wall-speed – same as close-wall-speed, except used in
a later case statement.

• c-angle-before-thrust – the angle of the ship’s heading away
from the closest wall before the ship will thrust.

• m-angle-before-thrust – same as c-angle-before-thrust, except
used in a later case statement.

• wall-avoid-angle – how small the angle has to be between the
ship’s heading and its desired track to avoid a wall before it will
thrust.

• screen-thrust-speed – if the ship’s speed is lower than this and it
is turning to attack an enemy on the screen, it will thrust.

• radar-nothrust-speed - if the ship’s speed is lower than this and
it is turning to attack an enemy on radar, it will thrust.

• ship-error-to-shoot – the maximum angular difference between
the desired aim direction and the ship’s heading before it will
shoot at an enemy on the screen.

• radar-error-to-shoot – the maximum angular difference between
the desired aim direction and the ship’s heading before it will
shoot at an enemy on radar.

• wall-turn-angleR – the angle between the ship’s track and
heading that the ship turns to avoid colliding with a wall when
responding to a right feeler indicating a wall that is too close.

• wall-turn-angleL – the angle between the ship’s track and
heading that the ship turns to avoid colliding with a wall when
responding to a left feeler indicating a wall that is too close.

• wall-turn-angleB – the angle between the ship’s track and
heading that the ship turns to avoid colliding with a wall when
responding to an equal distance from both walls.

• shoot-dir-rand – the angular range that the ship will use to
randomly affect its direction to aim.

Fig. 3. Set of parameters that were evolved by the genetic algorithm.

V. GENETIC ALGORITHM
A standard GA with a population of 128 chromosomes

was used to learn the parameters, which we plugged into the
agent while it competed in the Xpilot arena (Fig. 3). The
chromosome used was 88 bits with 22 genes (parameters),

each made up of 4 bits (allowing raw values from 0 to 15).
Selection was determined by putting the agent in the arena

with a standard opponent. The opponent used, named Sel, is
a hand-coded agent that up until this point has been our most
successful combatant, which is competitive with a standard
human player. It is available to compete against on the
Xpilot-AI server, but its code is not available. The example
code for an agent, Morton, which is given on the web page,
is what we used to create our learning agent. Each
chromosome of the genetic algorithm was used to control an
agent that competed with Sel for one round, which ran until
the death of the learning agent. If during the round, Sel
died, the competitors went back to their starting stations and
competed again. The learning agent gained one point of
fitness for each frame that it survived and 1000 points for
each time it killed Sel. After all 128 individuals were tested
in the arena and assigned a fitness, the GA perform
stochastic selection. Individuals selected were crossed over
with a 100% chance of crossover and were mutated with a 1
in 300 probability of flipping each bit.

VI. RESULTS
Five test runs using five randomly generated populations

were run for 240 generations of training. At each generation
the best and average fitness of the population was saved.
The results are shown in figures 4 and 5. Fig. 4 shows the
average fitness over time (generations) as the individuals
evolved. Fig. 5 shows the fitness of the best individual of
the population at each generation. The graphs show all
these data points with different symbols used for each of the
populations. In addition, fifth polynomial least squares trend
lines are used to help visualize the growth of fitness. The
fitnesses were highly variable since the starting locations for
the ship and enemy were changed before each generation.
However, generalizations about the learning progress can be
made. There was significant improvement as the evolution
took place. In the case of the average fitnesses, they started
out at below 200 and rose to above an average of 700. In
the case of the best individual at each generation, the fitness
started out at approximately 1500 and rose to be over 5000.

These empirical results were backed up by observations
of the agents as they engaged in combat. One could observe
significant improvements as the agents evolved. Most
started out with a slow spinning in place motion for a slight
drift until the enemy approach, at which time they would
take some action in response, which would often result in a
wall collision. Others turned left and then right as they
darted in a somewhat random manner on the map. They
would usually shoot, but not necessarily in the direction of
the enemy. While watching several individuals in the
population positive characteristics for many were observed.
Some had a tendency to be good at avoiding wall collisions,
others reacted well to approaching bullets, and still others
tended to shoot in the general direction of the enemy. These
positive attributes are probably what the GA built on to

241

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Fig. 4. Average of the fitnesses of all individuals in the population at each generation during training. Five tests are shown. A fifth
order polynomial least squares trend line helps to show the learning curve.

Fig. 5. The fitness of the best individual in the population at each generation during training. Five tests are shown. A fifth order
polynomial least squares trend line helps to show the learning curve.

242

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

make competent combat agents. As the generations
progressed, the individuals started to get better at each of the
positive attributes and, in some cases, combine useful skills.

By the end of training, all 5 tests produced excellent
autonomous controllers that gave their agents skills
comparable to that of Sel. In some aspects they were better
and in others not as good. Sel is equipped with very good
aiming and chasing capabilities. It is programmed to
maneuver around a wall and quickly/accurately attack its
enemy. The evolved agents were not as aggressive (due to
the fitness function) and had to learn their parameters for
accurate aiming. Sel is also pre-programmed with good
angles for dodging bullets and avoiding wall collisions; the
evolved agents needed to learn these. Nevertheless, these
agents learned to compete with Sel bot. This could be
observed as the training progressed by looking at the Xpilot
scores of each of the combatants. By the end of training the
scores for Sel and the training agent are consistently within
1% of each other. Sometimes Sel is ahead and sometimes
the evolving agents. This shows that the population of
agents, or average performance of the population’s
individuals, is equal to that of Sel.

In addition to competing with Sel, the trained agents are
very competitive with human players. Tests were done with
the fitness evaluations being done on the Xpilot-AI server.
Human players could join the game and compete against
both Sel and the individuals evolving in the population.
This makes for interesting competition since both Sel and
the agents (added to the publicly accessible game after
several generations of training) are very good and far
superior to the Xpilot game supplied bots. It makes for
particularly interesting combat because Sel is very consistent
in its behaviors, but the bot representing the evolving agents
varies slightly each time the game restarts (which happens
after all but one have died) because all individuals of the
population are being tested using it. We have had several
human players join the game and in most cases, they are not
as good as our evolved bots.

Trained individuals in the later generations start to
develop some very interesting behaviors. Although they are
controlled only by a set of simple cases, the behaviors they
exhibit make them appear to have complicated controllers
equipped with combat strategies. Due to the simplicity of
the controller, we consider these to be emergent behaviors.
One such behavior is the agent’s apparent use of walls to
shield it from the enemy. As an enemy approaches, an agent
using this strategy will move in a direction to place the wall
in between it and the enemy. It will then make quick moves
out to the edge of the wall, just clearing it enough to take a
shot and the then return for cover. This strategy is not only
effective but gives the agent a human controlled appearance.

VII. CONCLUSIONS AND FUTURE WORK
Learning controllers for Xpilot agents using the evolution

of decision and action parameters can produce excellent

controllers that are competitive with human players. The
agents produced are not only competitive, but learn
emergent behaviors that make them appear to use complex
combat strategies. In addition, by using a publicly
accessible Xpilot-AI server to continue evolution after
several generations of initial training, human players can
compete against seemingly non-deterministic bots that will
adapt (given sufficient time) to their style of play.

In future work, we will continue to build the complexities
of the controller to allow it to take on additional tasks such
as base capture. In addition, experiments will be done with
alternate fitness functions to produce different behaviors.
The agents evolving in this paper were fairly passive;
reducing the reward for kills by how long it takes to attain
them should produce more aggressive resultant agents. The
learning method presented in this paper, which produces
competitive combat agents, greatly opens up the possibilities
for future expansions of the use of evolved agents in the
Xpilot environment.

REFERENCES
[1] Fogel, D. Blondie24: Playing at the Edge of AI, Morgan Kaufmann

Publishers, Inc., San Francisco, CA., 2002.
[2] Konidaris, G., Shell, D., and Oren, N. “Evolving Neural Networks for

the Capture Game,” Proceedings of the SAICSIT Postgraduate
Symposium, Port Elizabeth, South Africa, September 2002.

[3] Funes, P. and Pollack, J. “Measuring Progress in Coevolutionary
Competition,” From Animals to Animats 6: Proceedings of the Sixth
International Conference on Simulation of Adaptive Behavior. 2000.

[4] Yannakakis, G. and Hallam, J. "Evolving Opponents for Interesting
Interactive Computer Games,'' Proceedings of the 8th International
Conference on the Simulation of Adaptive Behavior (SAB'04); From
Animals to Animats 8, 2004, pp 499-508.

[5] Cole, N., Louis, S., and Miles, C. “Using a Genetic Algorithm to Tune
First-Person Shooter Bots,” Proceedings of the International Congress
on Evolutionary Computation 2004 (CEC’04), Portland, Oregon,
2004, pp 139–145.

[6] Priesterjahn, S., Kramer, O., Weimer, A., and Goebels, A. (2006).
“Evolution of Human-Competitive Agents in Modern Computer
Games.” Proceedings of the 2006 IEEE Congress on Evolutionary
Computation (ECE 2006), Vancouver, BC, Canada, July 2006.

[7] Miles, C. and Louis, S. (2006). “Towards the Co-Evolution of
Influence Map Tree Based Strategy Games Players.” Proceedings of
the 2006 IEEE Symposium on Computational Intelligence and Games
(CIG 2006).

[8] Stanley, K., Bryant, B., and Miikkulainen, R. (2005). “Evolving
Neural Network Agents in the NERO Video Game.” Proceedings of
the IEEE 2005 Symposium on Computational Intelligence and Games
(CIG 2005).

[9] Parker, G., Parker, M., and Johnson, S. (2005). “Evolving
Autonomous Agent Control in the Xpilot Environment,” Proceedings
of the 2005 IEEE Congress on Evolutionary Computation (CEC
2005), Edinburgh, UK., September 2005.

[10] Parker, G., Doherty, T., and Parker, M. (2005). “Evolution and
Prioritization of Survival Strategies for a Simulated Robot in Xpilot,”
Proceedings of the 2005 IEEE Congress on Evolutionary Computation
(CEC 2005), Edinburgh, UK., September 2005.

[11] Parker, G., Doherty, T., and Parker, M. (2006). “Generation of
Unconstrained Looping Programs for Control of Xpilot Agents,”
Proceedings of the 2006 IEEE Congress on Evolutionary Computation
(CEC 2006), Vancouver, BC, Canada, July 2006.

[12] Parker G. and Parker M. (2006). “The Incremental Evolution of
Attack Agents in Xpilot,” Proceedings of the 2006 IEEE Congress on
Evolutionary Computation (CEC 2006), Vancouver, BC, Canada, July
2006.

243

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

