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Abstract— Pac-Man (and variant) computer games have re-
ceived some recent attention in Artificial Intelligence research.
One reason is that the game provides a platform that is both
simple enough to conduct experimental research and complex
enough to require non-trivial strategies for successful game-
play. This paper describes an approach to developing Pac-Man
playing agents that learn game-play based on minimal on-
screen information. The agents are based on evolving neural
network controllers using a simple evolutionary algorithm. The
results show that neuroevolution is able to produce agents that
display novice playing ability, with a minimal amount of on-
screen information, no knowledge of the rules of the game and
a minimally informative fitness function. The limitations of the
approach are also discussed, together with possible directions
for extending the work towards producing better Pac-Man
playing agents.

Keywords: Evolutionary Algorithm, Multi-layer Percep-
tron, Pac-Man, Neuroevolution, Real-time Computer Games.

I. INTRODUCTION

Pac-Man is one of the oldest and most popular computer
games of all time. Following its release as an arcade game in
the 1981, Pac-Man and variants of the game have proliferated
from arcades to numerous personal computer platforms, con-
soles and hand-held devices. Although Pac-Man is simplistic
in many aspects when compared with modern computer
games, it remains a well-known and popular game.

In recent years, Pac-Man style games have received some
attention in Computational Intelligence research. The main
reason is that the game provides a sufficiently rich and useful
platform for developing CI techniques in computer games.
On one hand, Pac-Man is simple enough to permit reasonable
understanding of its characteristics, requires relatively mod-
est computational requirements and has a small code size. On
the other hand, game-play based on “intelligent” strategies,
planning and priority management is possible, as opposed to
many other simple real-time computer games where success
is based largely on speed and reaction-time. The predator-
prey nature of Pac-Man provides significant challenges for
using CI techniques to create intelligent agents in game-play.

This paper describes an approach to evolving agents that
learn to play Pac-Man (i.e. assuming the role of the human
controlled character). The agents are implemented as neural
network (multi-layer perceptron) controllers. The main aim
of the work described below is to explore the feasibility
of this approach, when the neural networks are presented
with minimal raw information about the state of the game.
Section II describes key aspects of the Pac-Man game and
variants. In Section III previous research in Pac-Man and

Fig. 1. The starting position of the Pac-Man game, showing the maze
structure, Pac-Man (lower-center), power pills (large dots), dots (small dots)
and ghosts (center).

neuroevolution in arcade games is reviewed. The approach
taken in this paper is detailed in Section IV, while Section V
presents the results of experiments. Section VI provides a
discussion and summary of the work.

II. THE PAC-MAN GAME AND VARIANTS

Pac-Man is a simple predator-prey style game, where the
human player maneuvers an agent (i.e. Pac-Man) through a
maze. A screenshot at the start of a game (the version used
in our research) is shown in Figure 1. The aim of the game is
to score points, by eating dots initially distributed throughout
the maze while attempting to avoid four “ghost” characters.
If Pac-Man collides with a ghost, he loses one of his three
lives and play resumes with the ghosts reassigned to their
initial starting location (the “ghost cage” in the center of the
maze). Four “power pills” are initially positioned near each
corner of a maze: when Pac-Man eats a power pill he is able
to turn the tables and eat the ghosts for a few seconds. Bonus
“fruit” objects wander through the maze at random and can
be eaten for extra points. The game ends when Pac-Man has
lost all of his lives.

In the original game there are no elements of randomness
- each ghost makes a deterministic decision about which
direction to move at a given time-step. This makes it possible
to devise effective game-play strategies based on learning
patterns (following fixed paths) in the game [1]. Nevertheless,
this determinism is not evident to the typical human player
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since the ghosts movement is dependent on the position and
movement of the Pac-Man agent. As long as the Pac-Man
agent displays variety in play, the game dynamics will unfold
differently. This means that typical human players develop
strategies for playing the game based on task prioritization,
planning and risk assessment.

While the basic behaviors of the ghost agents can be
described, the precise (programmed) strategies in the original
arcade game appear to be unknown (short of translating
machine code back into assembly language for the Z80
microprocessor and reverse-engineering!). This highlights a
more general issue for AI research on Pac-Man - differ-
ent implementations of the game will have certain specific
differences. In this paper we are mainly concerned with
the main (non-implementation-specific) aspects of Pac-Man.
Nevertheless, implementation-specific issues are important,
e.g. in trying to compare different AI techniques for playing
Pac-Man. Some examples of these issues are discussed
further below.

III. LEARNING IN PAC-MAN AND RELATED PREVIOUS

RESEARCH

Several previous studies have used Pac-Man and variant
games. Koza [2] and Rosca [3] use Pac-Man as an example
problem domain to study the effectiveness of genetic pro-
gramming for task prioritization. Their approach relies on a
set of predefined control primitives for perception, action and
program control (e.g., advance the agent on the shortest path
to the nearest uneaten power pill). The programs produced
represent procedures that solve mazes of a given structure,
resulting in a sequence of primitives that are followed.

Kalyanpur and Simon [4] use a genetic algorithm to try
to improve the strategy of the ghosts in a Pac-Man-like
game. Here the solution produced is also a list of directions
to be traversed. A neural network is used to determine
suitable crossover and mutation rates from experimental data.
Finally, De Bonet and Stauffer [5] describe a project using
reinforcement learning to develop strategies simultaneously
for Pac-Man and the ghosts, by starting with a small, simple
maze structure and gradually adding complexity.

Gallagher and Ryan [6] used a simple finite-state ma-
chine model to control the Pac-Man agent, with a set of
rules governing movement based on the “turn type” at
Pac-Man’s current location (e.g corridor, T-junction). The
rules contained weight parameters which were evolved from
game-play using the Population-Based Incremental Learning
(PBIL) algorithm [7]. This approach was able to achieve
some degree of learning, however the representation used
appeared to have a number of shortcomings.

Recently, Lucas [8] proposed evolving neural networks
as move evaluators in a Ms. Pac-Man implementation (Ms.
Pac-Man was the sequel to the original Pac-Man game).
Lucas focuses on Ms. Pac-Man because it is known that
the ghosts in this game behave in a pseudo-random fashion,
thus eliminating the possibility of developing path-following
patterns to play the game effectively and presumably making
the game harder and leading to more interesting game-play.

The neural networks evolved utilize a handcrafted input
feature vector consisting of shortest path distances from
the current location to each ghost, the nearest power pill
and the nearest maze junction. A score is produced for
each possible next location given Pac-Man’s current location.
Evolution strategies were used to evolve connection weights
in networks of fixed topology. The results demonstrate that
the networks were able to learn reasonably successful game-
play as well as highlighting some of the key issues of the
task (such as the impact of a noisy fitness function providing
coarse information on performance.

Evolving neural networks (aka neuroevolution) has
emerged as a popular technique for agent learning in
games [9]. Perhaps the most well known example is the
work of Chellipilla and Fogel in the Anaconda/Blondie24
checkers-playing agent [10], [11]. A real-time version of the
Neuroevolution of Augmenting Topologies [12] ((rt)NEAT)
method has been developed and applied to a real-time game
called Neuroevolving robotic operatives (NERO) [13], [14].
The method evolves a team of neural networks that learn
to play a combat game in a 3D environment. rtNERO is
based on a powerful and sophisticated type of neuroevolution
where network topology is evolved together with weight
values, starting with simple networks that gradually develop
more complex architectures. Carefully designed evolutionary
operators work well with the network model and input
representation of the game.

In this paper, we take an approach inspired by this previous
work utilizing neuroevolution in games. The work is similar
to that of Lucas [8] but differs in several important respects.
Primarily, we investigate the ability of neuroevolution to
learn to play Pac-Man based on ”raw” input from the current
game state. Lucas speculates as to the feasibility of using
on-screen input for learning Pac-Man: the results presented
below provide a partial answer to this question. Our agent
input is based on limited on-screen information and does not
utilize computations or information that a human could not
feasibly calculate or attend to online during game play (e.g
shortest path calculations). The methodology is described in
detail in the following section.

IV. APPROACH

A. Game Version Details

For the experiments we used a freely available Java-based
implementation of Pac-Man developed by Chow [15]. This
game implementation was also used in [6]. Chow’s Pac-
Man implementation follows the details of the original game
reasonably well. Note however that in this version of the
game, the behavior of the ghosts is not deterministic. In
this respect the game is similar to the implementation of
Lucas [8], although the manner in which randomness is used
is almost certainly different. Based on a comparison of the
source-code from [15] and the description in [8], there appear
to be some differences in the team behavior of the four
ghosts (e.g. Chow’s implementation discourages the ghosts
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from crowding together during play, while this phenomenon
is noted by Lucas in the discussion of his results).

The code for the Pac-Man game used was modified to
replace the keyboard input with output from the agents/neural
network controllers. The networks are evolved in response to
performance attained during game-play (see below). Since
the game runs at an appropriate speed for humans to play,
some effort was made to optimize the game speed for
neuroevolution. Sound was disabled, and a feature added
to disable the majority of graphical updates to the screen.
These changes improved the game runtime. Unfortunately,
the experimental simulations reported below still took a
significant amount of time, due to the large number of games
played when evolving a population of agents. On Pentium
4-based PCs, the experiments described in Section V each
took between 1 and 4 weeks of CPU time (multiple game
instances were run simultaneously on a single computer). The
game also occasionally crashed for undetermined reasons.
In general all experiments presented below were run for as
much time as practically possible.

For the majority of experiments in this paper, the game was
simplified by removing three of the four ghosts, all power
pills and fruit. Consequently, the “first” (red) ghost moves
by advancing towards Pac-Man by the shortest path 90% of
the time, and 10% of the time will choose the second-best
path to Pac-Man. If an internal game option (”InsaneAI”) is
set, the single ghost will become deterministic and always
selects the shortest path to Pac-Man.

The maze layout is the same as in the original game.
While it is commonly reported that this maze contains 240
dots [1], [16], this includes the power pills as ”special dots”.
In our simplification of the game, power pills were simply
removed, leaving 236 dots. At 10 points each, this means that
clearing the maze of all dots will produce a score of 2360.
The maze in the Ms. Pac-Man implementation by Lucas is
slightly different, containing 220 dots plus 4 power pills [8].

B. Input Representation and Neural Network Model

In this paper we attempt to evolve agents to play Pac-
Man based on a feedforward neural network (multi-layer
perceptron) model acting as a controller. Each network has
4 output units representing the four possible directions (up,
down, left and right) that Pac-Man can attempt to move in at
any time-step of the game. Each output unit has a (logistic)
sigmoidal activation function and the movement direction at
each time-step is chosen according to the network output
with the maximum value.

The majority of the input to the network is based on a
window of the current on-screen information in the game.
Consider a grid over the maze, with each cell at the level
of detail of a position of a dot in the maze. In the imple-
mentation of the game used here, this leads to a 31×28 grid
(including outer walls of the maze). The networks used take
input from a window centered on the current location of Pac-
Man in the maze (windows of sizes 5×5, 7×7 and 9×9 have
been implemented). A wrap-around effect is implemented
such that if the window ranges beyond the limits of the maze,

Dots Ghosts

P

G

1 1

0

0

0

0 0

0

0

0 000

00

−1

0

0

0 0 0

0 0 0

0 0 0

0

0

5 14 8 2

WallsMaze Window

Global Dots

1 1

1

1 1

1

0

0

0

0

1 1

0

00

0 1

1 0

1

0 0

1 1 1

11

10 0 0

0 1

0

0 0

0

0

0 0

0

0

000

0

Fig. 2. Breakdown of the game representation used as input to the multi-
layer perceptron networks. Shown (top-left) is an example of a maze view
with a 5 × 5 window size, together with the corresponding inputs that would
be produced from this maze view representing the walls, dots and ghosts
within this window. Four additional inputs are included to provide global
dot information beyond the current window.

view information from the opposite side(s) of the maze are
represented. This negates the need to encode edge effects, as
well as allowing for an effective representation of the tunnel
in the center of the maze (which literally wraps around).

We encode three types of information from the maze input
window (Figure 2). Walls and dots are each represented
using a window-sized binary matrix of inputs. Ghosts are
represented in a third matrix with a value of -1 while the
absence of a ghost is indicated using a value of 0. When
power pills are in play, a blue (edible) ghost can also be
represented using a value of +1.

A potential side-effect of using a limited window size is
that dots in the maze that do not appear in the current input
window are effectively invisible to the agent. Four additional
inputs are therefore used in the game representation. These
represent the total amount of dots remaining in each of the
four primary directions in the maze. The total number of
inputs to each network is therefore 3w2 + 4, where w is the
window height/width.

Multi-layer perceptrons with a single hidden layer were
used, with logistic sigmoidal activation functions. The num-
ber of hidden units (and therefore the topology of the
networks) was chosen prior to learning for each experiment
and was therefore fixed.
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C. Evolving the Neural Networks

The connection weights in the neural networks were
evolved using a (μ + λ)-Evolution Strategy. Mutation (with-
out self-adaptation of parameters) was applied to each weight
in a network with a given probability pm, using a Gaussian
mutation distribution with zero mean and standard deviation
vm. No recombination operator was used. This is a very
simple EA, however it serves as a first attempt for conducting
the experiments. The weights for the initial population of
networks in each experiment were generated uniformly in
the range [0, 0.1].

The fitness function was also very simple (as also used
in [8]) - the average number of points scored in a game
(note that a game consists of three lives of Pac-Man) over
the number of games played per agent, per generation

f =
1

Ngames

Ngames∑

i=1

score

V. RESULTS

A. One Deterministic Ghost

The first experimental scenario was the simplest possible.
The game used a single ghost behaving deterministically
(moving towards Pac-Man by the shortest path). In this case,
the entire game dynamics are deterministic, hence Ngames

can be set to 1. Other parameters were as follows:

• Input window size: 5 × 5 (leading to networks with 79
inputs).

• Number of hidden units = 8.
• pm = 0.1, vm = 0.1.
• Population size: μ = 30, λ = 15.

Three trials of this experiment were conducted. Figures 3-
5 show the median (points) and best (line) fitness of each
population over generations. The results indicate firstly that
the methodology is able to evolve neural networks that
improve their game-play over time. There is considerable
variability between the three trials, with the highest fitness
value obtained being 1290. This corresponds to clearing more
than half of the first maze of dots.

Observing game-play reveals that the networks essentially
learn patterns of clearing dots in the maze. In the early stages
of evolution, low-scoring agents are those that quickly get
stuck attempting to move in a direction where there is a wall.
For example, from the starting position, Pac-Man can only
move left or right - if the decision of the network output
is to go up or down the agent will be stuck1. The results
indicate that better performing agents become responsive to
the Walls input window, since they move around the maze
much more effectively. In higher scoring games at the end of
the experiments, different paths were typically observed for
different lives during a single game. This provides evidence
that the behavior of agents was also responsive to changes
in the Dots window inputs (since the disappearance of dots
is the difference between the input patterns seen between

1At least until something in the input changes.
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Fig. 3. Evolution of the agent population for the ”one deterministic ghost”
experiment (trial 1). The line shows the maximum fitness attained during
each generation, while the points show the median fitness of each population.
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Fig. 4. Evolution of the agent population for the ”one deterministic ghost”
experiment (trial 2). The line shows the maximum fitness attained during
each generation, while the points show the median fitness of each population.

lives, during a game. Responsiveness to the Ghosts input was
much less evident from observing game-play of the fittest
individuals. In certain situations, Pac-Man clearly did exhibit
avoidance of the ghost. The clearest example was when Pac-
Man was stuck at a location in the maze for several seconds,
but when the ghost became very close (within the 5×5 input
window size) the Pac-Man agent would begin moving again
(typically away from the ghost!). However, it was also clear
that the agents had not learnt a dominant “ghost-avoidance”
strategy for play, which would effectively solve this simple
version of the game.
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Fig. 5. Evolution of the agent population for the ”one deterministic ghost”
experiment (trial 3). The line shows the maximum fitness attained during
each generation, while the points show the median fitness of each population.

B. More Complex Games and Varying Experimental Param-
eters

We also explored a number of different experimental
configurations to see the effect (if any) on learning and
performance of the agents. Here we attempt to summarize
the interesting features of these experiments.

1) Non-deterministic Ghosts, Number of Hidden Units,
Population Size, Ngames: Several additional experiments
were conducted using the 5 × 5 window size (w = 5). The
deterministic ghost option was also removed, giving the game
an element of randomness. The experimental configurations
tested are summarized as follows:

• (e1): w = 5, μ = 10, λ = 5, 3 hidden units, non-
deterministic ghost, Ngames = 5.

• (e2): w = 5, μ = 10, λ = 5, 8 hidden units, non-
deterministic ghost, Ngames = 5.

• (e3): w = 5, μ = 50, λ = 25, 3 hidden units, non-
deterministic ghost, Ngames = 3.

• (e4): w = 5, μ = 30, λ = 1, 2 hidden units, 4 ghosts,
Ngames = 2.

Results for these experiments are shown in Table I. Clearly,
none of these experiments produced impressive results. Al-
though some degree of improvement always occurred, perfor-
mance was significantly lower than for the ”one deterministic
ghost” experiments above. This is perhaps not surprising,
since there is often a trade-off associated with these changes.
For example, adding hidden units to the networks increases
the potential representative power of the models, but also
creates a higher-dimensional optimization problem for the
EA, which may be more difficult to solve or may require
significantly more generations. Increasing Ngames should
improve the quality of fitness measurements (when the game
is stochastic), but increases the computation time required per
generation.

TABLE I

SUMMARY OF RESULTS FOR EXPLORATORY EXPERIMENTS (BEST

FITNESS VALUE ATTAINED, TOTAL NUMBER OF GENERATIONS).

Experiment Best Median Generations

e1 770 630 2390
e2 510 400 2035
e3 710 460 4256
e4 700 640 513
e5 590 420 356
e6 690 550 1057

e7 (i) 590 420 366
e7 (ii) 590 440 732
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Fig. 6. Evolution of the agent population for experiment (e1). Fitness of
each individual in the population is shown.

To illustrate the progress of learning, Figures 6 and 7
show the evolution of the population for experiments (e1)
and (e4) respectively. Figure 6 shows considerable fitness
diversity but highly variable learning progress. A relatively
small population and the non-deterministic ghost behavior
(despite 5 repeated games per fitness evaluation) are likely
contributors to this variability. Note however that only 513
generations were completed for this experiment. Experiment
(e4) used 4 ghosts in the maze with Pac-Man. The results
show rapid initial learning but progress then appears to stall.

2) Larger Input Windows: Further experiments were con-
ducted with larger input window sizes, more specifically:

• (e5): w = 7, 4 hidden units, non-deterministic ghost,
Ngames = 5.

• (e6): w = 7, 8 hidden units, non-deterministic ghost,
Ngames = 5.

• (e7): w = 9, 8 hidden units, non-deterministic ghost,
Ngames = 3 (2 trials).

Results are also summarized in Table I. A degree of learning
was also observed in these experiments, but only produced
modest performance. The increase in input dimension creates
a population of larger networks, so it seems possible that
many more generations might be required to allow the EA
reasonable time to search the model space.
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Fig. 7. Evolution of the agent population for experiment (e4). Fitness of
each individual in the population is shown.

VI. DISCUSSION

The aim of this paper was to examine the feasibility of
evolving a Pac-Man playing agent based on limited input
information. The results demonstrate that it is possible to use
neuroevolution to produce Pac-Man playing agents (albeit in
a simplified game) with basic playing ability using a minimal
amount of raw on-screen information. The performance
obtained to date is lower than previous approaches [6], [8];
no agent was able to clear a maze of dots in our experiments.
Nevertheless, it is encouraging and perhaps surprising that
it is possible to learn anything at all given the limited
representation of the game, feedback about performance and
incorporation of prior knowledge. More complex experi-
mental configurations were considered, but the results are
inconclusive with respect to the influence of a number of
system parameters on performance.

The approach taken in this paper is simplistic in several
respects and there are a number of clear directions that could
be taken to try and improve the work. The computation
time involved with our version of the game is significant,
despite some attempt to optimize the running speed. Further
experiments are expected to require thousands of generations
to obtain clear results, but this currently takes large amounts
of time. The fixed-topology neuroevolution implemented
above is a “bare-bones” approach and significant perfor-
mance improvements might be gained by considering more
powerful approaches [13].

The representation of the game in this work is minimalist.
In fact it could be argued that too little information is
provided (e.g. requiring the networks to learn to move instead
of running into walls). On the other hand, it may be possible

to simplify the representation even further. For example, we
have not studied the influence of the “Global Dots” inputs
on performance: it is possible that similar performance can
be achieved without this information.

There is a trade-off between incorporating little knowledge
of the game into the representation/model (making it impos-
sible to learn), versus providing too much prior information
(making the learning task trivial and the resulting game-play
uninteresting). Finally, subtle differences in game implemen-
tations may have unexpected effects on results, which may
hamper the progress of research it terms of the comparability
and repeatability of approaches. Despite these concerns, Pac-
Man provides a useful testbed for Computational Intelligence
in games and there is significant scope for further research
in this domain.
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