
Abstract— General Game playing, a relatively new field in 
game research, presents new frontiers in building intelligent 
game players. The traditional premise for building a good 
artificially intelligent player is that the game is known to the 
player and pre-programmed to play accordingly. General game 
players challenge game programmers by not identifying the 
game until the beginning of game play. In this paper we explore 
a new approach to intelligent general game playing employing 
a self-organizing, multiple-agent evolutionary learning 
strategy. In order to decide on an intelligent move, specialized 
agents interact with each other and evolve competitive 
solutions to decide on the best move, sharing the learnt 
experience and using it to train themselves in a social 
environment. In an experimental setup using a simple board 
game, the evolutionary agents employing a learning strategy by 
training themselves from their own experiences, and without 
prior knowledge of the game, demonstrate to be as effective as 
other strong dedicated heuristics. This approach provides a 
potential for new intelligent game playing program design in 
the absence of prior knowledge of the game at hand.

I. INTRODUCTION
n game playing, one of the most important aspect is the 
ability of the player to make intelligent, legal moves 

during game play. Many different approaches have been 
explored in this area, and much research and potential still 
exists to develop intelligent game players.  

A. General Game Playing 
The field of General Game Playing (GGP) is an important 

part of Artificial Intelligence (AI) research, and provides an 
important leap in the direction and approach of the 
construction of intelligent agent systems. In the past, much 
of the emphasis in the creation of intelligent systems was on 
the system being intelligent in its behaviour only for the task 
it was constructed to perform well in. GGP systems, as the 
name implies, are far more general. They are able to accept 
descriptions of any game, and are able to play them. The 
importance of this research lies in the fact that GGP systems 
provide a step from intelligent systems giving an illusion of 
intelligence to intelligent systems that act in an intelligent 
manner. 

Though pure General Game Playing capabilities have not 
entirely been implemented, systems have been designed 
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which display a general behaviour with respect to a specific 
class of games. 

B. Early attempts at General Game Playing: Positional 
Games
One class of games where general game playing has been 

investigated are positional games. These type of games were 
formalised by Koffman [6]. Banerji [1], Citrenbaum, Pitrat 
[3], and Banerji and Ernst [2] have studied these class of 
games. Some examples of position games include Tic-Tac-
Toe, Hex, the Shannon switching games.  

A position game can be defined by three sets, P, A, B. Set 
P is a set of positions; with set A and B both containing 
subsets of P. In other words, sets A and B represent a 
collection of subsets of P, with each subset representing a 
specific positional situation of the game. The game is played 
with two players, with each player alternating in moves, 
which consist of choosing an element from P. The chosen 
element cannot be chosen again. The aim for the first player 
is to construct one of the sets belonging to A, whereas the 
aim for the second player is to construct one of the sets 
belonging to B.

Programs that are capable of accepting rules of positional 
games, and, with practice, learn how to play the game have 
been developed. Koffman constructed a program that is able 
to learn important board configurations in a 4 X 4 X 4 Tic-
Tac-Toe game. This program plays about 12 times before it 
learns and is effectively able to play and start defeating 
opponents. A set of board configurations are described by 
means of a weighted graph. 

C. General Game Playing Architecture 
For our purposes, we use the GGP architecture developed 

at Stanford University [9]. A GGP system consists of an 
agent designated as the Game Player (GP) and a Game 
Manager (GM). The GM is responsible for sending to the 
GP, initially, the rules of the game, and subsequently, the 
moves being made at each stage, and upon termination of 
the game, a termination message. The responsibility of the 
GP is to accept all the messages sent by the GM and take the 
appropriate action. Currently, Stanford University maintains 
at their website for GGP a GM to which GP’s can connect 
and play games. They also maintain a rich resource base 
detailing the model of communication between GP’s and the 
GM, the types of games that are playable in GGP and a set 
of game descriptions. The game descriptions are written in 
prefix Knowledge Interchange Format (KIF) [4]. They are 
written in such a manner that it is possible to use them and 
generate a set of legal moves from a given game state. In 
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order to facilitate and generate interest in GGP, a 
competition in GGP was held at AAAI 2005 and AAAI 
2006, which pitched different GP’s against one another [5]. 

D. Multi-Agent Social Environment for Game Playing 
The credibility of a General Game Player  lies in its 

ability to make not just legal moves, but intelligent moves. 
From the game descriptions, it is possible to generate legal 
moves from a game state. However, the challenge lies in the 
selection of a single move that can be considered intelligent
from this set. Many different approaches are possible to 
allow a GP to make intelligent moves. Traditional search 
based approaches involved generating a tree representing the 
different possible outcomes from a given game state and 
searching the tree to come up with the best possible solution 
(or move) from that game state to the next. The problem 
with this approach lies in the fact that for games with large 
state spaces, such as chess, the trees can becoming 
astronomical in size, and therefore, become impossible to 
search exhaustively. In order to tackle this problem, trees are 
generated only up to a certain point in the space. Techniques 
such as Alpha-Beta search and Minimax search are 
commonly used in this paradigm. 

We implement a new approach to facilitate a GP to make 
intelligent moves, and in order to allow it to handle general 
games, information regarding which game is going to be 
played is not provided. Our main GP, which is connected to 
the GM, before deciding on a legal move to make, enlists the 
aid of several sub-players (agents) to help it decide on an 
intelligent move to make. This is done by each of the agents 
assuming the role of the GP in the game and playing the 
game (exhaustively for games with a small search space, and 
up to a certain limit for games with a large search space). 
Each of these agents record their experience learnt during 
the play and share it with each other, and consequently 
converge to a series of strategies which they deem best to 
play. These are sent to another agent which decides which 
strategy to use, and that is sent back to the main GP.  

In the following sections, we proceed to describe the 
underlying architecture of the multi-agent GP and the 
algorithms used in evolving strategies. Section II presents 
the architecture. In section III we discuss the underlying 
strategies and algorithms for generation of the training data 
and its evolution and the final selection of the move to be 
sent. Section VI presents the results from testing various 
forms of the multi-agent GP by playing Tic-Tac-Toe against 
a player using minimax as a search technique. In section V 
we outline the limitations and assumptions made in order to 
test the architecture. Finally in section VI we give an 
overview of future work in this area. The game description 
for Tic-Tac-Toe is available from Stanford University’s 
GGP project website [9], and is used for our purposes. 

II. MULTI-AGENT ENVIRONMENT

Fig 1. This figure shows the architecture of the multi-agent game playing 
system. The Game Player (GP) requests the Collective to send an intelligent 
move. The Collective first creates multiple Hives which make random 
moves and generate the training set.. Then the Collective creates multiple 
evolutionary hives that use the set and evolve strategies for making 
intelligent moves. Then the Collective selects the best move from these and 
sends it back to the GP. 

Our game playing system consists of the main Game 
Player (GP), which communicates with the Game Manager 
(GM). Associated with the GP is the multi-agent 
environment. The simplest agent in this environment is 
called a Drone, which represents a player. Each Drone 
assumes a single role from the set of roles allowed by the 
game rules. A set of Drones, each having a unique role, are 
controlled by a virtual GM, called the Queen. It is the 
Queen’s responsibility to accept moves from Drones, check 
their validity, inform the Drones about the moves made by 
the other Drones, and update the state of the game. In 
essence, the Queen is the analogue to the GM in the GGP 
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environment, and each Drone is an analogue to the GP. A 
grouping of the Queen and Drones, with each Drone 
representing the unique role allowed by the game rules, is 
called a Hive.

The Hive can be thought of being a single agent playing a 
game. In order to facilitate multi-agent playing, we create a 
finite number of Hives, each of which plays the game 
independently from the other Hives. A larger agent, the 
Collective, creates a finite number of Hives, and uses the 
results from each of these Hives to decide on the best move 
to make. It is the Collective which is in direct 
communication with the main GP.  

There are two types of Hives that we use in our 
environment. One type is the Random Hive, in which the 
Drones play the game making random legal moves. The 
move sequences thus generated constitute the training set.
The second type is the Evolutionary Hive. These use the 
aforementioned training set to evolve more intelligent 
sequences. They then report these back to the Collective 
which then selects the best of these and reports it back to the 
GP.

Fig. 1 illustrates this environment. The GP, when faced 
with the decision to make a move, calls on the Collective. 
The Collective then goes ahead and creates a finite number 
of Hives. The Hives play the game and communicate their 
results back to the Collective. The Collective then uses these 
results to decide which move is most likely to lead to a 
winning state. It then communicates this back to the GP, 
which in turn notifies the GM about it.  

The GP, while playing the game, coordinated by the GM, 
maintains in its memory, apart from the game rules, the 
current state of the game. As the GM sends to the GP a 
message containing all the moves made by all the players in 
the previous turn, it updates its states in memory in order to 
reflect the new game state. It is these game states that are 
communicated to the Collective, which in turn passes these 
states to the each Hive it creates. The GP is only interested 
in the best move to make from the current game state. The 
previous moves do not affect this decision, except to the 
point that the previous moves led to the new game state. 
Therefore, each Hive plays the game from the new game 
state, oblivious to the previous moves made. If there are n
Hives created by the Collective, then n random sequences of 
moves are generated by them (each Hive can be modified to 
return multiple sequences also). Since the GP has a limited 
time period in order to decide on the move and send it back 
to the GM, this time period is used to constrain the level to 
which each Hive plays the game from the new state. For 
small games, in which only a few sequence of moves leads 
to the terminal state, it is possible, given a sufficient time 
period, to play the game till the end. However, in games 
with a large sequence of moves, it may not be possible. For 
our purposes for testing, we use tic-tac-toe in which the 

entire sequence of moves from a given state till the 
termination of the game can be generated. 

III. EVOLUTIONARY STRATEGIES AND ALGORITHMS

In this section we focus on the generation of the Hives, the 
generation of the training data set and the subsequent 
evolution intelligent move sequences from it. 

A. Generation of the Random and Evolutionary Hives 
Fig. 2 illustrates the algorithm for the creation of both 

Random and Evolutionary Hives in a sequential manner and 
in which each hive returns only one sequence. When the 
main GM requests the main GP to make a move, the GP 
requests the Collective to provide it with an intelligent, legal 
move. The information conveyed to the Collective is the 
current game state. When the Collective receives this 
request, it starts by creating a number of Hives. The first set 
of Hives created is the Random Hives, which lack 
intelligence, but always make legal moves in the given state. 
These Hives generate a sequence of moves of game play 
from the given state till the termination of the game. Only 
those sequences which are most likely to lead to a win are 
stored into a knowledge base. This constitutes the training 
set. The main purpose the training set serves is to provide 
some form of basic play information of the game, using 
which the multi-agent environment can generate intelligent 
moves (or move sequences). 

Fig 2. This figure gives the basic sequential algorithm for creating both 
types of Hives. The Random Hives return random sequences of legal moves 
from the current game state till the termination of the game. These are used 
by the Evolutionary Hives, which return intelligent sequences. The 
Collective then selects the best move and returns it to the GP. Note that both 
n and m can be either the same or different. 

Once the training set is ready, the Collective now creates 
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a number of Evolutionary Hives and passes on the training 
data to them. The purpose of these Hives is to use the 
training data to create more intelligent moves for playing the 
game from that given state. The details on how they do this 
will be given in the next section. 

Over time the Evolutionary Hives converge upon a 
sequence of more intelligent moves, and pass on this 
information to the Collective. The Collective then selects the 
best of these sequences and sends the first move of the 
selected sequence back to the GP. Details on this will also 
be explained in the next section. 

B. Evolutionary Hives and Collective algorithms 
In this section we describe the manner in which the move 

sequences generated by Random-Hives are evolved to 
produce more intelligent sequences, and how the Collective 
then uses these to select a move for the main GP. 

Fig. 3 illustrates the algorithm used by the Evolutionary-
Hive agents. Each Hive randomly selects one of the random 
sequences generated by Random Hives from the knowledge 
base. Once a sequence is selected, the hive proceeds to play 
the game by selecting every move from that sequence. In 
other words, it makes its moves at step i by selecting the 
move at position i in the sequence. If the move it makes 
cannot be made because it is not valid or legal, then it selects 
the next move in the sequence and makes it. If the end of the 
sequence is reached and there are still moves to be made, it  

Fig 3. This figure gives the basic algorithm used by the Evolutionary Hives 
to converge upon intelligent sequences from the random sequences 
generated by the Random-Hives. 

makes random moves. In case of such a scenario, then upon 
game termination, the new sequence, which consists of the 

original moves and the newly selected random moves, is 
stored in the knowledge base (if it is a winning sequence).  

The Evolutionary-Agents perform a crossover operation 
on the sequences with a probability p. In our testing, we 
selected p to be 0.20. This is performed by first randomly 
selecting two sequences from the knowledge base. Once 
selected, a random crossover point is selected. Crossover is 
then performed at that point. To illustrate, if sequence Si and 
Sj are selected of lengths m and n respectively, and the 
crossover point is k, then subsequence Si{1, k} is appended to 
subsequence Sj{k+1, m} and subsequence Sj{1, k} is appended to 
subsequence Si{k+1, n}. The new subsequences are stored in 
the knowledge base, along with the parent sequences. Note 
that the parent sequences can be removed as well, and only 
current generations be stored. 

With the two aforementioned ways of exploring the initial 
random sequences, the agents aim to recognise patterns in 
the winning sequence. As the population of sequences 
grows, the agents try to recognise consistencies in the moves 
in the winning patterns. To illustrate this, consider the 
sample sequences represented by the vector of moves <a, b, 
c, d, e> and <a, b, c, f, g>. The agents recognise the pattern 
as <a, b, c, *, *>, where the * represents any random move. 
Once the patterns are recognised, they are sent back to the 
Collective, which then selects the best and returns it to the 
main GP. 

The Collective in our testing of the architecture uses a 
basic statistical count to select the best sequence. From the  
set of sequences returned, the Collective finds which 
sequence occurs the most, and then returns that back to the 
main GP. There are two options available to the Collective 
regarding what to return. Since the main GP is only 
interested in making a single move, the Collective can select 
only the first move from the sequence and return that to the 
GP. The second option is that the Collective return the entire 
sequence itself. The advantage of the latter is that the GP has 
the entire sequence, and therefore when it needs to make 
more moves (after making the current move), it can look at 
the pattern it received and select the next move in the 
sequence. On the other hand, if the next move is not legal, it 
can either chose to make a random move, or call the 
Collective again and ask it to return to it another move (or 
sequence).

IV. TEST RESULTS AND CONCLUSION

Here we present the results of different competitions of 
Tic-Tac-Toe by different versions of the Game Player (GP) 
against an opponent using minimax to search for moves. The 
GP and the Collective are both unaware of the game being 
sent. The first competition focuses on a match between a 
player making random, legal moves by selecting a move 
randomly from the legal move set, and the opponent. Then, 
we pit the opponent against a player playing with a heuristic 
specifically tailored for Tic-Tac-Toe. Next we play with the 
opponent and the Collective without using the Evolutionary 
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Hives, and finally we play with the opponent and the 
Collective using Evolutionary Hives. We compare the 
results of each of these competitions and evaluate the 
difference of having agents using a basic evolutionary 
strategy to use random sequences on intelligent general 
game playing. Our aim is to see how the Collective using 
Evolutionary Hives performs in the absence of game 
knowledge compared to the heuristic player which has prior 
game knowledge in the form of game specific heuristics.  

A. Minimax vs. Random player 
Here our player simply uses the current state to generate a 
random move which is legal in that state. The results of 
playing are shown in Fig. 4. for 30 games. 

Fig 4. Results of 30 games of Tic-Tac-Toe for a random move making 
player against Minimax player. 

As can be seen, a player using Minimax has a definite 
advantage over one making simple random moves, as the 
former uses a well defined search to make moves, and 
therefore wins a vast majority of the games. 

B. Minimax vs. Heuristic player 
Here our player uses a specific heuristic defined for Tic-

Tac-Toe. The heuristic is such that the player aims to mark 
as many adjacent pairs in the grid as possible. In other 
words, the player aims to mark squares [i, j] and [k, l], 
where i and k correspond to rows on the game grid and j and 
l correspond to columns on the grid, such that  the squares 
are adjacent to each other either in a row, column or a 
diagonal. The player also aims to always check for such 
pairs and try to make an entire row, column or diagonal 
marked in order to win the game, while simultaneously 
looking for the opponents adjacent pairs and preventing it 
from making an entire row, column or diagonal and thus 
winning the game. The results of playing are shown in Fig. 
5. for 30 games. 

Fig 5. Results of 30 games of Tic-Tac-Toe for a player using specific 
heuristics for Tic-Tac-Toe against Minimax player. 

The heuristic quickens the search for moves than a 
minimax search, while also playing double tricks, in which 
more than one winning sequence exists in a given game 
state, thereby enabling the player to get winning 
combinations quickly. Therefore, the heuristic player wins 
all the games. 

C. Minimax vs. Collective without Evolutionary Hives 
Here our player employs the Collective, but the Collective 

only uses the Random Hives, and selects a move statistically 
in the way describe above for Evolutionary Hives, i.e. it 
selects the sequence that occurs the most in the knowledge 
base and returns the first move of that sequence. The results 
of playing are shown in Fig. 6. for 30 games. 

Fig 6. Results of 30 games of Tic-Tac-Toe for a player using the Collective 
architecture, which is not using Evolutionary Hives, against Minimax 
player.

The results show that even a simple statistical selection of 
random sequences enables the player to perform well 
enough to draw most of the games against the opponent. In 
the next sub-section we see how adding the Evolutionary 
Hives enhances the Collective. 

D. Minimax vs. Collective with Evolutionary Hives 
Here our player employs the Collective, using 

Evolutionary Hives. For our testing purposes, the Collective 
only returned the first move of the sequence it selected. The 
results of playing are shown in Fig. 7. for 30 games. 

Fig 7. Results of 30 games of Tic-Tac-Toe for a player using the Collective 
architectur using Evolutionary Hives against Minimax player. 

The addition of the Evolutionary Hives enhances the 
playing abilities of the player to such an extent that it 
performs almost as well as the player using heuristics. Since 
the player using heuristics is sure to perform exceedingly 
well, given that it has a well defined way of making moves, 
the fact that the Collective with Evolutionary Hives almost 
matches the performance of the heuristic player shows that 
the addition of the Evolutionary Hives makes a great 
difference in how the Collective selects moves. 

E. Conclusion 
The graph in Fig. 8 tabulates the results of all four 

aforementioned competitions, each having 30 games in total.  
It can be seen that the player using the Collective with the 

Evolutionary Hives performs almost as well as the player 
using specific heuristics, even in the absence of knowledge 
regarding the game before the start of play. Also, the 
Collective is able to generate more specialized sequences of 
moves for Tic-Tac-Toe from a given game state than the 
Collective not using Evolutionary Hives. This is because the 
Hives are able to use simple evolutionary techniques to 
explore the sequences received from the Random Hives and 
recognize patterns in the winning sequences, thereby 
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generating more specialized and intelligent sequences.  

Fig 8. Comparison of the results of four different game players against a 
player using minimax search to play Tic-Tac-Toe. 

We can conclude from our experiments that a player 
using the Collective architecture with the Evolutionary 
Hives for specialising game sequences can play, in an 
intelligent manner, in the current scenario, Tic-Tac-Toe, 
given the game description in the KIF format, and perform 
almost as well as a player which has prior knowledge of the 
game. Building upon this, we hope to establish that the 
Collective should be able to play any game given the game 
descriptions in KIF, thus emerging as a general game player. 

V. LIMITATIONS AND ASSUMPTIONS

During the creating and testing of the Collective, we made 
two assumptions. First of all, it is assumed that the game 
being played can be played from a given game state till the 
end. Secondly, it is assumed that the player has enough time 
to generate enough training examples from the Random 
Hives, and the Evolutionary Hives also have enough time to 
generate specialized sequences to return to the Collective.  

The current architecture also has a few limitations. The 
Hives are created sequentially, and that entails a large 
amount of processing time. Consequently, the Collective 
takes a large amount of time to return an intelligent move to 
the Game Player (GP). This problem can be avoided if the 
Hives operate in a parallel instead of a sequential manner. 
The Evolutionary Hives in this architecture use only a very 
basic evolutionary strategy to generate intelligent sequences 
and patterns. This can be enhanced by using more complex 
strategies. Also, the strategy employed by the Collective to 
select a sequence (or move) to return to the GP is a simple 
statistical selection. Again, more complex and efficient 
strategies can be used in this selection process. Finally, the 
techniques used for testing purposes work only for games 

with simple search spaces. The training set generated in our 
present architecture consists of sequences of moves from a 
game state till the end of the game. In games that require a 
large sequence of moves before termination, this may not be 
possible.  

VI. FUTURE WORK

The architecture presented here is a new and novel 
approach to train general game players to learn how to play 
games. So far the tests have been conducted on a single 
game. However, the Collective was able to play the game 
without having prior knowledge of the game. In future tests, 
we intend on making the Collective play a wider range of 
games. We hope to establish that, using more complex 
strategies for move sequence generation and selection, the 
Collective architecture can be enhanced to create agents 
sepcialised in certain games or certain classes of games. This 
aspect of creating specialised agents over time is an 
important guiding factor in our work. Future work involves 
developing these strategies. Also, this architectural 
framework provides different ways to explore agent 
interaction in social agent communities and ways to share, 
represent and update knowledge learnt by each agents. 
Finally, we plan on improving the architecture to handle 
games in which move sequences till the game termination 
cannot be generated. For this we plan on evolving certain 
heuristics or rules that can assign a score to the sequences 
without actually knowing the final outcome of the game. 
This is an important aspect to be worked on, since given the 
absence of game knowledge prior to the start of play, 
determining the fitness value of move sequences that do not 
end in a terminal game state can be challenging. 
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