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Abstract— Although a number of multi-objective evolution-
ary algorithms (MOEAs) have been proposed over the last
two decades, very few studies have utilized MOEAs for game
agent synthesis. Recently, we have suggested a co-evolutionary
implementation using the Pareto Evolutionary Programming
(PEP) algorithm. This paper describes a series of experiments
using PEP for evolving artificial neural networks (ANNs) that
act as game-playing agents. Three systems are compared: (i) a
canonical PEP system, (ii) a co-evolving PEP system (PCEP)
with 3 different setups, and (iii) a co-evolving PEP system that
uses an archive (PCEP-A) with 3 different setups. The aim
of this study is to provide insights on the effects of including
co-evolutionary techniques on a MOEA by investigating and
comparing these 3 different approaches in evolving intelligent
agents as both first and second players in a deterministic zero-
sum board game. The results indicate that the canonical PEP
system outperformed both co-evolutionary PEP systems as it
was able to evolve ANN agents with higher quality game-playing
performance as both first and second game players. Hence, this
study shows that a canonical MOEA without co-evolution is
desirable for the synthesis of cognitive game AI agents.

Keywords: Game Al, Co-Evolution, Evolutionary Artifi-
cial Neural Networks, Pareto Differential Evolution, Evolu-

tionary Multi-Objective Optimization

I. INTRODUCTION

Single objective decision models are sufficient for some
decision making processes, but there are many situations
where decisions have multiple objectives. Most real-world
problems consist of more than one objective, which are
normally known as multi-objective problems (MOPs). Since
objectives of MOPs (normally) conflict with each other, a
multi-objective problem cannot be answered with a single
solution alone. Based on “Pareto Optimum”, a set of global
non-dominated solutions (also known as Pareto optimal so-
lutions) are optimal trade-offs among the objectives. Evo-
lutionary Algorithms (EAs) are population-based stochastic
search methods that apply the metaphor of natural biological
evolution. EA operations apply the principle of survival of
the fittest in trying to produce more optimized solution(s).
Over the last few years, the use of EAs for multi-objective
optimization tasks has become very popular with a rapid
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increase of new algorithms, theoretical achievements and
novel applications [1].

Artificial intelligence for games (game Al) represents one
of the most useful and practical platforms for studying
evolutionary computation systems. In spite of the additional
complexities of co-evolutionary models, they hold some
significant advantages that have been exploited within the
context of EAs to support the generation of solutions to
a series of complex problems. Co-evolutionary techniques
have been successfully applied to a number of games, for
instance, Awari [2], Pong [3], Nim [4], Poker [5], and Go [6],
[7]. Although many single-objective evolutionary techniques
have been successfully applied to many different kinds of
games, a large number of research issues and questions
still remain for multi-objective evolutionary techniques when
applied to games [3], [5].

In previous works [8], [9], implementation of Evolutionary
Programming (EP) has also been used to create ANNs that
are capable of playing Tic-Tac-Toe (TTT). It was reported
to be able to automatically synthesize neural network game-
playing agents both as the first player with reasonable playing
strength only. Recently, we have suggested an enhanced
version of a hybrid adaptive/self-adaptive co-evolutionary
implementation using the Pareto Evolutionary Programming
(PEP) algorithm known as the Pareto Co-Evolutionary Pro-
gramming (PCEP) algorithm was reported to be able to
automatically synthesize neural network game-playing agents
both as the first and second players with reasonable playing
strength through the introduction of Pareto multi-objective
evolution [10].

In this study, the main objective is to look into the
effects of the introduction of the co-evolution technique
and whether it is actually beneficial or otherwise to the
Pareto evolutionary optimization process. A comprehensive
empirical comparison of performance between the systems of
PCEP, a new archived-based version of PCEP called PCEP-
A and the canonical PEP without co-evolution is carried
out. All of the above implementations do not require an
explicit evaluation function for the purpose of automatically
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generating the game Al for TTT since the scoring from
playing against a rule-based player is used as the objective
evaluation method during evolution. Finally, the performance
of the respective approaches will be measured according
to the playing strength of the evolved ANN game-playing
agents pitted against three different levels of players (expert,
medium and random players).

A. Tic-Tac-Toe

TTT is a standard two-player zero-sum game of perfect
information, in which two players alternately put crosses and
circles in one of the compartments of a three-by-three board.
The objective of the game is to get a row of three crosses
or three circles before the opponent does. Player one is the
player that moves first, making a cross, followed by player
two, making a circle. If at the end of the game both players
cannot meet the objective, it means that a draw is awarded
to both players.

There are four player types in TTT. The novice player
makes random moves, the intermediate player will block their
opponent from winning, the experienced player knows that
playing in certain first squares will lose the game, and the
expert player will never lose [11]. When both players are at
the expert level, a TTT first player’s purpose is to force a
win or a draw; however a second player should force a draw
by blocking the first player’s winning moves. This is because
if the first player starts the game with an optimal first move,
it will never lose if no mistake is made for following moves,
so the second player can only force a tie. The only chance
for a second player to force a win is when the first player
did not make a best first move, or making a mistake during
subsequent moves. Hence, if both players are playing with
an optimal strategy with no mistakes, every game will end
1n a tie.

II. PARETO EVOLUTIONARY PROGRAMMING (PEP)

We have a multi-objective problem with two objectives
in this study, to: (1) optimize the performance as the first
player (which always trying to force a win), and also (2)
optimize the performance as the second player (which will
try to force a draw at the expert level). The Pareto-frontier
of the trade-off between the two objectives will have a set
of ANNs with different levels of play-strength as the first
and second players for TTT. The PEP algorithm is similar
to the co-evolutionary EP system in [8] with the following
modifications:-

1) Each agent is evaluated as both first and second TTT
players.

2) Reproduction is undertaken only among first 50 non-
dominated solutions from (first) n-Pareto layer(s) in
each generation.

3) Offsprings are placed into the population if they dom-
inate the main parent.

Evolved artificial neural networks (ANNSs) act as the
cognitive game Al agents in the game. The system was
initialized with a population of 100 ANNSs, each one having
its weight connections and bias term value set at random in
a uniform distribution ranging over [—0.5,0.5]. Each parent
created an offspring through mutation of each weight and
bias term value by adding a Gaussian random variable with
zero mean and a standard deviation of 1 (GaussianF' (0, 1)).
Based on the mutation rate, the number of nodes in the
hidden layer was allowed to vary, subject to the constraints
on the maximum and minimum number of nodes. All new
added node weights are set to 0.0. All layers (I) of ANN
(the input layer, hidden layer and output layer) and all the
synapses (connection between input layer and hidden layer,
and also between hidden layer and output layer, bl) are
involved in mutation, which was the only genetic operation
for reproduction. The algorithm works as described in the
following section.

A. Pseudocode of PEP

1) Randomly initialize population of 100 ANNs, each with
its weight of connections (W) and bias terms (B) value
over [—0.5,0.5].

2) Repeat:

a. Evaluate individuals in the population and mark
non-dominated ANNE.

b. If the number of non-dominated ANNs is less than
50, repeat the following until the number of non-
dominated ANNs is greater than or equal to 50:

i. Find the next layer of non-dominated solu-
tions among those marked ANN.
ii. Re-mark the ANNs as non-dominated.

c. Delete all dominated ANNs from the population.
d. Repeat:

i. Randomly select an ANN as the parent (p1).
ii. Mutation: with probability of mutation Rate,

do
child P1
B | «— B +GaussianF(0,1)
child p1
W bl «— Wbl +GaussianF(0,1)

otherwise
child p1
B | «—B]
child P1
W bl «— Wbl

and with probability of mutationRate, do
node Num «— vary(node Num)

where, all layers (1) of ANN (the input layer,
hidden layer and output layer) and all the
synapses (connection between input layer and
hidden layer, and also between hidden layer
and output layer, bl) are involved in both
operations of reproduction.
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e. Until the population size is maximum (100).

3) Until termination conditions are satisfied, else return

to (2) above.

The non-dominated solutions (also known as Pareto op-
timal solution) here is one agent which none of the other
agents have a higher fitness in at least one of the objectives.
More details about optimality in MOPs can be found in [12].

B. Evaluation of individuals (in PEP)

Each ANN will compete with the same rule-based proce-
dure as the first player “X” in 2 sets of 8 games and the
second player “O” in 2 set of 9 games, where the number of
game is based on number of possible first move for the rule-
based player. The first move of the rule-based player will not
be repeated in each set of games, based on all possible moves
being stored in an array at the beginning of the particular set
of games. Two different payoff functions were used to reward
each agent is performance as the first and second player. For
grading the performance of the ANN as the first player, the
payoff function {+1,—10,0} are the rewards for winning,
losing, and drawing, respectively. However, for grading the
performance of the ANN as the second player, the payoff
function {42, —5,3} are the rewards for winning, losing,
and drawing, respectively. Marking non-dominated solutions
will be done directly based on the scores gained from these
two payoff functions which were obtained from preliminary
testing and early work of Fogel [8].

III. PARETO CO-EVOLUTIONARY PROGRAMMING
(PCEP)

The PCEP algorithm introduced co-evolutionary tech-
niques into the MOEA which is the PEP algorithm, where the
force of evolution is from the competition among the (evolv-
ing) ANNs. The main difference between PEP and PCEP
is the evaluation of each individual. For implementation of
PCEP, after completing the evaluation using the rule-based
agent and grading with payoff function similar with PEP (see
Section II-B), each ANN will then be compared with a con-
stant number of randomly picked ANNs from the population
of the current generation. If the score of the ANN was greater
than or equal to its opponent (the randomly picked ANN),
it will receive a win. Furthermore, the ranking of the first
Pareto layer (by marking non-dominated solutions) will be
based on the number of wins as the main evaluation criteria.

A. Pareto Co-Evolutionary Programming with an Archive
(PCEP-A)

Similar to PCEP, after grading each ANN using the payoff
functions, a second competition is held. However, PCEP-A
has an extra archive, which is used to store Pareto solutions at
every 50'" generation. Consequently, each ANN is compared
to a minimum number of randomly picked ANNs (without
repetition) from the archive. Only if the number of ANNs

in the archive is less then the minimum required number of
random opponents, then the opponent list will be filled with
randomly picked ANNs from the population. Similarly, an
ANN will receive a win, if its score is greater than or equal
to its competitor. The number of wins will then be used as the
main evaluation criteria for marking non-dominated solutions
to rank the first Pareto layer.

IV. ADAPTIVE EVOLUTION

In adaptive evolution, direction and/or magnitude of the
strategy parameters’ modification is decided using some form
of feedback from the EA. However, in self-adaptive evo-
lution, self-adaptation of parameters is the implementation
of the evolution of evolution idea. A hybrid adaptive/self-
adaptive evolution combines two adaptation methods men-
tioned above. The mutation rate is encoded into the chromo-
somes of individuals. Instead of undergoing genetic opera-
tions of mutation and recombination, these parameters will
be varied by some deduction within a range. The highest
ANN’s score value of the current generation is used as the
feedback from the EA. If the feedback comprises of a non-
negative value, a deduction within a range will be applied to
the strategy parameters. For all the experiments in this study,
the probability of the initialization value and deduction range
(for mutation rate which is only decreased overtime) are 1
and between 0.0001 and 0.0005, respectively.

V. COGNITIVE GAME Al REPRESENTATION

The cognitive game Al is represented by a standard multi-
layered feed-forward ANN. A board pattern is received as
the input of the ANN, and the output of the ANN is a
position of the board as the corresponding move. Each node
of the hidden layer and output layer performs a sum of the
weighted input strengths, subtracts off an adaptable threshold
and passes the result through a sigmoid filter as shown in (1),

1
—_— 1
I+e-= @

where z is the sum of the weighted input strengths.

The ANN’s input layer consisted of nine input nodes
(with an additional bias unit), a hidden layer of varying size
(between 1 and 10 hidden nodes with an additional bias
unit) and the output layer consisted of nine nodes, where
each of the input and output nodes corresponded to a square
in the TTT grid. The three-by-three matrix board state is
represented as a 2-dimensional three-by-three array of nine
values. A blank open space was denoted by the value 0.0,
an “X” was denoted by the value 1.0, and an “O” was
denoted by the value (minus) —1.0. The two-dimensional
array represents the current board pattern and is presented
to the ANN to determine the move of the opposing player
and correspondingly, the relative strengths of the nine output
nodes were examined to determine the equivalent counter-
move by the game Al system. An empty square’s position
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with the maximum output strength was chosen as the output.
This is to ensure only legal moves are made. Placed squares
were ignored and selection pressure was not applied to force
the output to zero [9].

VI. EXPERIMENTAL SETUP

This series of experiments was designed to examine and
observe the effects of synthesizing TTT agents with and
without the introduction of co-evolutionary techniques into
the PEP algorithm. Settings of implementations of PCEP and
PCEP-A involved in all experiments were directly adopted
from the PEP setup (see section II). Each experiment was
repeated for 50 trial runs, and each run was allowed a
maximum of 800 generations. See Table I for the details
of the experimental setup, the number and target location of
randomly picked opponents.

TABLE I
EXPERIMENTAL SETUP DETAILS. THE MAIN DIFFERENCES BETWEEN
EACH SYSTEM WERE THE NUMBER OF OPPONENTS (THAT WILL
COMPETE WITH EACH CANDIDATE ANN IN THE POPULATION) AND
WHERE THE OPPONENTS WERE PICKED FROM.

System Opponent’s No. Origin of Opponent
PEP 0 None

PCEP1 30 Population

PCEP2 50 Population

PCEP3 70 Population
PCEP-A1 30 Archive & Population
PCEP-A2 50 Archive & Population
PCEP-A3 70 Archive & Population

After completing all of the experiments, all agents repre-
senting Pareto solutions at the 800th generation from each
experiment are selected to be the representatives of each
system. Pareto multi-objective optimization systems from all
the above systems are able to synthesize both first and second
players in a single run. Consequently, each selected ANN has
to compete with three different levels of evaluation players,
that are a near-perfect expert player, an average player and a
random player. A competition consists of a set of 20 games
for each level of player. A selected ANN will thus play a
total of 60 games firstly as a first player and secondly as a
second player.

VII. EXPERIMENTAL RESULTS & DISCUSSION

Figure 1 shows the overall performance of all experiments
and is summarized by focusing on the number of lost games
only. It clearly shows all experiments successfully produced
agent(s) that never lost any games to all three level of players
as the first player. Nevertheless, only PEP, PCEP2, PCEP3
and PCEP-A1 successfully produced intelligent agent(s) that
never lost any game to the expert level of player as the second
player. Figure 2 shows the global Pareto solution(s) front for
all the experiments in this study. Figures 3, 4, 5 and 6 show

O VS Random B VS Medium O VS Expert

22
20
18
16
14
12

10

Minimum Number of Games

o N A O

PEP
PCEP1
PCEP2
PCEP3

PCEP-A1
PEP

PCEP1
PCEP2
PCEP3
PCEP-A1

PCEP-A2

PCEP-A3

PCEP-A2
PCEP-A3

Lost1st Lost2nd

[2 VS Random B VS Medium O VS Expert |

Maximum Number of Games

PEP
PCEP1
PCEP2
PCEP3

PCEP-A1

PCEP-A3
PCEP-A2
PCEP-A3
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Fig. 1. Each selected ANN has to compete against three different levels
of evaluation players, that are a near-perfect expert player (VS Expert), an
average player (VS Medium) and a random player (VS Random). This figure
shows minimum and maximum number of games lost as the first player
(Lostlst) and the second player (Lost2nd), respectively.

details of the overall performances of the selected agents
from each system involved in the competetion against all
three level of players as the first and second players.

A. The Introduction of Co-evolution

Figure 3 shows the details of the overall performances of
implementations from the PCEP system competing as the
first and second players against three different levels (expert,
medium and random) of evaluation players. Overall, PCEP2
was successful in outperforming PCEP1 and PCEP3 in terms
of producing good performing agents both as first and second
players.

Based on the results of the competition against the expert-
level player, PCEP2 and PCEP3 were successful in producing
agent(s) that never lost to the expert-level player as the first
and second players. PCEP1 was successful in producing
agent(s) that never lost any game to the expert-level player
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Fig. 2. Global Pareto Solution(s) of each experiment

as the first player but its best second player lost 6 games to
the expert-level player.

Based on the results obtained after competing with the
medium-level player, PCEP2 performed slightly better than
PCEP1 and PCEP3. Each selected agent from PCEP2 had the
lowest maximum number of lost games as the first player,
and the lowest minimum number of lost games as the second
player. Similarly, PCEP2 and PCEP3 were performing better
than PCEP1, where both had the highest maximum number
of games won as the first player. Nevertheless, PCEP3 was
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Fig. 3. Selected ANNs from implementations of PCEP competing against a
near-perfect expert player (VS Expert), an average player (VS Medium) and
a random player (VS Random). This figure shows the minimum (Min) and
maximum (Max) number of games won (Winlst, Win2nd), drawn (Drawlst,
Draw2nd) and lost (Losslst, Loss2nd) as the first and second players,
respectively.

performing slightly better than PCEP1 and PCEP2 when
competing against the random player. The minimum number
of wins as the first and second player of the selected
agent(s) from PCEP3 was slightly higher than other agents.
In addition, the maximum number of losses as the first player
of selected networks from PCEP3 was also slightly lower
than other representatives as well.

The only difference between each implementation of this
algorithm (PCEP) is the number of randomly picked oppo-
nents. The increase (from 30 to 50 comparisons) successfully
improved the performance of PCEP but the performance
decreased for PCEP3, which is closer to a round-robin
(70 comparisons). The marking of dominated agents in
PCEP is based on the number of wins obtained from the
evaluation against a constant number of randomly picked
opponents from the population of the current generation. This
evaluation is only presenting “performance of the current
generation” with a high probability of luck involved. All
implementations of PCEP did not have a good spread of
global non-dominated solutions. Furthermore, PCEP3 and
the other two implementations of PCEP converged into two
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and a single non-dominated point(s) respectively (see Figure
2). Hence, it proves that the PCEP systems were not able
to fully exploit the range of good solutions between the
first and second players offered by the Pareto evolutionary
optimization process. Furthermore, although it may appear
that the other systems’ solutions dominate the canonical
PEP solutions, post-evolution empirical evaluation proves
otherwise (see Section VII-D).

B. Co-evolution with an Archive

Figure 4 shows details of the overall performances of
implementations from PCEP-A competing as the first and
second players against three different levels of evaluation
players. Overall, PCEP-A1 was the best implementation from
PCEP-A, outperforming PCEP-A2 and PCEP-A3. Selected
agents from PCEP-A1 were able to perform very well when
competing against the expert-level player. Furthermore, the
best agent from PCEP-A1 never lost any game as the first and
second player. However, the best second-player agent from
PCEP-A2 lost 3 games as the second player and the best
second-player agent from PCEP-A3 lost even more games
as the second player (6 games).

Using the medium-level evaluator, representatives from
PCEP-A1 successfully outperformed representatives from the
other setups. They have the lowest minimum number of
losses as the second player (9 games) and the lowest max-
imum number of losses as first player (8 games). Similarly,
agents from PCEP-A3 have the lowest minimum number of
losses as the second player. However, PCEP-A2 did not per-
form well, since its agents have the highest minimum number
of losses as the second player (12 games). Comparing against
the random player, PCEP-A1 again had the best performance
compared with the other two implementations of PCEP-A.
Representatives from PCEP-A1 have the lowest number of
minimum losses as the second player (as well as PCEP-A2,
2 games) and the lowest maximum number of losses as the
first player (5 games). The maximum number of losses as
the second player of PCEP-A3’s agent(s) was slightly lower
(13 games), whereas the maximum number of losses as the
second player of PCEP-A1’s agents and PCEP-A2’s agent(s)
were both 15 games.

The PCEP-A has an embedded archive, that stores Pareto
solution(s) of every 50th generation. At the 800" generation,
the number of agents stored in the archive can approach
50. The addition of an archive is to have a better quality
of evaluation in terms of play strength representation and
fairness by having the comparison against a similar set of
opponents. Overall, PCEP-A1 was the best implementation
of PCEP-A, outperforming the other two PCEP-A systems.
PCEP-A2 and PCEP-A3 were initialized with a larger num-
ber of randomly picked opponents (50 and 70 opponents,
respectively). Hence, PCEP-A2 and PCEP-A3 may still be
randomly picking opponents from the population of current
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Fig. 4. Selected ANNs from implementations of PCEP-A competing against
a near-perfect expert player (VS Expert), an average player (VS Medium) and
a random player (VS Random). This figure shows the minimum (Min) and
maximum (Max) number of games won (Winlst, Win2nd), drawnDrawst,
Draw2nd) and lost (Losslst, Loss2nd) as the first and second players,
respectively.

generation for comparison until the 800" generation. How-
ever, since PCEP-A1 was initialized with a smaller number
of comparisons (30 opponents), the archive will contain more
non-dominated opponents compared to randomly picked op-
ponents much earlier in the evolutionary run compared to
the other two systems with larger archives. Thus, the most
important observation in the success of the evolution of
PCEP-A1 is that the number of randomly picked opponents
was lower. The number of randomly picked opponents of
PCEP-A1 was almost zero after the 500*" generation.

C. Performance With/Without the Additional Archive

PCEP2 and PCEP-A1 were the best systems among im-
plementations of its own algorithm. For further discussion
to look into the effects of the additional archive, the dis-
cussion continues with the comparison between PCEP-Al
and PCEP2. Since the performance of PCEP2 and PCEP-
Al were the same in the competition with the expert-level
player, Figure 5 only shows the details of the performances of
PCEP2 and PCEP-A1 competing against average and random
players. The PCEP-A1 was performing better than PCEP2
in competing against the random player. The number of
maximum losses as the first player of PCEP-A1 (5 games)
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Fig. 5. Minimum (Min) and maximum (Max) number of games won
(Winlst, Win2nd), drawn (Drawlst, Draw2nd) and lost (Losslst, Loss2nd)
as the first and second players, respectively from ANNs of PCEP2 and
PCEP-A1

was smaller than PCEP2 (9 games). Furthermore for the
competition against the random player, PCEP-A1 also has
a slightly higher minimum number of wins and maximum
number of wins as the first and second players, respec-
tively. However for the competition against the medium-level
player, PCEP2 performed slightly better than PCEP-A1.

The discussion continues with the focus on the suitability
of both algorithms in terms of Pareto multi-objective opti-
mization. Figure 1 clearly shows the suitability of PCEP-A1
was significantly higher than the PCEP2. Implementations
of PCEP-A (especially PCEP-A1) have a significantly bet-
ter spread of global non-dominated solutions compared to
implementations of PCEP. Marking of dominated solutions
in PCEP-A was based on the number of wins obtained
from evaluation against agent(s) from the archive (as well
as randomly picked agent(s) from population of the current
generation, only if the size of the archive is less than the
required minimum number of comparisons). This evaluation
method is thus presenting more than the “performance of the
current generation”, which is more global (over the whole
process of co-evolution) and less elements of luck, since the
evaluation is using the same set of Pareto solutions. PCEP-A1
was randomly picking agent(s) from the population before
the 500th generation approximately. However, for the rest
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Fig. 6.  Minimum (Min) and maximum (Max) number of games won
(Winlst, Win2nd), drawn (Drawlst, Draw2nd) and lost (Loss1st, Loss2nd)
as the first and second players, respectively from ANNs of PEP, PCEP2 and
PCEP-A1

of the evolution, PCEP-A1 was evaluated using agents from
the archive only, since the size of the archive had already
exceeded the minimum number of comparisons.

D. Performance without Co-evolution

Figure 6 shows the overall performances of PEP, PCEP2
and PCEP-A1 competing against three different levels of
evaluation players. PCEP2 and PCEP-A1 were the best sys-
tems among implementations of its own algorithm. Overall,
PEP was successful in outperforming PCEP2 and PCEP-
Al in terms of producing good performing agents as both
the first player and second player. Compared to agents from
PCEP2 and PCEP-AI, agent(s) from PEP were performing
better as the second player, since they have the lowest
minimum and maximum number of losses when competing
against the medium and random players as the second player.
However, compared to representatives of PEP, agents of
PCEP2 and PCEP-A1 performed slightly better as the first
player when competing against the medium-level player and
random player, respectively.

Furthermore, PEP uses the fitness values from the payoff
functions directly to mark dominated solutions, which is
more suitable in Pareto multi-objective optimization as jus-
tified by the results of the comprehensive testing above. The

310



Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

PEP has the best spread of global non-dominated solutions
on the Pareto frontier compared with frontiers from other
systems (see Figure 2).

VIII. CONCLUSION

This paper reports the first comprehensive study in evolv-
ing cognitive systems for game Al in board games using
Pareto evolution as well as co-evolutionary techniques. Over-
all, the canonical PEP system was able to automatically
synthesize neural network game-playing agents successfully
both as the first and second players without the introduction
of co-evolution. Furthermore, PEP was successful in outper-
forming all the other systems in terms of producing high
play-strength game agents as the second player. Moreover,
using an archive in PCEP-A did not produce significantly bet-
ter results as first expected. Using an evaluation value which
represents a bigger picture (not the current generation only)
and is less dependent on luck for marking of dominated solu-
tions should introduce significant effects on the performance
of the Pareto multi-objective optimization process. The poor
performance of the PCEP systems, even those utilizing an
archive, in producing a good spread of solutions along the
Pareto front is further proof that co-evolutionary methods are
not particularly beneficial for synthesizing intelligent agents
for game Al in Pareto evolution, at least for games like TTT
where good rule-based players are readily available. In terms
of playing strength, PCEP2 was successful in outperforming
PCEP1 and PCEP3, similarly PCEP-A1 was the best system
compared with PCEP-A2 and PCEP-A3. Only PEP, PCEP2
and PCEP-A1 were successful in outperforming all other
systems in terms of producing high play-strength game
agents that never lost any game to the expert-level player both
as the first and second players. Furthermore, the significant
difference in results between PCEP2 and PCEP-AI is the
evaluation against the medium and random players. Agent(s)
of PCEP2 were performing better against the medium level
evaluator, but agent(s) of PCEP-A1 were performing better
against the random evaluator. Based on the performances of
PCEP and PCEP-A systems, the co-evolution process was
very sensitive to the number of randomly picked opponents.
Initializing the co-evolution process with a suitably small
number to limit the number of randomly picked opponents
early enough in the evolutionary process can cause significant
effects on the performance of co-evolutionary process.

Lastly, it is also shown clearly here that all the implemen-
tations of the co-evolutionary algorithms faced one problem,
that is the “forgetting” problem. Although the majority of
agents can win or draw against an expert-level player, they
“forgot” how to win or draw against medium-level and
random players. This is one of the known problems in co-
evolutionary techniques. This problem is particularly obvious
when the focus is on the synthesis of intelligent agents that
act as the second player. As such, this should be investigated

further in future work and may be utilized at the same time
as a suitable test bed for evaluating new methods proposed
for solving the “forgetting” problem in co-evolutionary algo-
rithms. For future work, we will also investigate scalability
of the algorithm by extending to more complex game such
as Othello, the game of Go, and Checkers.
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