
Abstract— General Game playing, a relatively new field in
game research, presents new frontiers in building intelligent
game players. The traditional premise for building a good
artificially intelligent player is that the game is known to the
player and pre-programmed to play accordingly. General game
players challenge game programmers by not identifying the
game until the beginning of game play. In this paper we explore
a new approach to intelligent general game playing employing
a self-organizing, multiple-agent evolutionary learning
strategy. In order to decide on an intelligent move, specialized
agents interact with each other and evolve competitive
solutions to decide on the best move, sharing the learnt
experience and using it to train themselves in a social
environment. In an experimental setup using a simple board
game, the evolutionary agents employing a learning strategy by
training themselves from their own experiences, and without
prior knowledge of the game, demonstrate to be as effective as
other strong dedicated heuristics. This approach provides a
potential for new intelligent game playing program design in
the absence of prior knowledge of the game at hand.

I. INTRODUCTION
n game playing, one of the most important aspect is the
ability of the player to make intelligent, legal moves

during game play. Many different approaches have been
explored in this area, and much research and potential still
exists to develop intelligent game players.

A. General Game Playing
The field of General Game Playing (GGP) is an important

part of Artificial Intelligence (AI) research, and provides an
important leap in the direction and approach of the
construction of intelligent agent systems. In the past, much
of the emphasis in the creation of intelligent systems was on
the system being intelligent in its behaviour only for the task
it was constructed to perform well in. GGP systems, as the
name implies, are far more general. They are able to accept
descriptions of any game, and are able to play them. The
importance of this research lies in the fact that GGP systems
provide a step from intelligent systems giving an illusion of
intelligence to intelligent systems that act in an intelligent
manner.

Though pure General Game Playing capabilities have not
entirely been implemented, systems have been designed

This work was supported in part by an NSERC Discovery grant.
Z. Kobti is with the School of Computer Science at the University of
Windsor, Windsor, ONT, Canada N9B-3P4. (Phone: +1-519-253-3000; fax:
+1-519-973-7093; e-mail: kobti@uwindsor.ca). S. Sharma, is with the
School of Computer Science at the University of Windsor, Windsor, ONT,
Canada N9B-3P4. (e-mail: sharmaw@uwindsor.ca).

which display a general behaviour with respect to a specific
class of games.

B. Early attempts at General Game Playing: Positional
Games
One class of games where general game playing has been

investigated are positional games. These type of games were
formalised by Koffman [6]. Banerji [1], Citrenbaum, Pitrat
[3], and Banerji and Ernst [2] have studied these class of
games. Some examples of position games include Tic-Tac-
Toe, Hex, the Shannon switching games.

A position game can be defined by three sets, P, A, B. Set
P is a set of positions; with set A and B both containing
subsets of P. In other words, sets A and B represent a
collection of subsets of P, with each subset representing a
specific positional situation of the game. The game is played
with two players, with each player alternating in moves,
which consist of choosing an element from P. The chosen
element cannot be chosen again. The aim for the first player
is to construct one of the sets belonging to A, whereas the
aim for the second player is to construct one of the sets
belonging to B.

Programs that are capable of accepting rules of positional
games, and, with practice, learn how to play the game have
been developed. Koffman constructed a program that is able
to learn important board configurations in a 4 X 4 X 4 Tic-
Tac-Toe game. This program plays about 12 times before it
learns and is effectively able to play and start defeating
opponents. A set of board configurations are described by
means of a weighted graph.

C. General Game Playing Architecture
For our purposes, we use the GGP architecture developed

at Stanford University [9]. A GGP system consists of an
agent designated as the Game Player (GP) and a Game
Manager (GM). The GM is responsible for sending to the
GP, initially, the rules of the game, and subsequently, the
moves being made at each stage, and upon termination of
the game, a termination message. The responsibility of the
GP is to accept all the messages sent by the GM and take the
appropriate action. Currently, Stanford University maintains
at their website for GGP a GM to which GP’s can connect
and play games. They also maintain a rich resource base
detailing the model of communication between GP’s and the
GM, the types of games that are playable in GGP and a set
of game descriptions. The game descriptions are written in
prefix Knowledge Interchange Format (KIF) [4]. They are
written in such a manner that it is possible to use them and
generate a set of legal moves from a given game state. In

A Multi-Agent Architecture for Game Playing
Ziad Kobti, Shiven Sharma

I

276

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

1-4244-0709-5/07/$20.00 ©2007 IEEE

order to facilitate and generate interest in GGP, a
competition in GGP was held at AAAI 2005 and AAAI
2006, which pitched different GP’s against one another [5].

D. Multi-Agent Social Environment for Game Playing
The credibility of a General Game Player lies in its

ability to make not just legal moves, but intelligent moves.
From the game descriptions, it is possible to generate legal
moves from a game state. However, the challenge lies in the
selection of a single move that can be considered intelligent
from this set. Many different approaches are possible to
allow a GP to make intelligent moves. Traditional search
based approaches involved generating a tree representing the
different possible outcomes from a given game state and
searching the tree to come up with the best possible solution
(or move) from that game state to the next. The problem
with this approach lies in the fact that for games with large
state spaces, such as chess, the trees can becoming
astronomical in size, and therefore, become impossible to
search exhaustively. In order to tackle this problem, trees are
generated only up to a certain point in the space. Techniques
such as Alpha-Beta search and Minimax search are
commonly used in this paradigm.

We implement a new approach to facilitate a GP to make
intelligent moves, and in order to allow it to handle general
games, information regarding which game is going to be
played is not provided. Our main GP, which is connected to
the GM, before deciding on a legal move to make, enlists the
aid of several sub-players (agents) to help it decide on an
intelligent move to make. This is done by each of the agents
assuming the role of the GP in the game and playing the
game (exhaustively for games with a small search space, and
up to a certain limit for games with a large search space).
Each of these agents record their experience learnt during
the play and share it with each other, and consequently
converge to a series of strategies which they deem best to
play. These are sent to another agent which decides which
strategy to use, and that is sent back to the main GP.

In the following sections, we proceed to describe the
underlying architecture of the multi-agent GP and the
algorithms used in evolving strategies. Section II presents
the architecture. In section III we discuss the underlying
strategies and algorithms for generation of the training data
and its evolution and the final selection of the move to be
sent. Section VI presents the results from testing various
forms of the multi-agent GP by playing Tic-Tac-Toe against
a player using minimax as a search technique. In section V
we outline the limitations and assumptions made in order to
test the architecture. Finally in section VI we give an
overview of future work in this area. The game description
for Tic-Tac-Toe is available from Stanford University’s
GGP project website [9], and is used for our purposes.

II. MULTI-AGENT ENVIRONMENT

Fig 1. This figure shows the architecture of the multi-agent game playing
system. The Game Player (GP) requests the Collective to send an intelligent
move. The Collective first creates multiple Hives which make random
moves and generate the training set.. Then the Collective creates multiple
evolutionary hives that use the set and evolve strategies for making
intelligent moves. Then the Collective selects the best move from these and
sends it back to the GP.

Our game playing system consists of the main Game
Player (GP), which communicates with the Game Manager
(GM). Associated with the GP is the multi-agent
environment. The simplest agent in this environment is
called a Drone, which represents a player. Each Drone
assumes a single role from the set of roles allowed by the
game rules. A set of Drones, each having a unique role, are
controlled by a virtual GM, called the Queen. It is the
Queen’s responsibility to accept moves from Drones, check
their validity, inform the Drones about the moves made by
the other Drones, and update the state of the game. In
essence, the Queen is the analogue to the GM in the GGP

277

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

environment, and each Drone is an analogue to the GP. A
grouping of the Queen and Drones, with each Drone
representing the unique role allowed by the game rules, is
called a Hive.

The Hive can be thought of being a single agent playing a
game. In order to facilitate multi-agent playing, we create a
finite number of Hives, each of which plays the game
independently from the other Hives. A larger agent, the
Collective, creates a finite number of Hives, and uses the
results from each of these Hives to decide on the best move
to make. It is the Collective which is in direct
communication with the main GP.

There are two types of Hives that we use in our
environment. One type is the Random Hive, in which the
Drones play the game making random legal moves. The
move sequences thus generated constitute the training set.
The second type is the Evolutionary Hive. These use the
aforementioned training set to evolve more intelligent
sequences. They then report these back to the Collective
which then selects the best of these and reports it back to the
GP.

Fig. 1 illustrates this environment. The GP, when faced
with the decision to make a move, calls on the Collective.
The Collective then goes ahead and creates a finite number
of Hives. The Hives play the game and communicate their
results back to the Collective. The Collective then uses these
results to decide which move is most likely to lead to a
winning state. It then communicates this back to the GP,
which in turn notifies the GM about it.

The GP, while playing the game, coordinated by the GM,
maintains in its memory, apart from the game rules, the
current state of the game. As the GM sends to the GP a
message containing all the moves made by all the players in
the previous turn, it updates its states in memory in order to
reflect the new game state. It is these game states that are
communicated to the Collective, which in turn passes these
states to the each Hive it creates. The GP is only interested
in the best move to make from the current game state. The
previous moves do not affect this decision, except to the
point that the previous moves led to the new game state.
Therefore, each Hive plays the game from the new game
state, oblivious to the previous moves made. If there are n
Hives created by the Collective, then n random sequences of
moves are generated by them (each Hive can be modified to
return multiple sequences also). Since the GP has a limited
time period in order to decide on the move and send it back
to the GM, this time period is used to constrain the level to
which each Hive plays the game from the new state. For
small games, in which only a few sequence of moves leads
to the terminal state, it is possible, given a sufficient time
period, to play the game till the end. However, in games
with a large sequence of moves, it may not be possible. For
our purposes for testing, we use tic-tac-toe in which the

entire sequence of moves from a given state till the
termination of the game can be generated.

III. EVOLUTIONARY STRATEGIES AND ALGORITHMS

In this section we focus on the generation of the Hives, the
generation of the training data set and the subsequent
evolution intelligent move sequences from it.

A. Generation of the Random and Evolutionary Hives
Fig. 2 illustrates the algorithm for the creation of both

Random and Evolutionary Hives in a sequential manner and
in which each hive returns only one sequence. When the
main GM requests the main GP to make a move, the GP
requests the Collective to provide it with an intelligent, legal
move. The information conveyed to the Collective is the
current game state. When the Collective receives this
request, it starts by creating a number of Hives. The first set
of Hives created is the Random Hives, which lack
intelligence, but always make legal moves in the given state.
These Hives generate a sequence of moves of game play
from the given state till the termination of the game. Only
those sequences which are most likely to lead to a win are
stored into a knowledge base. This constitutes the training
set. The main purpose the training set serves is to provide
some form of basic play information of the game, using
which the multi-agent environment can generate intelligent
moves (or move sequences).

Fig 2. This figure gives the basic sequential algorithm for creating both
types of Hives. The Random Hives return random sequences of legal moves
from the current game state till the termination of the game. These are used
by the Evolutionary Hives, which return intelligent sequences. The
Collective then selects the best move and returns it to the GP. Note that both
n and m can be either the same or different.

Once the training set is ready, the Collective now creates

278

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

a number of Evolutionary Hives and passes on the training
data to them. The purpose of these Hives is to use the
training data to create more intelligent moves for playing the
game from that given state. The details on how they do this
will be given in the next section.

Over time the Evolutionary Hives converge upon a
sequence of more intelligent moves, and pass on this
information to the Collective. The Collective then selects the
best of these sequences and sends the first move of the
selected sequence back to the GP. Details on this will also
be explained in the next section.

B. Evolutionary Hives and Collective algorithms
In this section we describe the manner in which the move

sequences generated by Random-Hives are evolved to
produce more intelligent sequences, and how the Collective
then uses these to select a move for the main GP.

Fig. 3 illustrates the algorithm used by the Evolutionary-
Hive agents. Each Hive randomly selects one of the random
sequences generated by Random Hives from the knowledge
base. Once a sequence is selected, the hive proceeds to play
the game by selecting every move from that sequence. In
other words, it makes its moves at step i by selecting the
move at position i in the sequence. If the move it makes
cannot be made because it is not valid or legal, then it selects
the next move in the sequence and makes it. If the end of the
sequence is reached and there are still moves to be made, it

Fig 3. This figure gives the basic algorithm used by the Evolutionary Hives
to converge upon intelligent sequences from the random sequences
generated by the Random-Hives.

makes random moves. In case of such a scenario, then upon
game termination, the new sequence, which consists of the

original moves and the newly selected random moves, is
stored in the knowledge base (if it is a winning sequence).

The Evolutionary-Agents perform a crossover operation
on the sequences with a probability p. In our testing, we
selected p to be 0.20. This is performed by first randomly
selecting two sequences from the knowledge base. Once
selected, a random crossover point is selected. Crossover is
then performed at that point. To illustrate, if sequence Si and
Sj are selected of lengths m and n respectively, and the
crossover point is k, then subsequence Si{1, k} is appended to
subsequence Sj{k+1, m} and subsequence Sj{1, k} is appended to
subsequence Si{k+1, n}. The new subsequences are stored in
the knowledge base, along with the parent sequences. Note
that the parent sequences can be removed as well, and only
current generations be stored.

With the two aforementioned ways of exploring the initial
random sequences, the agents aim to recognise patterns in
the winning sequence. As the population of sequences
grows, the agents try to recognise consistencies in the moves
in the winning patterns. To illustrate this, consider the
sample sequences represented by the vector of moves <a, b,
c, d, e> and <a, b, c, f, g>. The agents recognise the pattern
as <a, b, c, *, *>, where the * represents any random move.
Once the patterns are recognised, they are sent back to the
Collective, which then selects the best and returns it to the
main GP.

The Collective in our testing of the architecture uses a
basic statistical count to select the best sequence. From the
set of sequences returned, the Collective finds which
sequence occurs the most, and then returns that back to the
main GP. There are two options available to the Collective
regarding what to return. Since the main GP is only
interested in making a single move, the Collective can select
only the first move from the sequence and return that to the
GP. The second option is that the Collective return the entire
sequence itself. The advantage of the latter is that the GP has
the entire sequence, and therefore when it needs to make
more moves (after making the current move), it can look at
the pattern it received and select the next move in the
sequence. On the other hand, if the next move is not legal, it
can either chose to make a random move, or call the
Collective again and ask it to return to it another move (or
sequence).

IV. TEST RESULTS AND CONCLUSION

Here we present the results of different competitions of
Tic-Tac-Toe by different versions of the Game Player (GP)
against an opponent using minimax to search for moves. The
GP and the Collective are both unaware of the game being
sent. The first competition focuses on a match between a
player making random, legal moves by selecting a move
randomly from the legal move set, and the opponent. Then,
we pit the opponent against a player playing with a heuristic
specifically tailored for Tic-Tac-Toe. Next we play with the
opponent and the Collective without using the Evolutionary

279

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Hives, and finally we play with the opponent and the
Collective using Evolutionary Hives. We compare the
results of each of these competitions and evaluate the
difference of having agents using a basic evolutionary
strategy to use random sequences on intelligent general
game playing. Our aim is to see how the Collective using
Evolutionary Hives performs in the absence of game
knowledge compared to the heuristic player which has prior
game knowledge in the form of game specific heuristics.

A. Minimax vs. Random player
Here our player simply uses the current state to generate a
random move which is legal in that state. The results of
playing are shown in Fig. 4. for 30 games.

Fig 4. Results of 30 games of Tic-Tac-Toe for a random move making
player against Minimax player.

As can be seen, a player using Minimax has a definite
advantage over one making simple random moves, as the
former uses a well defined search to make moves, and
therefore wins a vast majority of the games.

B. Minimax vs. Heuristic player
Here our player uses a specific heuristic defined for Tic-

Tac-Toe. The heuristic is such that the player aims to mark
as many adjacent pairs in the grid as possible. In other
words, the player aims to mark squares [i, j] and [k, l],
where i and k correspond to rows on the game grid and j and
l correspond to columns on the grid, such that the squares
are adjacent to each other either in a row, column or a
diagonal. The player also aims to always check for such
pairs and try to make an entire row, column or diagonal
marked in order to win the game, while simultaneously
looking for the opponents adjacent pairs and preventing it
from making an entire row, column or diagonal and thus
winning the game. The results of playing are shown in Fig.
5. for 30 games.

Fig 5. Results of 30 games of Tic-Tac-Toe for a player using specific
heuristics for Tic-Tac-Toe against Minimax player.

The heuristic quickens the search for moves than a
minimax search, while also playing double tricks, in which
more than one winning sequence exists in a given game
state, thereby enabling the player to get winning
combinations quickly. Therefore, the heuristic player wins
all the games.

C. Minimax vs. Collective without Evolutionary Hives
Here our player employs the Collective, but the Collective

only uses the Random Hives, and selects a move statistically
in the way describe above for Evolutionary Hives, i.e. it
selects the sequence that occurs the most in the knowledge
base and returns the first move of that sequence. The results
of playing are shown in Fig. 6. for 30 games.

Fig 6. Results of 30 games of Tic-Tac-Toe for a player using the Collective
architecture, which is not using Evolutionary Hives, against Minimax
player.

The results show that even a simple statistical selection of
random sequences enables the player to perform well
enough to draw most of the games against the opponent. In
the next sub-section we see how adding the Evolutionary
Hives enhances the Collective.

D. Minimax vs. Collective with Evolutionary Hives
Here our player employs the Collective, using

Evolutionary Hives. For our testing purposes, the Collective
only returned the first move of the sequence it selected. The
results of playing are shown in Fig. 7. for 30 games.

Fig 7. Results of 30 games of Tic-Tac-Toe for a player using the Collective
architectur using Evolutionary Hives against Minimax player.

The addition of the Evolutionary Hives enhances the
playing abilities of the player to such an extent that it
performs almost as well as the player using heuristics. Since
the player using heuristics is sure to perform exceedingly
well, given that it has a well defined way of making moves,
the fact that the Collective with Evolutionary Hives almost
matches the performance of the heuristic player shows that
the addition of the Evolutionary Hives makes a great
difference in how the Collective selects moves.

E. Conclusion
The graph in Fig. 8 tabulates the results of all four

aforementioned competitions, each having 30 games in total.
It can be seen that the player using the Collective with the

Evolutionary Hives performs almost as well as the player
using specific heuristics, even in the absence of knowledge
regarding the game before the start of play. Also, the
Collective is able to generate more specialized sequences of
moves for Tic-Tac-Toe from a given game state than the
Collective not using Evolutionary Hives. This is because the
Hives are able to use simple evolutionary techniques to
explore the sequences received from the Random Hives and
recognize patterns in the winning sequences, thereby

280

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

generating more specialized and intelligent sequences.

Fig 8. Comparison of the results of four different game players against a
player using minimax search to play Tic-Tac-Toe.

We can conclude from our experiments that a player
using the Collective architecture with the Evolutionary
Hives for specialising game sequences can play, in an
intelligent manner, in the current scenario, Tic-Tac-Toe,
given the game description in the KIF format, and perform
almost as well as a player which has prior knowledge of the
game. Building upon this, we hope to establish that the
Collective should be able to play any game given the game
descriptions in KIF, thus emerging as a general game player.

V. LIMITATIONS AND ASSUMPTIONS

During the creating and testing of the Collective, we made
two assumptions. First of all, it is assumed that the game
being played can be played from a given game state till the
end. Secondly, it is assumed that the player has enough time
to generate enough training examples from the Random
Hives, and the Evolutionary Hives also have enough time to
generate specialized sequences to return to the Collective.

The current architecture also has a few limitations. The
Hives are created sequentially, and that entails a large
amount of processing time. Consequently, the Collective
takes a large amount of time to return an intelligent move to
the Game Player (GP). This problem can be avoided if the
Hives operate in a parallel instead of a sequential manner.
The Evolutionary Hives in this architecture use only a very
basic evolutionary strategy to generate intelligent sequences
and patterns. This can be enhanced by using more complex
strategies. Also, the strategy employed by the Collective to
select a sequence (or move) to return to the GP is a simple
statistical selection. Again, more complex and efficient
strategies can be used in this selection process. Finally, the
techniques used for testing purposes work only for games

with simple search spaces. The training set generated in our
present architecture consists of sequences of moves from a
game state till the end of the game. In games that require a
large sequence of moves before termination, this may not be
possible.

VI. FUTURE WORK

The architecture presented here is a new and novel
approach to train general game players to learn how to play
games. So far the tests have been conducted on a single
game. However, the Collective was able to play the game
without having prior knowledge of the game. In future tests,
we intend on making the Collective play a wider range of
games. We hope to establish that, using more complex
strategies for move sequence generation and selection, the
Collective architecture can be enhanced to create agents
sepcialised in certain games or certain classes of games. This
aspect of creating specialised agents over time is an
important guiding factor in our work. Future work involves
developing these strategies. Also, this architectural
framework provides different ways to explore agent
interaction in social agent communities and ways to share,
represent and update knowledge learnt by each agents.
Finally, we plan on improving the architecture to handle
games in which move sequences till the game termination
cannot be generated. For this we plan on evolving certain
heuristics or rules that can assign a score to the sequences
without actually knowing the final outcome of the game.
This is an important aspect to be worked on, since given the
absence of game knowledge prior to the start of play,
determining the fitness value of move sequences that do not
end in a terminal game state can be challenging.

REFERENCES

[1] R. B. Banerji, “Theory of Problem Solving: An approach to Artificial
Intelligence.”, 1969

[2] R. B. Banerji , G. W. Ernst, “Changes in representation which
preserve strategies in games.”, 1971

[3] R. L. Citrenbaum, “Strategic pattern generation: a solution technique
for a class of games.”, 1972

[4] M. Genesereth, N. Love, “General Game Playing: Game Description
Language Specification”, 2005

[5] M. Genesereth, N. Love, B. Pell “General Game Playing” AI
Magazine, 2005

[6] E. G. Koffman, “Learning through pattern recognition applied to a
class of games”, 1967

[7] P. C. Jackson Jr., Introduction to Artificial Intelligence, 1985
[8] J. Pitrat, “A general game playing program” 1971
[9] http://games.standford.edu
[10] J. Liu, C. Yao, “Rational competition and cooperation in ubiquitous

agent communities”, Knowledge-Based Systems, 2004
[11] D A. Ostrowski, T. Tassier, M. Everson, R. G. Reynolds, “Using

Cultural Algorithms to Evolve Strategies in Agent-Based Models”,
IEEE, 2002

[12] Z. Kobti, R. G. Reynolds, T. Kohler, “The effect of kinship
cooperation learning strategy and culture on the resilience of social
systems in the village multi-agent simulation”, 2005

[13] A. Namatame, T. Sasaki, “Competitive Evolution in a Society of Self-
interested Agents”, 1998

281

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

