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Abs ract—In this paper we use computational techniques to 
explore the Aztec board game of Patolli.  Rules for the game 
were documented by the Spanish explorers that ultimately 
destroyed the Aztec civilization, yet there is no guarantee that 
the few players of Patolli that still exist follow the same 
strategies as the Aztec originators of the game.  We 
implemented the rules of the game in an agent-based system 
and designed a series of experiments to pit game-playing agents 
using different strategies against each other to try to infer what 
makes a good strategy (and therefore what kind of information 
would have been taken into account by expert Aztec players 
back in the days when Patolli was an extremely popular game).  
In this paper we describe the game, explain our 
implementation, and present our experimental setup, results 
and conclusions. 

t
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I. INTRODUCTION 
In this paper we use computational techniques to explore 

the Aztec board game of Patolli.  This game shares some 
features with the European game of Goose and the Indian 
game of Parcheesi, yet developed independently.  To the 
Aztecs, at least to the upper classes who had a surplus of 
time and possessions, playing and betting on the game of 
Patolli was a social occasion of extreme importance, as it 
was a way of communing with two of their gods: 
Macuiltxóchitl, god of dance, sports and games, and 
Ometochtli, god of pulque (an alcoholic drink made from the 
agave cactus) [1], [2]. 

Some traits of the game were documented by some of the 
earliest Spanish explorers before they ultimately destroyed 
the Aztec civilization, including the formerly widespread 
habit of playing Patolli [3], [4].  Some historians have 
suggested that the game has been lost forever [5].  Although 
there are almost no written descriptions of the game which 
have survived from Aztec times, it has been found that in 
some Mexican communities the game is still played [2].  The 
game’s existence and rules have probably been passed on 
through the centuries via the oral transmission of traditions.  
However, knowing the rules of a game and knowing how to 

 
 

play it are two different things.  Modern Patolli tournaments 
exist [6], though the number of people that play the game is 
not very high.  These modern players may have developed 
their own expertise through long series of games, or may 
have been taught how to play by ancestors who have passed 
on their knowledge of the game (which they probably 
received in the same fashion).  However, in either case we 
cannot be sure that the way they play reflects the way that 
the game was played 500 years ago, before the European 
conquest of the Americas. 

We decided to implement the rules of the game of Patolli 
in an agent-based computer system in which we gave agents 
the possibility to try out alternate strategies.  Each strategy 
differs from the others depending on the type of information 
it takes into account in order to decide what moves to make.  
We then designed a series of experiments to pit game-
playing agents using different strategies against each other.  
The purpose of evaluating multiple alternative strategies is 
to try to infer, based on the results of the experiments, what 
kind of information was probably taken into account by 
expert Aztec players back in the days when Patolli was an 
extremely popular game. 

The advantage of this multi-agent approach is that it is 
easy to control which aspects of agents are different (in this 
case, the strategies they employ to make decisions) and 
which are identical (in this case, everything else: the 
variables that describe the agents, the game-state 
information they have access to, etc.).  It therefore becomes 
easy to isolate one component (the one for which we are 
interested in evaluating variations), leaving everything else 
the same (and thus not allowing anything else to influence 
the outcome of the evaluations).  A similar multi-agent 
approach was followed by [7] in order to play the game 
Trouble®, yet that paper focuses on team-work in game 
playing (i.e., communication between agents during a game), 
whereas in our approach each agent is an opponent of the 
other agent(s) and therefore agents don’t communicate with 
each other.  Another discussion of intelligent agents in 
computer games is provided in [8]. 

In Section II of this paper we describe the game of Patolli 
and its rules.  In Section III we present our system and how 
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it implements the different rules of the game.  In Section IV 
we describe a series of experiments we performed in order to 
evaluate the different game-playing strategies we 
implemented.  Finally, in Section V we present our 
experimental results and draw some conclusions about the 
reasoning processes that expert Aztec Patolli players may 
have undergone when deciding what moves to make. 

II. THE GAME OF PATOLLI 
The four cardinal directions and the center, or up-down 

direction, were among the most important concepts for 
Aztecs.  Gods were associated with specific directions [2].  
The agricultural calendar year of the Aztecs had four special 
dates, two equinoxes and two solstices, which separated the 
year into four seasons.  There was also a fifth “season,” 
consisting of a five-day holiday to celebrate the end of one 
year and beginning of the next.  Due to their special 
significance, the numbers 4 and 5 appeared often in daily 
and religious life, including in the game of Patolli. 

The rules for Patolli which we have programmed, 
described below, were put together by us based on partial 
descriptions found in different anthropological and historical 
studies [1]-[5] and modern-day websites produced by Patolli 
enthusiasts [6], [9]-[12].  Some of these sources contradict 
each other in certain details (perhaps because the Aztecs 
themselves did not have just one standardized way of 
playing the game or drawing the Patolli board layout), but 
we have tried to come up with a coherent set of rules and 
design of the board for the game that seems to us to be the 
most logical or most likely to be correct, based on all these 
sources. 

A match in Patolli consists of a series of games played 
between two, three, or four players (or teams of players), 
each of which begins by placing a bet (presumably precious 
stones or other items valued by the Aztecs, but we will refer 
to this in general as “making a bid” with “goods” or 
“possessions”).  A match ends when one player has won all 
of the possessions of the rest of the players (who drop out of 
a match as they become bankrupt until there is only one 
overall winner of the match).  This may occur in the middle 
of a game or at the end of a game (i.e., games can be 
interrupted before reaching a “natural” end if all but one 
player has been bankrupt in the middle of a game—how this 
can happen is explained below). 

Games are played on a board which was originally drawn 
on a mat using a paint made with tar.  The board is in the 
form of a large letter X subdivided into 52 board positions 
(boxes).  The number 52 also had a special meaning to the 
Aztecs—it is the number of years in one of their centuries 
[2].  Board positions are classified into five types: there are 
four start positions (s—each one corresponding to a different 
player), four end positions (e—each one corresponding to a 
different player), eight extra-turn positions (d), eight toll or 
pay positions (p), and the rest are “normal” positions (n). 

Each player has five beads or tokens of a certain color 
which have to be advanced from outside the board, onto that 

player’s start position, and through the rest of the board to 
his/her end position.  Four bright, red-colored beans (a 
species found in Mexico), each marked with a dot on one 
side, are tossed by a player and used as dice at each turn 
during a game to determine how many board positions that 
player may advance one of his/her tokens.  The number of 
beans that can have a face-up dot after a toss is therefore 0, 
1, 2, 3, or 4.  The probability of each of these outcomes, 
however, might be different from that of the rest, so it is like 
tossing loaded or biased dice.  In addition, if one, two, three, 
or four face-up dots are visible on the beans after a toss, the 
player whose turn it is can move one of his/her tokens by 
that number of board positions; however, when no beans 
have a face-up dot, and due to the special nature of this 
occurrence, a player is allowed to move one of his/her 
tokens by ten board positions.  Table I shows the 
probabilities and number of board positions that are 
advanced for each of the possible outcomes of a bean-toss. 

TABLE I 
ANALYSIS OF THE FOUR BEANS (USED AS DICE) 

Total 
number 
of face-
up dots 

Probability Number of board positions to 
advance 

none 1/16 10 
1 4/16 1 
2 6/16 2 

3 4/16 3 
4 1/16 4 
One restriction is that a token may only enter the board (at 

the corresponding player’s start position) if a 1 results from 
a bean toss.  However, once several tokens have entered the 
board, a player has to decide which of his/her tokens to 
move, given the number of board positions that he/she can 
advance (based on the result of the bean toss).  In order to 
make this decision, different strategies can be thought of, but 
the lack of human Patolli experts that can be consulted (in 
order to learn the heuristics they use when playing) means 
that determining which strategies are better than others can 
best be done through a computational experiment. 

Fig. 1 shows the Patolli game board and beans in a typical 
configuration.  The p-type boxes are those shown under the 
boldface X’s drawn near the middle of each of the “arms” of 
the board (shown this way because that is how the Aztecs 
apparently drew them). 

Some additional rules with respect to the game board are 
the following.  If a player’s token falls on an s- or e-type box 
and the box is occupied by an opponent’s token, then the 
opponent’s token is returned to its start state (i.e., it must 
start at the opponent’s start position, but can only do so 
when a bean-toss results in a 1) and the opponent has to pay 
the player a certain number of goods.  This is the only 
situation in which a token is allowed to land on a board 
position that is occupied (momentarily) by another token.  If 
a player’s token falls on that player’s end-position, the token 
is taken out of play and the opponents have to pay the player 
a certain number of goods.  A player’s token cannot 
“overtake” that player’s end position (i.e., is not allowed to 
go around the board more than once).  If a player’s token 
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falls on a d-type box, that player gets an extra turn (and is 
allowed to move any of his/her available tokens in the new 
move).  If a player’s token falls on a p-type box, the player 
must pay his/her opponents a certain number of goods.  
Finally, if a player’s token falls on an n-type box, nothing 
special happens.  A game ends “naturally” when all of one 
player’s tokens have reached that player’s end position.  As 
can be seen, there are three types of situation in which 
payments may occur between players.  Any of these may 
leave a player bankrupt (and not all occur before a game has 
ended in a “natural” way). 

 

Fig. 1.  The 52 boxes of the Patolli board game and four beans, each marked 
on one side, used as dice.  Arrows show the direction in which tokens move 
during play.  The start and end boxes shown circled are those that “belong 
to” one of the players. 

 
Table II gives a summary of the different types of board 

positions, their semantics, and how many of them occur on a 
Patolli board. 

III. IMPLEMENTATION 
We have implemented the rules of Patolli in a system 

called GATIGO (the GAme of TIme and GOds).  For the 
moment our implementation assumes a two-player game, 
though it can easily be extended in order to perform three- or 
four-player games.  In GATIGO we start each player off 
with 20 goods in their possession, and each time a player has 
to make a payment it is just one possession which is 
transferred (irrespective of which of the three possible 
situations occurred that cause a payment to be required).  
These parameters can also be easily adjusted. 

The GATIGO system has an agent-based architecture.  In 
our implementation, beans are agents which, when asked to 
“flip,” produce a Boolean value (representing either the fact 
that the dot-side ended up face-up, or that it ended up face-
down).  Players are agents which have to decide which move 
to make.  In order to do so, they have to analyze each of 
their five tokens (or the subset of them which is currently on 
the board or able to enter the board) to decide which one to 
move.  Only one of the tokens can be moved by the player, 
and the move has to be by a number of board positions 

which depends on the number of beans that ended up face-
up after flipping them (all four bean agents are flipped in 
each turn).  Tokens are agents that, when prompted by their 
player owner-agent, return a value indicating to what degree 
that token thinks it should move at that point in the game (by 
the number of board positions indicated by the beans).  Each 
player agent therefore owns and consults five token agents. 

TABLE II 
CLASSIFICATION OF BOARD POSITIONS 

Vulnerability Type Descrip- 
tion Special features 

No. of 
boxes 
of this 
type on 
board 

s start A token can only 
enter the board at 
its corresponding 
start box when one 
face-up dot appears 
after tossing the 
beans. 

4 If occupied by a 
player’s token, 
the token can be 
bounced back 
(returned to its 
start state, 
outside of the 
board).  This 
occurs if an 
opposing 
player’s token 
landing on the 
same board 
position.  The 
player who is 
bounced back 
has to pay some 
of its 
possessions to 
the player that 
bounced him/her 
back.  This 
applies to both s- 
and e-type 
boxes. 

e end A token must land 
on its 
corresponding end 
box by advancing 
an exact number of 
positions.  When 
this occurs, the 
token’s owner 
receives some 
goods as payment 
from each of the 
other players. 

4 

d extra-
turn 

A player who lands 
a token on this type 
of position can toss 
the beans again 
(and make a new 
move based on the 
results). 

8 

p toll or 
pay 

A player whose 
token lands on one 
of these positions 
has to pay some 
goods to each of 
the other players. 

8 

If already 
occupied by any 
token, the board 
box cannot be 
landed on.  This 
applies to d-, p-, 
and n-type 
boxes. 

n normal None 28 
There are thus two types of agent in GATIGO that have to 

make decisions that can influence the outcome of a game, 
the tokens and the players.  Tokens have to decide how good 
or bad it would be for them to move during their owner’s 
current turn in the game.  We represent this as a value 
between 0 and 1, and call it the token’s move weight.  The 
calculation of the move weight of a given token is 
independent of the calculation performed at that time by any 
of the other tokens belonging to the same player.  The 
research question here is what type of information is 
useful/necessary to take into account in order to make the 
calculation?  Below we describe some strategies that we 
have implemented for calculating a token’s move weight 
which differ in the type of information that the use to make 

dice

p 

e 
e 

e 
e 

Patolli board p 

s 
s 

s 
s 

d d d 
d 

p d d 

p 

d d 

298

Proceedings of the 2007 IEEE Symposium on 
Computational Intelligence and Games (CIG 2007)



  

the calculation. 
Players have to decide which of their tokens to move by 

taking into account the feedback provided by all of their 
tokens.  If one token returns a move weight that is clearly 
better than the move weights of the rest of the player’s 
tokens, the decision is easy.  However, if several of the 
tokens consulted by the player have returned an equally or 
similarly good value for their move weight, some sort of tie-
breaking criterion has to be taken into account.  The research 
question here is what kind of criterion works best for 
deciding amongst several equally-good tokens in the game 
of Patolli?  Below, after our discussion of our move-weight 
calculation strategies, we describe some tie-breaker criteria 
that we have implemented for a player to decide which of its 
tokens should be moved in its current turn.  In the discussion 
below we will use bt to refer to the board position occupied 
by a token at time t (the current time).  Therefore bt+1 
represents the next board position that a token will occupy, 
and bt+2 represents the following position after that. 

A. Strategies for Calculating a Token’s Move Weight 
A player in GATIGO is programmed to follow a given 

strategy, where the strategy determines which kind of 
information the player’s tokens use to calculate their move 
weight.  The strategy can be adjusted from one match to the 
next, but all of a player’s tokens follow the same strategy 
within one match.  The strategies we have implemented for a 
token to calculate its move weight are the following: 

S0: this strategy automatically assigns a 1 as the move 
weight.  The purpose of this strategy is that, if we set up the 
tokens of several players to follow S0, then we can ask one 
player to follow a different tie-breaker criterion from that 
followed by another player, and thus compare tie-breaker 
criteria to each other by themselves (independently of, and 
the results of the comparison thus not being influenced by, 
the strategy used by the players for calculating the move 
weight). 

S1: this strategy assigns the value of the move weight 
depending on the type of board position on which a token 
will land if it is moved (i.e., depending on the type of bt+1).  
If the token will fall on an extra-turn board position, a high 
value (0.9) is assigned to the move weight, because getting 
an extra turn in the game is deemed to be a good thing.  If 
the token will fall on a payment-must-be-made board 
position, a low value (0.1) is assigned to the move weight, 
because having to pay one’s opponent is not a desirable 
thing in the game of Patolli.  If the token will fall on its 
player-owner’s end position, then a high value (1) is 
assigned to the move weight, because one doesn’t always get 
the correct number of dots after flipping the beans in order to 
be able to end a token’s advance through the board, so when 
one has the opportunity to end the advance, it must be taken 
advantage of.  If the token will fall on a different end 
position or a start position and said position is occupied by 
one of the opponent’s tokens, then a high value (1) is 
assigned to the move weight, because this type of game 
situation forces the opponent to have to pay the token’s 

owner.  If the token will fall on the same kind of positions 
but they are not occupied, then a medium-low value (0.4) is 
assigned to the move weight, because of the vulnerability fo 
that type of board position—there is a slight risk of the 
opponent then falling on the token being evaluated, thereby 
forcing the token’s owner to pay.  All other positions that a 
token may fall on imply that a medium-high value (0.6) is 
assigned to the move weight, because the decision of 
moving the token or not is neutral with respect to the type of 
board position. 

S2: this strategy assigns the value of the move weight 
depending on the type of board position that the token is 
currently occupying (i.e., depending on the type of bt).  If the 
token is currently in a start or end position, the move weight 
is assigned a high value (1) because of the risk inherent in 
occupying one of these types of position (if the opponent 
falls on one of “our” tokens—from the point of view of the 
player applying this reasoning strategy—in one of these 
types of position, the opponent must be paid).  If the token is 
currently in any other type of board position, a medium 
value (0.5) is assigned to the move weight.  This is due to 
the fact that other types of board positions are neutral from 
the point of view of deciding whether moving out of them 
makes sense or not. It is irrelevant to a player if one of 
his/her/its tokens moves away from such a position or not 
from the point of view of losing turns in the game or losing 
goods to other players (i.e., the negative things that can 
occur to a player during a game). 

S3: this strategy assigns the value of the move weight 
depending on an analysis of the possible board positions in 
which the token can land, and the probabilities of landing on 
them, in the player’s following turn, assuming the token 
moves at the current time.  In other words, it is like S1, but 
looks ahead an extra step, and assigns the move weight 
based on that extra information.  The value assigned to the 
move weight depends here on the type of bt+2, independently 
of the type of bt+1. 

The exact numeric values given to the board weights in 
the different strategies are arbitrary, but qualitatively we 
believe that they make sense, as explained in the description 
of each strategy above.  Each strategy is different from the 
rest in that it uses a different type of information to make its 
calculation of the move weight, thus allowing us to evaluate 
which types of information seem to be better than the other 
types by pitting the different strategies against each other.  
Additional strategies can be implemented that take into 
account more types of information not mentioned above, 
such as the local neighborhood (within the game board) of a 
token, including which other tokens are nearby (both those 
belonging to the same player and to the opposing player, 
thus introducing the concept of blocking or unblocking the 
paths of certain tokens as they move around the board) or 
looking forward more steps into the (possible) future states 
of the game.  We have left the implementation of these 
additional strategies, and the subsequent experiments that 
would need to be performed to evaluate them, for a future 
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version of GATIGO, as we wanted to concentrate on the 
simplest possible strategies to begin with. 

B. Tie-Breaker Criteria 
If several of a player’s tokens seem to be “good” 

candidates to be moved in the current turn, a criterion that is 
guaranteed to result in just one candidate token, independent 
of the strategy used to assign move weights, must be taken 
into account.  For instance if S1 is being used and two of the 
player’s tokens can land on an extra-turn position, given the 
current point-value of the beans, then somehow a decision 
has to be made about which of the two tokens to move.  The 
tie-breaker criteria we have implemented are the following: 

T0: this criterion chooses randomly from amongst the tied 
tokens in order to decide which one should move. 

T1: this criterion chooses the most advanced of the tokens 
that are tied. 

T2: this criterion chooses the token that is furthest behind, 
from amongst those that are tied. 

These tie-breaker criteria seem very simple, but choosing 
one over the other can have a large influence on the overall 
behavior of a player’s tokens.  In addition, one would expect 
T1 to tend to favor the dispersal of a player’s tokens 
(because, all other things being equal, the most advanced 
token will pull even further away from the rest of the 
player’s tokens than it already is).  T2 would be expected to 
tend to favor a player’s tokens bunching together (because, 
all other things being equal, the one that is furthest behind 
will advance and catch up with or join the group of the rest 
of the tokens on the board).  T0, on the other hand, due to its 
random nature, presumably represents a balance between 
dispersing and bunching up.  However, the measurements 
we performed during our experiments do not support this 
overly-simplistic explanation of the characteristics of the 
different tie-breaker criteria, as can be seen in Section V. 

IV. EXPERIMENTAL SETUP 
We initially ran the system with both player-agents (from 

now on, P0 and P1) programmed to follow the same strategy 
and the same tie-breaker criterion for ten sets of 100, 500, 
1000, 5000, and 10000 matches each.  As expected, both 
players ended up winning approximately the same amount of 
times in each of the sets of matches.  However, the variance 
in the results between one set of matches and the next was 
greater when the number of matches in a set was less than 
5000.  At 5000 we had found “stability” (more robust or 
trustworthy results—results not biased by the random nature 
of the bean tossing and other factors). 

After making this observation we therefore decided to 
perform one set of 5000 matches for each of the experiments 
we performed.  The experiments were designed to test the 
performance of the different strategies for assigning move 
weights (S0, S1, S2, and S3) combined with the different tie-
breaker criteria (T0, T1, and T2) we have implemented.  
Each different S-T pair was tested against each other 
possible S-T combination for 5000 matches in order to 

measure its performance. 
Performance can be measured in several ways (for 

example, in the context of GATIGO, how successful one is 
at bankrupting one’s opponents, or how efficient an S-T pair 
is at getting through a game).  Because of this we decided to 
measure the following variables in the experiments: the total 
number of matches won per player, the total number of 
games won per player, the total number of times each 
player’s tokens were forced to return to the beginning 
(associated with which is a payment to the opposing player), 
the total number of times each player landed on a p-type 
board position (and therefore had to pay its opponent), the 
total number of times each player won an extra turn, the total 
number of moves each player had to make, and the average 
number of tokens a player had on the board at any given 
time during a game. 

V. RESULTS AND CONCLUSIONS 
In the results we present here we highlight those that 

produced a clear difference in performance (at least a ratio 
of 3:1 in the values of the variables measured when 
comparing P0 and P1, except where the variation between 
combinations was too small, in which case a smaller ratio 
was highlighted).  In the tables shown in the next few 
figures, columns correspond to P0 and rows to P1.  Each 
column and each row represents a different S-T combination 
for the corresponding player, and their intersections show 
whether the S-T pair represented by the column (P0) or by 
the row (P1) “won” (given the variable that was measured in 
order to produce the corresponding table) in a face-to-face 
competition.  Boxes that are shaded (blue) correspond to 
cases in which P0 clearly won by at least 3:1 (the winning S-
T pair can be consulted in the corresponding column 
heading) and boxes that are very lightly shaded (yellow) 
correspond to cases in which P1 clearly won (the winning S-
T pair can be consulted in the corresponding row heading).  
Columns and rows in each table are ordered according to the 
number of cases in which the corresponding S-T pair 
prevailed (against the other S-T pairs tested).  Therefore the 
order in which the various S-T combinations appear in the 
rows and columns may differ from one table to the next. 

Fig. 2 shows the results of comparing each possible S-T 
pair to all others when measuring the number of matches 
won.  This measurement represents an S-T pair’s overall 
success in the game of Patolli, as it is equal to the number of 
times the opposing player was bankrupted. 

It can be observed from Fig. 2 that there are three groups 
of S-T combinations: three very successful ones (which are 
most likely to reflect the way that the Aztecs played the 
game), seven mediocre ones, and two really awful ones.  The 
S3T1 pair (assigning the move weights based on bt+2, and 
moving the most advanced token as the tie-breaker criterion) 
was one of the dominant S-T combinations.  The other two 
S-T pairs in the group of successful ones both involve S1 
(assigning move weights based on the destination board 
position bt+1), but strangely enough they used T0 (choosing 
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at random) and T2 (advancing the least advanced token), 
respectively, as their tie-breaker criterion.  The fact that none 
of these was T1 (even though S3 combined with T1 was the 
other successful combination) means that the interactions 
taking place between strategies used to assign move weights 
and tie-breaker criteria are both interesting and complex.  
Even more strange is the fact that S1T1 is the worst 
combination overall, when one would expect that all 
variations of S1 would be relatively successful if the other 
two pairs involving S1, S1T0 and S1T2, are (and if the other 
successful combination, S3T1, involves T1)! 

 

 
Fig. 2.  Comparison of the success of the different S-T combinations against 
all others when measuring the number of matches won. 

 
One possible explanation for these observations is the fact 

that S3T1 favors the participation of several tokens in the 
game because the first position in which newly-entered 
tokens will fall, a vulnerable s-type box, is ignored by S3, 
which looks one additional step ahead.  In contrast, S1 
notices that the initial board position which a token must 
occupy is a vulnerable one, and therefore tends to disfavor 
the entrance of a token into the board.  When this happens, 
the most advanced token is forced to move, even if it means 
falling onto a p-type fox, thereby causing the player to lose 
its goods and, after this occurring repeatedly, the player 
eventually loses the match.  This happens when the tie-
breaker criterion is T0 or T2, and is only exacerbated if it is 
T1 (moving the most advanced token), which is why S1T1 
was the worst combination of all. 

Fig. 3 shows the results of comparing each possible S-T 
pair to all others when measuring the number of games won. 

As can be seen from Fig. 3, the results are only slightly 
different from, and in general consistent with, those shown 
in Fig. 2 (in which the number of matches won was the 
variable that was measured).  There is no a priori reason to 
assume that a good overall S-T combination (one that 
bankrupts the opposing player, and therefore wins matches, 
often) results from winning a larger number of games than 
other S-T pairs.  This is due to the fact that the way in which 
the majority of games were played (trying to minimize one’s 
payments and maximize the opponent’s) would seem to be 
more important than the actual number of games won.  
However, in general the two variables (matches won and 
games won) do appear to be related to each other in Patolli, 

as shown in Fig. 3. 
 

 
Fig. 3.  Comparison of the success of the different S-T combinations against 
all others when measuring the number of games won. 

 
Fig. 4 shows the results of comparing each possible S-T 

pair to all others when measuring the amount of times each 
player’s tokens were forced to return to the beginning 
(which we shall call degree of bounce-back). 

 

 
Fig. 4.  Comparison of the success of the different S-T combinations against 
all others when measuring the number of times each player’s tokens were 
forced by the opponent to return to the beginning (degree of bounce-back). 

 
According to Fig. 2, S3T1 is one of the best S-T 

combinations, yet Fig. 4 shows that it involves the highest 
degree of bounce-back.  Intuitively it would seem that this 
contradicts the fact that S3T1 is a winning combination.  
This is due to the fact that each bounce-back involves paying 
the opposing player (the one that forced the bounce-back by 
landing on a player’s token as it occupied an s- or e-type 
board position).  Having to pay one’s opponent frequently 
would not seem to be an effective way of bankrupting the 
opponent!  Fig. 5 and Fig. 6 make things clearer with respect 
to this apparent contradiction. 

Fig. 5 shows the results of comparing each possible S-T 
pair to all others when measuring the total number of times 
each player landed on a p-type board position and therefore 
had to pay the opposing player. 

In Fig. 5 we can see that S3T1 is the “best” S-T 
combination when measuring payments made (it involves 

301

Proceedings of the 2007 IEEE Symposium on 
Computational Intelligence and Games (CIG 2007)



  

landing on a p-type box the least number of times).  It turns 
out that this more than compensates for S3T1’s poor 
showing in Fig. 4 (in which the variable measured was 
degree of bounce-back).  This can be best seen in Fig. 6, 
which gives the result of combining (adding) the results 
from Fig. 4 and Fig. 5. 

 

 
Fig. 5.  Comparison of the success of the different S-T combinations against 
all others when measuring the number of times each player’s tokens landed 
on a p-type board position (and therefore had to pay the opposing player). 

 

 
Fig. 6.  Comparison of the success of the different S-T combinations against 
all others when measuring the degree of bounce-back and the number of 
times each player’s tokens landed on a p-type board position together (i.e., 
total payments to the opposing player due to factors that can be directly 
controlled). 

 
As can be seen from Fig. 6, the three most successful S-T 

combinations from Fig. 2 (S3T1, S1T0, and S1T2) are also 
the ones that involve paying the opposing player the least 
number of times in total (due to factors that can be directly 
controlled).  The observations made previously on S3T1’s 
behavior based on the results shown in Fig. 4 and Fig. 5 
show that it is more important to avoid falling on a p-type 
board position than to be wary of having tokens on 
vulnerable s- and e-type board positions (in which the token 
may be bounced back by one’s opponent).  This might seem 
obvious at first because if a token falls on a p-type box the 
certainty of having to pay the opponent is 100%, whereas a 
token that is on an s- or e-type box is not certain to have to 
pay.  However, there are many factors that make the 
situation more complex than it may initially seem. 

First, the longer a token in a vulnerable board position 

stays there, the more it is exposing itself (and the chances 
that the token will eventually be bounced back and the 
opponent will have to be paid increase).  Second, if the 
opposing player is looking to take advantage of this type of 
situation explicitly, the token’s vulnerability increases.  
Finally, an additional situation in which a player may have 
to make a payment in Patolli is when one of the opponent’s 
tokens reaches its end position.  How frequently this 
happens cannot be influenced directly by one’s decisions 
during play.  One might try, indirectly, to minimize the 
probability that the opposing player’s tokens will reach their 
end position (perhaps by trying to bounce them back as often 
as possible).  However, as we have seen, guarding against 
bounce-back (the defense that the opponent may apply 
against this type of strategy) is not as important as avoiding 
direct payments by falling on p-type boxes. 

Fig. 7 shows the results of comparing each possible S-T 
pair to all others when measuring the total number of times 
each player landed on an extra-turn board position. 

 

 
Fig. 7.  Comparison of the success of the different S-T combinations against 
all others when measuring the number of times each player’s tokens landed 
on an extra-turn board position. 

 
As can be seen in Fig. 7, most combinations are 

comparable according to this measurement, but S1T1 is less 
likely than all the others to obtain extra turns as the game 
proceeds.  This directly correlates with the fact that S1T1 
was the worst overall combination according to Fig. 2.  
Getting extra turns increases the chances of winning 
matches. 

Fig. 8 shows the results of comparing each possible S-T 
pair to all others when measuring the total number of turns 
the players had in their series of games.  It can be seen in 
Fig. 8 that the same combination which wins the least 
number of extra turns, S1T1, is also the combination that has 
the less number of turns in a game (shown in Fig. 7).  This 
was the most efficient game-playing combination (it made 
the least number of moves during its games), as shown in 
Fig. 8, but efficiency turns out not to be desirable if what 
one wants is to succeed at bankrupting one’s opponent.  This 
again reinforces the fact that striving to get more turns helps 
maximize one’s chances of winning matches. 
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Fig. 8.  Comparison of the success of the different S-T combinations against 
all others when measuring the number of turns each player had during the 
series of games. 

 
Fig. 9 shows the results of comparing each possible S-T 

pair to all others when measuring the average number of 
tokens the players had on the board at a given time during 
the series of games. 

 

 
Fig. 9.  Comparison of the success of the different S-T combinations against 
all others when measuring the average number of tokens each player had on 
the board at a given time during the series of games. 

 
As Fig. 9 shows, S3T1, one of the most successful 

combinations according to Fig. 2, had an equal or higher 
number of tokens on the board, on average, than all the other 
S-T pairs.  However, S1T0 and S1T2, which were the other 
two very successful overall combinations, are among those 
S-T pairs with the lowest number of tokens.  Therefore, the 
number of tokens that a player maintains on the board does 
not seem to be a predictor of success.  If we compare S0T0, 
S0T1, and S0T2 in Fig. 9, we can also see that our prediction 
that T1 would cause dispersal of a player’s tokens (and 
therefore a smaller number of them on the board, on 
average), T2 would cause bunching up of the tokens (and 
therefore a larger number of them on the board, on average), 
and T0 would be somewhere in between these two 
alternatives, was completely wrong. 

After this analysis of our experimental results we can 
conclude that even when very simple strategies are used to 
assign move weights to tokens, and when very simple 
criteria are used to choose amongst several tokens that may 
end up with the same (best) move weight, these two factors 
involved in deciding which token to move interact in very 
complex ways.  These interesting interactions sometimes 
lead to unexpected results. 

We have tried to explain the results we obtained, but 
intend to continue exploring these issues further.  Perhaps 
we can think of other variables to measure in order to 
acquire a better understanding of the game strategies we 
have implemented.  More complicated strategies (in which a 
token would analyze more or different types of information 
in order to calculate its move weight) and tie-breaker criteria 
can also be implemented and tested.  It would also be a good 
idea to compare the results we have obtained for Patolli with 
the behavior of other, similar, multi-token board games.  
Finally, we need to explore the interactions that occur when 
more than two players are involved in a game.  In the 
meantime, our conclusion is that the most successful Aztec 
players probably made their decisions on which moves to 
make during the game of Patolli in a way similar to our 
S3T1, S1T0, or S1T2 combinations (described above). 
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