
Automatic Generation of Evaluation Features

for Computer Game Players

Makoto Miwa
Dept. of Frontier Informatics
School of Frontier Sciences

the University of Tokyo, Chiba
miwa@logos.k.u-tokyo.ac.jp

Daisaku Yokoyama
Dept. of Frontier Informatics
School of Frontier Sciences

the University of Tokyo, Chiba
yokoyama@logos.k.u-tokyo.ac.jp

Takashi Chikayama
Dept. of Frontier Informatics
School of Frontier Sciences

the University of Tokyo, Chiba
chikayama@logos.k.u-tokyo.ac.jp

Abstract— Accuracy of evaluation functions is one of the
critical factors in computer game players. Evaluation functions
are usually constructed manually as a weighted linear combi-
nation of evaluation features that characterize game positions.
Selecting evaluation features and tuning their weights require
deep knowledge of the game and largely alleviates such efforts.

In this paper, we propose a new fast and scalable method to
automatically generate game position features based on game
records to be used in evaluation functions. Our method treats
two-class problems which is widely applicable to many types
of games. Evaluation features are built as conjunctions of the
simplest features representing positions. We select these features
based on two measures: frequency and conditional mutual
information.

To evaluate the proposed method, we applied it to 200,000
Othello positions. The proposed selection method is found to be
effective, showing much better results than when simple features
are used. The Naı̈ve Bayesian classifier using automatically
generated features showed the accuracy close to 80% in win/lose
classification. We also show that this generation method can
be parallelized easily and can treat large scale problems by
converting these selection algorithms into incremental selection
algorithms.

Keywords: feature selection, frequent closed itemset, con-
ditional mutual information, Othello

I. INTRODUCTION

Static evaluation functions are one of the most important
components of game-playing programs. They evaluate a
position and assign it a heuristic value which indicates some
measure of advantage.

Static evaluation functions are usually expressed as a linear
combination of evaluation features and output a scalar value
called an evaluation value.

Developers usually construct and tune the static evaluation
functions of difficult games, such as chess, shogi, and go
by hand. They extract important evaluation features from a
position and assign weights to the features. They are required
to have expert knowledge of the target game to extract
appropriate features and spend a long time in assigning their
weights. This way of construction is ad hoc, and sometimes
leads to a local optimum.

Automatic construction of static evaluation functions is
one approach to cut the cost to developers and avoid the
local optimum problem. Today, we can obtain a lot of game
records as electronic data: those between professional game
players or on match servers. We can also obtain a number
of self-game records overnight using a large number of fast

computers. Using these game records, several studies have
been made on automatic construction of the static evaluation
functions of such games as backgammon [1] and Othello [2].
These studies have made great successes on these games,
but they have not been applied to more complicated games,
partly because the computational cost becomes unbearably
high and partly because the way game knowledge is used
in the original method cannot be easily applied to more
complicated games.

In this paper, we show a new method of automatic
generation of evaluation features based on game records,
without using deep game knowledge. This method treats two-
class problems which include win/lose and mated/not mated,
which are common in many types of games. Once game
features are generated, they can be automatically weighted
to form an evaluation function through a variety of successful
methods. As the proposed method can be parallelized, it can
be applied to complicated games requiring large computa-
tional cost.

The structure of this paper is as follows. Section II de-
scribes related work on automatic construction of evaluation
functions. Section III explains how we generate evaluation
features automatically. Section IV and V discuss the ex-
perimental settings and results of our experiments. Finally,
section VI concludes the paper and outlines our further
research directions.

II. RELATED WORK

A large number of studies have been made on construction
of static evaluation functions for over half a century [3].
Most studies tried only to weight the evaluation features
which are selected by hand and little attention was given to
generate evaluation features. These methods which weight
the evaluation features include neural networks, temporal
difference [4], and ordinal correlation [5].

Several studies have been done on automatic construc-
tion of static evaluation functions since early 1990s. They
constructed static evaluation functions from simple features
which represent input positions and they used game records
of past games. We now can obtain many game records, such
as those electronically published matches between profes-
sional players or on match servers. We can also obtain a
number of self-game records. The studies may be classified

268

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

1-4244-0709-5/07/$20.00 ©2007 IEEE

into two groups: those with direct methods and those with
hierarchical methods.

A direct method tries to construct static evaluation func-
tions directly from simple features using mechanisms such
as multi-layer neural networks. This method represents a
static evaluation function as a high-level combination of
simple features. This representation has high expressivity,
but requires a large amount of computational resources.
In addition, the resulted evaluation function is difficult to
analyze. This group includes TD-Gammon [1] which used
reinforcement learning; Fogel’s game players (tic-tac-toe [6],
checkers, namely Blondie24 [7], and chess [8]) and Kumar’s
checkers [9] which used genetic algorithms; Messerschmidt’s
tic-tac-toe [10] and Franken’s checkers [11] which used
particle swarm optimizers (PSO).

A hierarchical method has two phases to construct static
evaluation functions. The first phase is to generate high-
level evaluation features and the second phase is to weight
evaluation features. Hierarchical methods represent static
evaluation functions as a linear combination of high-level
features. This representation is less expressive than that of
the direct method, but needs less resources to construct
and compute the function. The evaluation function is easy
to analyze and optimize by hand because we can check
each evaluation feature individually. This group includes
ZENITH [12], ELF [13], GLEM [2], Kaneko’s method [14],
and Duminy’s method[15].

These studies made great successes and many applications
to make computer game players automatically were con-
structed [16]. They, however, focus only on such games as
backgammon and Othello due to computational complexity
of the methods and their use of knowledge about their target
games, and thus the methods are yet to be applied to more
complicated games. For complicated games, a hierarchical
method is preferable to a direct method because of their low
computational complexity.

III. PROPOSAL

Our method generates evaluation features using two-class
labeled training positions obtained from game records, which
are easily available as mentioned earlier. The two-class
problems include win/lose and mated/not mated, which are
common in many types of games.

Evaluation features are built as conjunctions of the sim-
plest features representing positions. Once game features are
generated, they can be automatically weighted to form an
evaluation function through a variety of successful methods,
including those based on neural networks, temporal differ-
ence and ordinal correlation.

In this method, we construct evaluation features from
simple binary features called base features. We construct
evaluation features by selecting from all conjunctions of
base features, called patterns, with two criteria: frequency
and conditional mutual information. We first select frequent
closed patterns to avoid the cost of evaluating all the pat-
terns and the risk of over-fitting. Then we select important
evaluation features with eliminating dependent patterns based

on conditional mutual information. This selection process
is fast and scalable because of fast algorithms and their
parallelizations, which can also reduce the memory cost.

In this section, we introduce the expression of the static
evaluation functions to be built on the features generated
through our method. Then, we explain extraction of base
features and construction of evaluation features on them.

A. Expression of Static Evaluation Function

Static evaluation functions are required to be fast and
accurate. For being fast, most common static evaluation func-
tions are represented as a linear combination of evaluation
features:

F (p) = Σiwi·fi + b (1)

where F is an evaluation function, p is an input position, fi

is an evaluation feature, wi and b are constants.
For higher accuracy, a representation which has higher

expressive power than a linear combination is preferable
and it may enable more economical descriptions. However,
because of the computational cost of construction and the
greater danger of over-fitting, the simple linear expression is
usually preferred.

This linear expression has the following merits. (Note that
it may not be a linear function of base features.)

• Computational cost of constructing and evaluating the
function is low.

• We can check each evaluation feature individually.
• The magnitude of wi is directly related to the impor-

tance of fi which enables us to easily analyze, optimize
the function, and tune weights by hand.

B. Base Features, Patterns and Evaluation Features

To deal with input positions, some expressions are required
to represent them. Our method uses simple binary features
selected by hand to represent them. Such features should be
able to represent all the positions which appear in the target
game.

Atomic features are selected as base features. For example,
an atomic feature ‘x is on A1’ is a suitable base feature in
tic-tac-toe. These atomic features should be selected so that,
as a set, they precisely represent all the positions. 1

Our method can deal with non-binary features using
discretization methods [17] which transform the non-binary
valued features into ordered discrete ones.

In our method, evaluation features are built as conjunc-
tions of base features. We call a conjunction of base features
a pattern. A pattern appears in a position when all the base
features in the pattern are true in the position. Our method
does not deal with other combinations of base features such

1High-level and more complex features could also be selected as base
features. ‘x has made a line’ in tic-tac-toe may be included in the high-level
features. It is important to select the high-level features which represent
a crucial rule or some established situation which terminate the game or
change the game state drastically because they have great possibilities to
be selected as evaluation features. The selection of these features improves
the expressive power of evaluation features and reduces the cost to generate
evaluation features.

269

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

as disjunctions, negations or arithmetic operations. Although
the expressive power of the evaluation features may decrease
with this limitation, it reduces the computational cost in
generating evaluation features. Note that disjunctions can be
expressed in the linear combination of evaluation features
and negations of features can be included in base features.

Let n be the number of base features. The number of
patterns is 2n and it is hard to treat all of the possible patterns
as evaluation features because of the learning and executing
costs. Important patterns should be selected in minimum
loss of information. To reduce the computational cost, we
select evaluation features through two phases: The first phase
is extracting the patterns frequent in the training positions,
and the second phase is selecting the patterns useful for
classification out of frequent patterns.

Base Features

A B C D

AB AC AD BC BD CD

ABC ACD ABD BCD

ABCD

Evaluation Features

Fig. 1. Base features, patterns, and evaluation features. Patterns are
conjunctions of base features. Evaluation features are selected from patterns.

Figure 1 shows the construction of evaluation features
from base features. 16 (= 24) patterns (including patterns
consisting only of base features and an empty pattern) are
built as conjunctions of 4 base features A, B, C, and D. From
the patterns, evaluation features are selected based on their
frequency and conditional mutual information in training
positions.

C. Extraction of Frequent Patterns

We first extract frequent patterns from training positions.
The number of patterns is so large that we can not evaluate
all of them. Patterns which rarely appear in training positions
cause over-fitting, so they should be eliminated. By this,
infrequent important patterns may be overlooked, but we can
not evaluate how important such patterns are if they do not
appear frequently enough in training positions.

A frequent pattern is defined as:
Definition 1 (frequent pattern): A pattern which appears

in training positions α times or more.
where α is called a minimum support. If the number of
positions in which a frequent pattern k appears is nk, the
number of positions in which a conjunction of the pattern k

and a base feature is less than nk. This enables us to extract

frequent patterns efficiently by adding or eliminating a base
feature to already found patterns.

There are patterns which appear in exactly the same set of
training positions, called fully dependent patterns. Although
fully dependent patterns will anyway be eliminated in the
CMIM selection later described in III-D because they have
the same information on training positions, they add some
computational load. Most of these waste patterns can be
eliminated by selection of closed patterns. The definition of
a closed pattern is:

Definition 2 (closed pattern): Maximal element of pat-
terns which appear in exactly the same set of training
positions

In Figure 2, we show an example of extracting frequent
patterns and frequent closed patterns from training positions.
There are 6 training positions and 9 base features, numbered
from 1 to 9. Base features which are true are presented in the
figure sets. With the minimum support of 3, frequent patterns
are patterns appearing in 3 positions or more. A line in the
center column of frequent patterns have frequent patterns
appearing in exactly the same set of training positions.
Maximal patterns, those not completely included in other
patters in the same line, are selected as frequent closed
patterns.

For extraction of the frequent closed patterns, we can use
algorithms proposed in data mining field for market basket
analysis by treating patterns as a set of items. We use LCM
(Linear time Closed set Miner) [18]. LCM won FIMI ’04
(Frequent Itemset Mining Implementations 2004) and is one
of the most efficient algorithms to enumerate frequent closed
patterns.

Figure 3 shows a search tree in LCM. All nodes have
frequent patterns and the root node has an empty pattern.
The node’s children are created by appending base features
in the same order to the pattern, so a child’s pattern includes
the parent node’s pattern. The extension from a parent node’s
pattern to a child’s pattern in the fixed order is called a prefix
preserving closure (PPC) extension. This extension enables
LCM to enumerate frequent closed patterns at low com-
putational cost and its computational complexity is O(n),
where n is the number of frequent closed patterns. Each
node has a compact database which has enough information
to treat training positions containing its pattern. The subset
of the database is delivered to their children after database
reduction. The database is called an occurrence table. LCM
searches the tree in a depth-first manner to enumerate fre-
quent closed patterns. When LCM visits a node, it keeps the
list of nodes which are on the way from the root node to
the visited node and their occurrence tables. Not all the tree
information is required for enumeration, so LCM has low
spatial cost.

We made two extensions to LCM.

1) Selection based on information gain
2) Parallelization

When the number of selected frequent closed patterns
are too large for the CMIM selection (in III-D), we can

270

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Training positions Frequent patterns Frequent closed patterns
{1, 2, 5, 6, 7, 9} {1} {1, 7} {1, 9} {1, 7, 9} {1, 7, 9}
{2, 3, 4, 5} {2, 7} {2, 9} {2, 7, 9} {2, 7, 9}
{1, 2, 7, 8, 9} {7} {9} {7, 9} {7, 9}
{1, 7, 9} {2} {2}
{2, 7, 9}
{2}

Fig. 2. Training positions, frequent patterns, and frequent closed patterns when the minimum support is 3. A position has 9 base features from 1 to 9
and true features are presented.

Fig. 3. A search tree in LCM. A node has a pattern, and children are
made by appending base features to the pattern. The node’s occurrence
table contains the information about positions related to its pattern and is
delivered to its children after database reduction.

perform prior selection based on information gain without
much cost. We insert the labels of training positions into
the occurrence tables and select important patterns based
on information gain while enumerating patterns. Information
gain of a pattern is the mutual information (see III-D)
between the labels and the pattern.

TABLE I

PARALLELIZED LCM

root node
step 1, extract frequent base features and decide the order to

append for the PPC extension
step 2, search a part of base features if the number of base

features is small and inequality of clients’ tasks will occur
step 3, place the order in step 1 and frequent base features or

frequent patterns in step 2 as tasks into a work queue

client nodes
step 1, select a task from the work queue
step 2, construct an occurrence table based on the patterns by

searching from root node
step 3, enumerate frequent closed patterns using LCM

Since sibling nodes have no dependency in LCM, we can
search sibling nodes independently on different processors.
Parallelization of LCM is based on a simple work-queue
strategy in which idle processors get works from a queue,
as shown in Table I. In this parallelization, every node has
a set of training positions to extract frequent patterns from.
Occurrence tables become large with many training positions.
To reduce the cost of sending occurrence tables that would

dominate the computation cost, patterns are sent and client
nodes construct occurrence tables from the ground up using
the positions and the patterns.

D. Selection of Evaluation Features Based on Conditional
Mutual Information

From the extracted frequent closed patterns, we select
important patterns as evaluation features, because the number
of the frequent closed patterns is large and not all the frequent
closed patterns are informative. For the selection, there are
many useful feature extraction and/or selection methods
proposed in the machine learning field. Some methods, PCA
(Principal Component Analysis) and learning methods for
example, select patterns by evaluating all the patterns at a
time [19]. Such methods cost high and they are not suitable to
selection. Some other methods select patterns by evaluating
them based on criteria such as chi-squares and information
gain [20]. The methods are fast but many mutually dependent
patterns may be selected.

We use CMIM (Conditional Mutual Information Maxi-
mization) [21] for the selection. CMIM selects a pattern
based on conditional mutual information of a pattern given
the information included in already selected patterns. CMIM
selects a pattern which has the largest conditional mutual
information for every already selected pattern, as follows.

v(1) = arg max
n

Î(Y ;Xn) (2)

v(k + 1) = arg max
n

{

min
l≤k

Î(Y ;Xn|Xv(l))

}

(1≤k < K)

where Y is a label, X is a pattern, K is the number of
patterns to be selected, Î(Y ;Xn) is mutual information, and
Î(Y ;Xn|Xv(l)) is conditional mutual information. Mutual
information Î(Y ;X) is X’s information about Y and is
defined as follows.

Î(Y ;X) = Ĥ(Y) + Ĥ(X) − Ĥ(Y,X) (3)

where Ĥ(X) is entropy, meaning the randomness of a proba-
bility variable X . Conditional mutual information Î(Y ;X|Z)
is new X’s information about Y after obtaining Z’s infor-
mation about Y and is defined by the following equation.

Î(Y ;X|Z) = Ĥ(Y |Z) − Ĥ(Y |X,Z)

= Ĥ(Y,Z) − Ĥ(Z)

−Ĥ(Y,X,Z) + Ĥ(X,Z) (4)

271

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Entropy is defined as follows.

Ĥ(X1, . . . , Xn) = −
∑

x1,...,xn∈{0,1}n

px1,...,xn
log px1,...,xn

.

(5)
In this process, most of dependent patterns are not selected.
CMIM need not evaluate all the patterns at the same time and
is relatively fast. The computational complexity of CMIM is
O(KMN), where M is the number of patterns, N is the
number of training positions, and K is the number of patterns
to be selected. The spatial complexity of CMIM is O(MN).
As CMIM has high computational cost in calculating mutual
information and conditional mutual information, the memory
space used should fit in the main memory. This becomes
impossible if the number of frequent closed patterns is too
large.

TABLE II

DIVIDE-AND-CONQUER-LIKE CMIM SELECTION

step 1, divide patterns into small sets randomly (S patterns for
each)

step 2, select patterns which have a larger conditional mutual
information than the given cut-off conditional mutual
information from each set

step 3, go to step 1 if selected patterns do not meet certain
criteria

To overcome this spatial difficulty, patterns are selected
in a divide and conquer manner. Details of the divide-and-
conquer-like CMIM selection algorithm are given in Table
II. In step 3, the number of repetitions or the number of
patterns discarded in step 2 is used as the criteria. Selection
can be performed with small memory for each divided
set of pattern. The spatial complexity of the selection is
O(SN) and does not depend on the total number of patterns.
Although patterns selected from these divided sets of patterns
are not necessarily the same as ones selected considering all
the patterns at a time, patterns can have almost the same
information from the viewpoint of CMIM.

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1000 10000 100000 1e+006

C
ov

er
ag

e

Split size

0.001
0.0001

Fig. 4. Difference between selected features using CMIM and ones using
the divide-and-conquer-like CMIM selection in Dorothea. The coverage
shows how selected features using the divide-and-conquer-like CMIM
selection covers selected features using CMIM.

To show the difference between features selected through

the original CMIM selection and ones through the divide-
and-conquer-like CMIM selection, a preliminary experiment
on a small dataset is tried out. We used Dorothea which
is available in feature selection challenge2 in NIPS2003.
Dorothea contains 800 training examples expressed with
139,351 features. We selected frequent closed patterns using
LCM by with the minimum support of 16. Figure 4 shows
the difference of the features selected from 146,380 patterns
when the cut-off conditional mutual information are 0.01 and
0.001. The result shows that most of the patterns selected
with the CMIM selection are covered by the divide-and-
conquer-like CMIM selection.

Since each selection in step 2 in Table II has no de-
pendency, we can assign each set of patterns to different
processors and parallelize the divide-and-conquer-like CMIM
selection. The divide-and-conquer-like CMIM selection is
parallelized based on a simple work-queue strategy. This par-
allelized divide-and-conquer-like CMIM selection is called
parallelized CMIM selection.

IV. EXPERIMENT SETTINGS

We have applied our method to a win/lose problem in
Othello game and tried to automatically generate evaluation
features to construct an evaluation function in Othello. Oth-
ello, also known as Reversi, is a popular Japan-origined board
game played between 2 players on an 8 by 8 board using
discs with white and black faces on different sides. The move
is done by placing a disc on an empty square and turn over
all bracketed opponent’s discs. When placing on no empty
square brackets opponent’s disc, the player has to pass. The
game ends when neither player can put a disc and the player
with more discs of its color on the board wins.

In this section, we explain a Naı̈ve Bayesian classifier and
experiment settings which include base features, data sets,
and experiment environments.

A. Naı̈ve Bayesian classifier

To evaluate the selected evaluation features, we used a
Naı̈ve Bayesian classifier [22] which is one of the fastest
classification algorithms.

The Naı̈ve Bayesian classifier is a simple likelihood ra-
tio test with the assumption of conditional independence
among features. The classifier is empirically known to work
well even when this assumption precisely holds. The Naı̈ve
Bayesian classifier is represented as:

f(x) =
N

∑

i=1

{

log
P̂1,1(xi)P̂0,0(xi)

P̂0,1(xi)P̂1,0(xi)

}

xi + b (6)

where N is the number of the evaluation features, and
P̂α,β(x) is the share of the training positions that a pattern
x is α (1 if it appears in it and 0 if not) and its label is β.

2http://www.nipsfsc.ecs.soton.ac.uk/

272

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

B. Experiment Settings

1) Base Features: States of each board square are chosen
as the base features. Each square is expressed by 3 base
features: “black is on the square”, “white is on the square”,
and “empty”. The total number of the base features is 192.
We did not use any other game knowledge, such as the
exclusiveness of these three base features of the same square
or the symmetry of the board.

2) Data Sets: The data set to generate evaluation features
contained 200,000 game positions. The data set to test
the classification performance contained 962,439 positions.
These positions are already with 60 discs on the board,
leaving four empty positions, and labeled as win or lose. The
label denotes the black player’s result of the game. These
positions were extracted from game records in the Generic
Game Server [23]. Each position is labeled by searching to
the end of the games from the position.

3) Experiment Environments: A PC cluster system with
50 nodes is used. Each node has two 2.4GHz Intel Xeon and
2GB of RAM. Software are written in Python and C++.

V. EXPERIMENT RESULT

In this section, the obtained evaluation features and the re-
sults of classification using them are described and discussed.

A. Evaluation Features

 10

 100

 1000

 10000

 100000

 1000000

 10000000

 100000000

1000000000

 10000 100000

nu
m

be
r

of
 p

at
te

rn
s

minimum support

Fig. 5. Number of frequent closed patterns along the minimum support
out of a total of 200,000 positions

In the first step, frequent closed patterns are selected using
a parallelized version of LCM. The number of the obtained
frequent closed patterns with varying minimum supports are
shown in Figure 5. The number of frequent closed patterns
decrease rapidly with the minimum support.

Evaluation features are then selected from the frequent
closed patterns using a parallelized CMIM. Figure 6 shows
the number of selected features with varying cut-off condi-
tional mutual information in the selection of CMIM, for cases
with two different minimum supports of 6,000 and 4,000.
Since the number of the frequent closed patterns becomes
very large with the minimum support of 4,000, prior selection
on information gain is used to eliminate such patterns that

 1

 10

 100

 1000

 10000

 100000

 1000000

 0.001 0.01 0.1

N
um

be
r

of
 fe

at
ur

es

Cut-off conditional mutual information

6000
4000-0.7

Fig. 6. Number of selected evaluation features along the cut-off con-
ditional mutual information using a CMIM selection (6,000: minimum
support=6,000, selected from 282,615,853 patterns, 4,000-0.7:minimum
support=4,000, information gain ≤ 0.7, selected from 172,022,168 patterns)

neither of win nor lose ratios are less than 80% (less than
0.7 in information gain) in the positions they appear. The
divide-and-conquer-like selections are made with 5 layers.
One set contained 2,000 frequent patterns except for the
last selection and, in the last selection, it contained 10,000
frequent patterns.

Some CMIM processing are performed concurrently with
LCM processing to alleviate work imbalance of the paral-
lelized LCM. Generation of evaluation features took about
2 days using 49 nodes (98 processors) when the minimum
support was set to 6,000 and the cut-off conditional mutual
information in the CMIM selection to 0.001. The task did not
end in a month on a single processor. LCM selection used
140MB and the CMIM selection used 250MB of memory
at their peaks. This shows our selection method requires
reasonably small space and it can handle still larger data
sets.

B. Classification Results

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.001 0.01 0.1

A
cc

ur
ac

y

Cut-off conditional mutual information

6000
4000-0.7

Fig. 7. Accuracy of Naı̈ve Bayesian classifiers using selected features

The accuracy of the obtained classifiers is shown in Figure
7. We selected evaluation features as described in V-A.
In Table III, the results of three learning methods directly

273

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

TABLE III

ACCURACIES OF CLASSIFIERS USING BASE FEATURES

classifier accuracy
Naı̈ve Bayesian 73.9%

3-layer neural network ∼75.2%
Linear Discriminant Classifier 73.4%

using base features are shown. We performed a 5-fold cross
validation in each test. The best of them had 77.2% in its
accuracy, 0.773 in its precision, 0.788 in its recall, and 0.780
in its F1-value: precision = a / b; recall = a / c; F1-value =
2 × precision × recall / (precision + recall), in which a is
the number of correctly predicted positions labeled win, b is
the number of positions predicted to be win by the classifier,
and c is the number of positions labeled win. This result
shows the Naı̈ve Bayesian classifier using generated features
with our method performs better than the three classifiers
directly using the base features: a Naı̈ve Bayesian classifier,
a 3-layer neural network using the RPROP learning rule [24]
and a linear discriminant classifier [22]. The Naı̈ve Bayesian
classifier and the linear discriminant classifier converged, but
the 3-layer neural network did not. As the result of the 3-
layer neural network, we show its best result here. We also
tried a Support Vector Machine (SVM) to learn directly from
the base features, but its learning did not terminate in a
week. These results show that the generated features are more
expressive than the base features.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new efficient and scalable
method to construct evaluation features automatically using
game records. The method constructs evaluation features
from a set of base features through selections based on
frequency and conditional mutual information. We applied
this method to a win/lose problem in Othello and generated
evaluation features. Several thousands of evaluation features
were generated from 192 base features, and we obtained a
Naı̈ve Bayes classifier with 77.2% in classification accuracy.
The classifier performed better than three classifiers using
the original base features. Parallelization of the algorithm
enabled the method to handle a large data set, which con-
ventional feature extraction and machine learning methods
cannot handle, with tractable spatial cost. The method can
also find important features. The evaluation features gener-
ated by our method may also provide hints to developers
constructing their evaluation functions by hand.

In the future, we would like to improve the proposed
feature selection method further. GLEM’s pattern [2] and
approximate methods may be useful for this purpose. There
is no general way to apply GLEM’s pattern to other games,
and we should try to generate the way to cluster base features
automatically. We also would like to apply our method to
more complicated games like chess and shogi. We have
shown that a method using LCM and CMIM without the
parallelization is effective in generating evaluation functions
in mate problems in shogi [25]. With the parallelization, we

will be able to apply our method to larger data sets and will
be able to show that our method is not limited to simple
games such as Othello end games.

REFERENCES

[1] G. Tesauro, “TD-Gammon, A Self-teaching Backgammon Program,
Achieves Master-Level Play,” 1993, pp. 19–23.

[2] M. Buro, “From Simple Features to Sophisticated Evaluation
Functions,” in Proceedings of the First International Conference
on Computers and Games (CG-98), H. J. van den Herik and
H. Iida, Eds., vol. 1558. Tsukuba, Japan: Springer-Verlag, 1998, pp.
126–145. [Online]. Available: citeseer.ist.psu.edu/buro99from.html

[3] J. Fürnkranz, “Machine Learning in Games: A Survey,” in Machines
that Learn to Play Games, J. Fürnkranz and M. Kubat, Eds. Hunt-
ington, NY: Nova Science Publishers, 2001, ch. 2, pp. 11–59.

[4] J. Baxter, A. Tridgell, and L. Weaver, “Learning to Play Chess Using
Temporal Differences,” Machine Learning, vol. 40, no. 3, pp. 243–263,
2000.

[5] M. B. D. Gomboc, T. A. Marsland, “Evaluation fuction tuning via
ordinal correlation,” in Advances in Computer Games, H. van den
Herik, Iida, Ed. Kluwer, 2003, pp. 1–18.

[6] D. B. Fogel, “Using Evolutionary Programming to Construct Neural
Networks that are capable of playing Tic-Tac-Toe,” in Proceedings
of the IEEE International Conference on Neural Networks (ICNN-
93), San Francisco, 1993, pp. 875–879. [Online]. Available:
http://www.natural-selection.com/Library/1993/EP NN tic tac toe.pdf

[7] ——, Blondie24: Playing at the Edge of AI. Morgan Kaufmann,
September 2001.

[8] D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon, “A self-learning
evolutionary chess program,” in Proceedings of the IEEE, vol. 92,
no. 12, 2004, pp. 1947–1954.

[9] K. Chellapilla and D. B. Fogel, “Evolving an Expert Checkers Playing
Program Without Using Human Expertise,” IEEE Transactions on
Evolutionary Computation, vol. 5, no. 4, pp. 422–428, 2001.
[Online]. Available: http://www.natural-selection.com/Library/2001/
IEEE-TEVC.pdf

[10] L. Messerschmidt and A. P. Engelbrecht, “Learning to play games
using a pso-based competitive learning approach.” IEEE Trans. Evo-
lutionary Computation, vol. 8, no. 3, pp. 280–288, 2004.

[11] N. Franken and A. Engelbrecht, “Comparing pso structures to learn
the game of checkers from zero knowledge,” in Proceedings of the
2003 Congress on Evolutionary Computation CEC2003, R. Sarker,
R. Reynolds, H. Abbass, K. C. Tan, B. McKay, D. Essam, and
T. Gedeon, Eds. Canberra: IEEE Press, 8-12 December 2003, pp.
234–241.

[12] T. E. Fawcett, “Feature Discovery for Problem Solving Systems,”
Ph.D. dissertation, Department of Computer Science, University
of Massachusetts, Amherst, MA, 1993. [Online]. Available: ftp:
//ftp.cs.umass.edu/pub/techrept/techreport/1993/UM-CS-1993-049.ps

[13] P. E. Utgoff and D. Precup, “Constructive Function Approximation,”
in Feature Extraction, Construction and Selection: A Data Mining
Perspective, ser. The Kluwer International Series in Engineering and
Computer Science, H. Liu and H. Motoda, Eds. Kluwer Academic
Publishers, 1998, vol. 453, ch. 14.

[14] T. Kaneko, K. Yamaguchi, and S. Kawai, “Automated Identification
of Patterns in Evaluation Functions,” in Advances in Computer
Games 10, H. J. van den Herik, H. Iida, and E. A. Heinz, Eds.
Kluwer Academic Publishers, 2004, pp. 279–298. [Online]. Available:
http://www.cs.ualberta.ca/∼mburo/ps/ordinal.ps.gz

[15] W. H. Duminy and A. P. Engelbrecht, “Composing linear evaluation
functions from observable features.” South African Computer Journal,
vol. 35, pp. 48–58, 2005.

[16] I. Althöfer, “Computer-aided game inventing,” 10 2003.
[17] U. M. Fayyad and B. Keki, “Multi-Interval Discretization of

Continuous-Valued Attributes for Classification Learning,” in IJCAI-
93, 1993, pp. 1022–1027.

[18] T. Uno, M. Kiyomi, and H. Arimura, “LCM ver 3.: Collaboration of
Array, Bitmap and Prefix Tree for Frequent Itemset Mining,” Chicago,
IL, 8 2005.

[19] A. Hyvärinen, “A survey on independent component analysis,” Neural
Computing Surveys, vol. 2, pp. 94–124, 1999.

274

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

[20] S. Eyheramendy and D. Madigan, “A novel feature selection score for
text categorization,” in Proceedings of the International Workshop on
Feature Selection for Data Mining: Interfacing Machine Learning and
Statistics (in conjunction with 2005 SIAM International Conference on
Data Mining), Newport Beach, CA., April 2005.

[21] F. Fleuret, “Fast Binary Feature Selection with Conditional Mutual
Information,” in JMLR Vol.5, 11 2004, pp. 1531–1555.

[22] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2nd
ed.). Wiley Interscience, 2000.

[23] M. Buro and I. Durdanovic, “An overview of neci’s generic game
server,” 2001, http://citeseer.ifi.unizh.ch/600506.html.

[24] M. Riedmiller and H. Braun, “A direct adaptive method for faster
backpropagation learning: The RPROP algorithm,” in Proc. of the
IEEE Intl. Conf. on Neural Networks, San Francisco, CA, 1993, pp.
586–591. [Online]. Available: citeseer.ist.psu.edu/riedmiller93direct.
html

[25] M. Miwa, D. Yokoyama, and T. Chikayama, “Automatic construction
of static evaluation functions for computer game players,” in Pro-
ceedings of the 9th International Conference on Discovery Science,
L. Tpdorovski, N. Lavrac̆, and K. P.Jantke, Eds. Springer, October
2006, pp. 332–336.

275

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

